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Abstract

The precise measurement of low-energy muon spectra is required to improve muography of small-sized
objects. The NEWCUT spectrometer is a 6-meter-length, rotatable, Multiwire-Proportional-Chamber-based
spectrometer that is developed for the measurement of the low-energy spectra of cosmic-ray muons up to
a few GeV between vertical and horizontal directions. The spectrometer consists of a consecutive series of
nineteen detectors with a positional resolution of approx. 3.5 mm each and lead plates. A neural network-
assisted muon spectra analyzer was implemented and trained using GEANT4 simulated data. The energy-
dependent relative differences between the simulated and reconstructed muons suggest that the actual
experimental arrangement can accurately measure the spectra up to an energy of 6 GeV.
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1. INTRODUCTION
Cosmic-ray muons are elementary charged particles created continuously as decay products of hadronic cascades originating
from the collisions of isotropically arriving galactic cosmic particles with the atmospheric nuclei [1]. The zenith-angle and energy-
dependent muon fluxes, called muon spectra, were measured in the atmosphere, on the Earth’s surface and under various overbur-
den materials; see various compiled data sets in [2, 3]. Muon spectra measurements were applied for revealing and investigating
various physical and geophysical phenomena: the high-energy (beyond a few tens of GeV) muon spectrum probes the cosmic
particle generation even beyond the energies of particle accelerator-based experiments [4, 5], improves the understanding of the
evolution of extensive air showers [4, 6], helps to estimate the atmospheric neutrino fluxes [7], tests the neutrino oscillation mech-
anism [8], etc. The low-energy regime (up to a few GeV) of the muon spectrum can be utilized for the investigation of the effect of
Earth’s magnetic field [9] and physical properties of the atmosphere [10] on their propagation, estimating the cosmogenic nuclei
created in the atmosphere and in rocks [9], studying neutrino decays [11, 12, 13, 14], etc.

Muography is an imaging technique that quantifies the amount of materials in various human-made and natural structures
by the measurement of the angular-dependent flux of penetrating muons; see, e.g., [15, 16, 17], similarly to X-ray radiography of
the human body. The imaging process of muography is fed with the muon spectra to simulate or calculate the flux of penetrated
muons. The accurate muographic imaging of small-scale (up to a few tens of meters thick) objects requires the extension and
improvement of angular-dependent muon spectra data sets at low energies. Furthermore, accurate momentum measurement is
expected to improve various applications of muon imaging from material identification by means of the measurement of muons’
multiple scattering [18] to low-noise muography of volcanoes [19].

Different techniques have been utilized for the measurement and discrimination of muons’ momentum. These techniques are
based on the measurement of muons’ time-of-flight [20], detection of Cherenkov radiation emitted by muons in dielectric media
[21, 22], reconstruction of the bending of muons’ trajectory in magnetic field [5], multiple scattering and absorption of muons
[8, 23, 24], etc.

An international collaboration with the participation of NEC Corporation, Wigner RCP, CRIEPI, and The University of Tokyo,
shortly NEWCUT, constructed a rotatable muon spectrometer to quantify the low-energy muon spectra by means of precise mea-
surement of absorption and multiple scattering of incident muons. The analysis framework of NEWCUT is under development.
This work focuses on a machine-learning-based muon spectra analyzer. This paper is organized as follows. We present the in-
strument in Section 2, the simulation method in Section 3 and the machine-learning-based energy classification method in Section
4.
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FIGURE 1: The NEWCUT spectrometer. (A) Photograph from a side view. (B) Photograph from a front view. (C) The schematic
drawing of the experimental arrangement from a side view. The brown and gray rectangles represent the detectors and lead plates,
respectively. The blue circle shows the rotation axis of the spectrometer. The red dashed lines show typical trajectories of low-
energy and high-energy muons in the spectrometer.

