
Journal of Advanced Instrumentation in Science JAIS-266, 2022

Meiga, a Dedicated Framework Used for Muography Applications
A. Taboada,1 C. Sarmiento-Cano,1 A. Sedoski,1 and H. Asorey1,2 for the MuAr project

1Instituto de Tecnologı́as en Detección y Astropartı́culas, (CNEA-CONICET-UNSAM), Buenos Aires, Argentina
2Instituto Balseiro (CAB-CNEA) and Universidad Nacional de Cuyo, San Carlos de Bariloche, Argentina

Corresponding author: A. Taboada
Email: alvaro.taboada@iteda.cnea.gov.ar

Abstract
The design and development of detectors for muography are in constant demand of the usage of semiem-
pirical models and simulations. In this contribution, we present Meiga, a framework conceived for sim-
ulation and reconstruction of muography applications. This framework takes a simulated muon flux at
ground level and propagates it through a given material where the detectors are located. It uses Geant4 as
a toolkit for the simulation of traversing particles through the material and computes the signal produced
when muons pass through any type of detector at the desired location. The framework provides interfaces
to the detector models and a hierarchical structure for data accessing, encompassing the need of simulating
different scenarios to optimize detector design in a versatile and easy-to-use framework.

Keywords: muography, detector modelling and simulation, Geant4
DOI: 10.31526/JAIS.2022.266

1. INTRODUCTION
In any scientific project, simulations play a key role in performing feasibility studies of the experiment, obtaining predictions
or models, and understanding the results. Therefore, having a simulation tool for a particular project becomes necessary, and
muography is not an exception. There are three steps that involve simulations or semiempirical calculations when developing an
application for muography: muon flux calculation, muon transport, and detector response. The muon flux can be estimated using
methods based on parametrizations, such as CRY [1] and EcoMug [2], or using dedicated air shower simulation software like
CORSIKA [3]. Different approaches are taken for the muon transport, such as backward Monte-Carlo techniques implemented in
PUMAS [4], and the case of Geant4 [5] which is extensively used for simulating the detector response.

In this proceeding, we present Meiga, a simulation framework developed within the MuAr project [6] that integrates the muon
flux simulation with the propagation and the detector response in a dedicated and easily adaptable framework. In Section 2, a
quick overview of the muon flux simulation used by Meiga is presented. The framework structure and an example application are
presented in Section 3. Conclusions are given in Section 4.

2. SIMULATION OF COSMIC RAY MUON FLUX
Obtaining a more realistic muon flux becomes relevant in order to perform feasibility studies of a particular muography detector.
For this purpose, we have used the ARTI framework [7] which uses CORSIKA for calculating the muon flux produced in extensive
air showers. The flux of galactic cosmic rays is given by

Φ
(
Ep, Z, A, Ω

)
≃ j0(Z, A)

(
Ep

E0

)α(Ep,Z,A)

, (1)

where Ep is the energy of the primary cosmic ray of atomic number Z and mass number A, Ω is the solid angle, j0 is a normalization
parameter, and E0 = 103 GeV. The spectral index α(Ep, Z, A) is considered independent of the primary energy, i.e., α ≡ α(Z, A), for
energies between 1011 eV and 1015 eV. An example of the cosmic ray flux for different primaries can be seen in Figure 1(left).

Each of these primaries produces a shower of secondary particles in the atmosphere that propagates to the ground. The flux of
secondary particles is affected by the geomagnetic field, and therefore, a correction must be applied. ARTI uses the coordinates of
the local geomagnetic field, Bx and Bz, as well as the altitude of the observation level to obtain an accurate estimation of the muon
flux at the ground.

The spectrum of secondary particles at the ground can be seen in Figure 1(right). The secondaries were produced simulating
four hours of cosmic rays flux over Buenos Aires (observation level of 25 m a.s.l). While electromagnetic particles (green line)
dominate the spectrum at lower energies, muons (blue line) are dominant at higher energies since they are less attenuated in the
atmosphere. The hadronic component (brown line) represents the lower contribution of particles at the ground, since most of the
hadrons decay into muons or electromagnetic particles during shower development in the atmosphere.