2. THE MULTIWIRE-PROPORTIONAL-CHAMBER-BASED MUON SPECTROMETER
Our muon spectrometer is under development at the research facility of NEWCUT in Chiba, Japan, at the latitude of N 35.877◦ and
longitude of E 140.028◦ at 20 m above sea level. The instrument is housed in a 6-meter-length rotatable iron support structure that
allows measuring the angular dependent muon spectra between vertical and horizontal directions. The tracking system consists of
a consecutive series of nineteen 40 cm × 40 cm sized Multiwire Proportional Chambers (MWPC) [25]. Each MWPC is segmented
with two perpendicular wire planes with segmentation of 12 mm [26]. This detector design provides a position resolution of approx.
3.5 mm. Besides MWPCs, lead plates are installed between the MWPCs with the variable number and variable thickness to deflect
and absorb the incident particles. Each lead plate has a height of 40 cm and a width of 20 cm. Currently, eight layers of lead plates
are used between the MWPCs with a total thickness of 60 cm. Each lead layer is aligned to the middle of MWPCs in the horizontal
dimension. The tracking system is divided into 19 racks by 1-cm-thick Al plates for fixing the positions of MWPCs and lead plates.
Figure 1 shows two photographs of the tracking system from front (A) and side (B) views, as well as the schematic drawing of the
actual experimental arrangement (C).

An environmentally friendly Ar-CO2 gas mixture (Ar:80%, CO2:20%) flows continuously across the tracking system with a
moderated flow rate of approx. 1 liter per hour. The signal production is initiated by means of ionization of gas atoms by the
penetrated charged particles. A high voltage of +1,750 V is applied to the anode wires to provide a measurable signal of a few
thousand electrons. The signals are read out by custom-designed electronics [26]. The data acquisition and detector control are
managed by a microcomputer. The data readout is triggered by the coincidence of at least three MWPCs. Each detector layer
operates with a triggering efficiency of approx. 99%. The trigger is blocked for a few hundreds of microseconds during the data
readout. The data files are written event-by-event with the track positions on each MWPC, the trigger pattern with its timing,
and the analog signal amplitudes (ADC) as ASCII files. An extensive description of the construction of MWPCs and their readout
system are described in Varga et al. [27].
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3. GEANT4 SIMULATION OF THE NEWCUT SPECTROMETER
The training of the machine learning model was performed with Monte Carlo simulation data. The structure of NEWCUT spec-
trometer and the penetration of muons through the tracking system were simulated in the GEANT4 framework [28].

500,000 muons were generated and injected into the detector structure from a 50 × 50 cm2-sized flat surface by the EcoMug
generator [29]. The standard physics list with all the relevant electromagnetic processes was applied to accurately simulate the
interaction of particles with the transversed materials. The positional coordinates and energy deposits of muons in the Ar gas
were recorded for each tracking layer. The simulated positional coordinates were shifted with random distances that followed
zero-centered Gaussian distributions with sigma values that were equal to the position resolutions of MWPCs.

The energy deposits are related to the measured analog signal amplitudes. These simulated quantities were used to adjust the
detection efficiencies on a MWPC-by-MWPC basis. Figure 2(A) shows an example of the energy threshold dependency of detection
efficiency. The thresholds were set to 1.75 eV to achieve the detection efficiency of approx. 98% for each MWPC. For accurate
modeling of experimental data, the frequency distributions of simulated energy deposit values, dE, were adjusted to the frequency
distributions of the measured ADC values by p0 + p1 × dE functions on chamber-by-chamber, where p0 and p1 were different
parameters for the different chambers. Figure 2(B) shows the histograms of scaled simulated energy deposit distribution (black)
and experimental analog signal amplitude distribution (red). Although a slight difference is observed between the simulation and
experimental data histograms because the simulation does not accurately model the flux muon of high-energy (beyond a few tens
of GeVs), it does not affect this work because we are focusing on the low-energy spectra.
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FIGURE 2: (A) The detection efficiency of muons is shown as a function of the energy threshold for Ar gas. The simulated energy
loss distributions (black histogram) were scaled to the measured analog signal amplitudes (red histogram) on chamber-by-chamber
basis. Panel (B) shows an example for the first detector layer.

4. A NEURAL-NETWORK-BASED MUON SPECTRUM ANALYZER
4.1. Construction and Training of Neural Network
Machine learning [30] is an applicable technique for quantification of the muon spectra by means of classification of the energy of
detected particles on a track-by-track basis. In this work, we applied a model that combines four neural networks. The simulated
data set was divided into three subsets in a proportion of 0.6 : 0.2 : 0.2 for training, validating, and testing of the model. The neural
networks were implemented, trained, and tested with scikit-learn version 0.22.1 [31], Keras version 2.4.3 [32], and Tensorflow
version 2.3.0 [33].