1

Journal of Advanced Instrumentation in Science JAIS-266, 2022

100 101 102 103 104

E/GeV

101

103

105

107
N

um
be

r
of

pr
im

ar
ie

s
/

m
−

2
s−

1 H
He

Si
Fe

−4 −2 0 2
log(E/GeV)

10−1

101

103

105

Fl
ux

/
m
−

2
s−

1
sr
−

1

Total
Muons

Electromagnetic
Hadrons

FIGURE 1: Left: energy spectrum of primary cosmic rays with energy from 1011 eV to 1015 eV calculated using equation (1). In this
energy range, the cosmic rays spectrum is dominated by proton primaries. Right: flux of secondary particles at the ground. The
flux was obtained simulating four hours of cosmic rays flux over Buenos Aires (25 m a.s.l.). Electromagnetic particles (γ, e±) are
shown in green, muons (µ±) in blue, and hadrons (π0, π±, K0, K±, p, n) in brown.

The Meiga framework uses the energy spectrum of secondary particles as well as their arrival direction which is given by the
momentum components. Different particle types must be taken into account in our detector simulation. For example, electrons and
positrons may be a source of noise in a muon detector, especially those placed at the surface where the rate of these particles is high
in comparison to muons.

3. THE MEIGA FRAMEWORK
Meiga is a collection of C++ classes that integrate the cosmic ray flux calculation, particle propagation through a given material,
and the simulation of the detector response. Both propagation and detector response are performed via Geant4 simulations. In this
sense, Meiga uses Geant4 as an external toolkit and provides the necessary interfaces for the detector description and run managers
which can be accessed by the user. The framework offers a set of dedicated applications which are easily configurable allowing
Geant4 nonexperts to run and access the simulated data. In this section, an overview of the Meiga structure is given, and and an
example application is shown.

3.1. Framework Structure
The Meiga framework has a hierarchical structure for accessing data. In Figure 2, a diagram with the workflow of Meiga is shown.
The Event is at the top of the structure and is used for writing and reading data. It serves as a connection between the detector
description and the simulated data and is in charge of the information flow during the run. When the program is executed, the
input file containing the muon data is read by the ReadParticleFile, and this information is stored in the Event. The Detector class
provides an interface to the Event from which the detector description can be read. For example, a muon detector made of plastic
scintillator bars would consist in a Detector class where the bar length would be accessed through a member of that class.

The Geant4 DetectorConstruction reads the detector configuration from the Event. This can be done manually, i.e., the user has to
write the DetectorConstruction and the PhysicsList on his/her own, or it can be done automatically by means of predefined detector
models and physics lists which are contained in the G4Models class. The former is user configurable and requires more Geant4
knowledge than the latter. The detector models act as plug-in functions in the DetectorConstruction part of the code, enabling the
construction of a given detector at a given position.

Simulated data is stored in the SimData class which inherits from the Event. A hierarchical structure of subclasses of SimData
is built in order access data at different levels. In this sense, one can access to data at the event level, e.g., initial muon flux; and
at the detector level, e.g., signal produced by passing muons through the detector. The hierarchical structure allows us to access
data in an easy way using setters and getters methods. The setters methods are typically called during the Geant4 simulation where
information from the Geant4 user action classes is stored in the Meiga SimData structure. The getters are called by the DataWriter
functions at the end of the run when the desired data is dumped into output files.

In addition to the SimData and the G4Models, the Meiga framework contains a set of Utilities which include parser of configura-
tion files, physics constants, and geometry and mathematical calculations. XML and JSON formats are used for configuration files
that allow users better handling of the simulation settings. For example, a JSON file is used to set the input and output filenames,
verbosity, and visualization options. On the other hand, XML files are used to set the DetectorList, containing a list of detector
types and positions which are then read by the Geant4 detector construction classes. Physics constants are used to set the units and
particle definitions of a common system between the external packages CORSIKA and Geant4.

2

Journal of Advanced Instrumentation in Science JAIS-266, 2022

Input
Muon flux

theEvent

Meiga
Detector
Objetcs

ReadParticleFile

Geant4
Detector

Construction

Geant4
Simulation

Output
DataWriter

Initialize(Event&, cfg)

Run(Event&)

WriteEventInfo(Event&)

Event level
SimData

Detector level
SimData

Objects:

Actions:

Meiga objects

External objects

Done automatically

Done by user
User configurable / predefined

FIGURE 2: Workflow of the Meiga framework. The blue areas represent objects that belong to external packages while the green
areas denote the Meiga objects. Arrows indicate the flow of information where dashed lines correspond to actions which are done
automatically, solid lines correspond to actions done by the user and dotted lines correspond to actions that can be configured by
the user, or performed based on a predefined configuration. The gray box represents the workflow of an Application. See text for
more details.