The structure of the implemented model is shown in Figure 3. The input of the model was fed with 19 horizontal coordinates, 19
vertical coordinates, and 19 ADC (adjusted energy deposit) values. The three different data sets were learned by three independent
neural networks. The outputs of these neural networks were concatenated into a fourth neural network. The neurons of input and
hidden layers were activated by Rectified Linear Unit (ReLU) functions. The output of the fourth neural network was a classifier
layer, where the neurons were activated by Softmax functions. Each output neuron corresponded to an energy bin and the output
values provided the energy probabilities. The size of energy bins was chosen to be 0.25 GeV. 40 neurons were applied at the output
of the neural network; thus all muons with energies of above 10 GeV were classified into the last energy bin.

The weights of neurons were optimized with the Adam method which is a gradient-based optimization algorithm [34].
Bayesian optimization was utilized for hyperparameter tuning of the neural networks with 100 epochs. The relative difference
between the generated and predicted spectra, (Npredicted − Ngenerated)/Ngenerated, was calculated to determine the optimal hyper-
parameters. The optimal number of hidden layers was found to be 3 for each neural network. The optimal number of neurons
was found to be 512 for each hidden layer. The learning rate and the exponential decay rate parameters of the Adam method were
found to be 0.0001 and 0.99, respectively.
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FIGURE 3: Schematic drawing of the neural-network-based model that was applied for track-by-track energy classification.

4.2. Preliminary Results
Figure 4(A) shows the normalized number of muons as a function of predicted energy and simulated energy. The number of
muons was normalized with the mode values of the frequency distributions of predicted energies in each bin. Figure 4(B) shows
the average predicted energies with 1 standard deviation error bars that were extracted for the vertical slices of Figure 4(A). The
average predicted energies were found slightly above the generated energies. The predicted energies show a fair correlation with
the generated energies up to 6 GeV.

The predicted energies saturate at 6 GeV for the NEWCUT spectrometer. This effect is assumed to be the existence of an energy
(momentum) threshold above which the spatial displacements due to muons’ multiple scattering are smeared by the positional
resolution of the tracking detector. Figure 5 shows predicted energies as a function of generated energies for our experimental ap-
paratus with three different position resolutions: 1σpos (black circles, the same as shown in Figure 4(B)), 2σpos (blue rectangles), and
4σpos (red triangles), respectively. The predicted energies are slightly increased relatively to the generated energies and saturated
at smaller generated energies due to the increase of position resolution.

We utilized the relative difference between the generated and predicted spectra to quantify the systematical error due to energy
misclassification. Figure 6(A) shows the muon spectra determined for the test data set (black histogram) and for predicted energies
(red histogram). Figure 6(B) shows the corresponding relative differences with black diamonds (errors are within the size of dia-
monds). This relative difference grows beyond the energy of 6 GeV because the energetic muons suffer fewer deflections and the
energy dependency of multiple scattering decreased with the increase of energy. The results shown in Figures 4, 5, and 6 suggest
that the actual detector arrangement is applicable to measure the muon spectra up to 6 GeV.

5. SUMMARY
A rotatable muon spectrometer is under development for the measurement of the directional and energy-dependent flux of muons.
An MWPC-based particle tracking system has been constructed in the NEWCUT laboratory, Chiba, Japan, at sea level. A neural-
network-based analysis method was developed to measure the muons’ spectra by classifying their energies on track-by-track
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FIGURE 4: (A) The normalized number of muons is shown as a function of generated energy and predicted energy. The number
of muons was normalized with the mode of the frequency histogram of predicted energies. (B) The average predicted energies are
shown with 1 standard deviation error bars as a function of generated energy. The predicted energies are saturated beyond 6 GeV.
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FIGURE 5: The average predicted energies are shown with 1 standard deviation error bars as a function of generated energy for
the tracking system with the actual detector segmentation (black circles), two times wider segmentation (blue rectangles), and four
times wider segmentation (red triangles), respectively.

basis. The developed model was trained using GEANT4 simulation data. The preliminary results demonstrated that the developed
machine learning technique allows measuring the muon spectra up to 6 GeV with the application of a significantly reduced amount
of lead plates in the experimental arrangement than in the previous setup [25]. The systematic error originating from the application
of the spectra analyzer was also quantified. In the next step, the neural-network-based muon spectra analyzer will be applied to
the experimental data.
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FIGURE 6: (A) The generated (black histogram) and predicted (red histogram) muon spectra. (B) The relative difference between
the generated and reconstructed spectra, (Npredicted − Ngenerated)/Ngenerated (filled diamonds), is shown as a function of energy.
The relative difference grows beyond the energy of 6 GeV.
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