3.2. Meiga Application
The structure of classes and functionalities described in the previous section represent the base of the Meiga framework. The
simulation user task is integrated into what is called Applications, where each application is composed of three sequential methods
that read the configuration, run the simulation, and write the output files, respectively. The application is run with an executable
that is produced during the compilation process. This executable takes a configuration file as input to set the simulation parameters.

The Initialize method is called at the beginning of the program and is used to set up the simulation options. It reads the
configuration file using a JSON parser of the C++ boost library. This configuration file contains the paths of the input and output
files, flags to set the visualization and verbosity options, the detector, and the physics lists. The input file is used to fill the Event
object with the information about the muon flux. The detector together and the physics lists are needed to set up the Geant4
simulation.

Secondly, the Run method is called. First, it reads the information loaded in the Event and starts the Geant4 simulation based
on the detector configuration which is given by the detector and physics lists. The detector list is an XML file which contains
the information of the type and position of the detector. This information is passed through the Detector objects to the Geant4
DetectorConstruction class. Then, the rest of the Geant4 action methods are initialized.

Once the configuration was successfully set, a loop over the input particle vector is performed in order to start the Geant4
simulation. Particles are injected at ground level with positions randomly distributed and directions given by their momentum
components. Each particle constitutes a Geant4 run; i.e., when the injected particle and its products reach zero energy, a new
particle of the vector is injected until the loop ends. In this sense, simulation data can be stored particle-by-particle. Cuts such as
energy or particle production may be implemented by the user in the different action classes which are specific to each application.

An example of the muon transport simulation with a Meiga application is shown in Figure 3. For this particular case, a cylindri-
cal volume of 600 m of height and 150 m of the radius was filled with standard rock (Figure 3(left)). Muons (and their products) are
tracked inside the simulation volume. The number of muons that arrived at the bottom of the cylinder is shown in Figure 3(right).
These muons were produced in a simulation of one year of cosmic ray flux as explained in Section 2.

An example of the simulation of the detector response is depicted in Figure 4. Methods inside the applications are developed
to collect information when particles hit a sensitive volume of the detector. For example, a muon hitting a detector made of plastic
scintillator bars with wave-length shifting (WLS) fibers that transport the light to a silicon photomultiplier (SiPM) can be seen in
Figure 4(left). The time traces generated by that muon on two SiPMs are shown in Figure 4(right). Time traces are computed by
adding the single photo-electron pulses of each photon detected by the SiPM. They are used for signal calculation and for imaging
reconstruction algorithms.

After the simulation is done, the WriteEventInfo method is called, and the desired information is dumped into output files.
The output consists of a collection of ASCII files where muon transport information and the detector traces are stored. The level of
verbosity of the output data can be adjusted for the needs o a particular application.

3

Journal of Advanced Instrumentation in Science JAIS-266, 2022

FIGURE 3: Example of muon transport simulation with Meiga. Left: schematics of the simulation volume with Geant4. A muon of
1 TeV of energy is injected in a block of standard rock (ρ = 2.65 g/cm3) of 600 m depth. Right: muon number at 600 m of standard
rock after injecting one year of secondary muons. The dotted line indicates the volume boundary.

FIGURE 4: Example of a simulation of the detector response with Meiga. Left: the impinging muon (red line) crosses a detector
composed of two panels with two scintillator bars, each one of 4 cm wide. Bars are traversed by WLS fibers which transport
scintillation light (green lines) to a SiPM (blue squares). Right: SiPM pulses produced by the traversing muon.

4. CONCLUSIONS
The Meiga framework was conceived as a dedicated simulation tool for muography applications. The framework consists of a
collection of classes that integrate a more robust calculation of the muon flux with its propagation through the media.

Its hierarchical structure grants data access in an easy way and the usage of configuration files allows Geant4 nonexperts to
set up and run the applications. Meiga provides customized detector models commonly used for muography with a structure of
classes for material definitions and detector configurations, allowing developers to integrate their own models in the framework.

CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest regarding the publication of this paper.

References
[1] C. Hagmann et al., IEEE Nuclear Science Symposium Conference Record, pp. 1143–1146 (2007).
[2] D. Pagano et al., Nucl. Instrum. Methods. Phys. Res. B 1014. 165732. (2021).
[3] D. Heck et al., Technical Report FZKA 6019, Forschungszentrum Karlsruhe GmbH (1998).
[4] V. Niess et al., Computer Physics Communications 229 (2017).
[5] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., A 506 250-303 (2003).
[6] H. Asorey et al., these proceedings (2021).
[7] C. Sarmiento-Cano et al., EPJ C, submitted, arXiv:2010.14591 [astro-ph.IM] (2021).

4

