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Abstract

Many muography applications make extensive use of simulations to determine detector design or to train
imaging or regression algorithms. The computing cost of producing these simulations is usually quite high,
especially concerning the interaction of cosmic muons with matter. This work explores the possibility of
using Generative Adversarial Neural (GAN) networks to produce a fast and realistic simulation of the
multiple scattering process. The results of the network are confronted with GEANT4 simulations using a
benchmark problem related to the measurement of the inner wear of industrial pipes. The GAN is able to
reproduce the angular distributions and correlations with a speed-up factor of roughly 50 with respect to
GEANT4.
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1. INTRODUCTION
Muography is an emerging technology in fields such as vulcanology [1], civil engineering [2], archeology [3], and others. This
technique can be applied in two different flavors: transmission muography and scattering muography. The former uses a single
muon detector to measure the muon flux attenuation, while the latter uses two muon detectors and measures muon angular
deviations. Transmission muography is typically used for problems involving very large volumes (up to hundreds of meters)
while scattering muography is typically applied for smaller volumes (a few meters and below).

In the context of the industry, scattering muography is used as a Nondestructive Testing (NDT) technique to perform preven-
tive maintenance of the equipment, process quality control, or risk assessment. Among many examples of these applications, the
assessment of the thickness of insulated pipes [4], the measurement of the metal-slag interface in furnace ladles [5], or the density
assessment of scrap containers [5] is found.

Problems in the industry differ from other fields in which muography is applied because the nominal geometries under inspec-
tion are usually very well known. Indeed, factories usually have detailed designs of the facilities and the equipment. Muography
algorithms do not need to reconstruct the full geometry but only to determine variations with respect to these nominal geometries.
In many cases, the problem can be restricted to a small number of parameters of interest. This opens the possibility of using ma-
chine learning methods to perform a regression on those parameters, at the cost of requiring a large amount of simulated samples
to train the algorithms.

Simulation in muography can be divided into three different components: simulation of the original muon flux or muon gen-
eration; simulation of the detector response or muon digitization; and simulation of the passage of muons through matter or muon
propagation. There are several packages in the market providing muon generation, such as CRY [6]. Most of them use param-
eterized versions of the measured cosmic muon flux and produce energy and angular distributions accordingly. This process is
relatively fast and does not require a large amount of computing resources. The digitization process depends strongly on the detec-
tors and therefore is usually specific to each experimental setup. The most CPU-consuming task is the muon propagation. It implies
the simulation of, at least, the multiple muon scattering and energy loss processes. This task is usually done by the GEANT4 [7]
software using a multistepping technique.

This work studies the feasibility of replacing the muon propagation simulation with a Generative Adversarial Neural (GAN)
network [8]. These architectures are becoming more and more popular in High Energy Physics in the last years [9]. A benchmark
case in the context of muography applied to the industry has been used to quantify the goodness of the simulation. The GAN
has been trained using GEANT4 simulations of a setup with one parameter of interest as described below. Finally, a comparison
between GEANT4 simulations and the output of the GAN has been performed.
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2. SIMULATION SETUP
The simulation setup replicates the scattering muography setup implemented by Muon Systems and consists of two detectors
located on the top and below the object under study. Figure 1 shows a picture of the detectors and a simple scheme of the setup.
The upper detector is composed of two muon chambers while the lower detector is composed of three, although only two of them
were used. The chambers are multiwire proportional chambers (MPCs), which are designed to provide good spatial and angular
resolutions. The employed MPCs consist of an array of parallel anode wires located in between cathode planes with a high voltage
difference. The full system is inserted in a hermetic box with electrically grounded walls. The wires have a separation of 4 mm and
are embedded in a mixture of argon and CO2. Within each detector, a minimum of two layers of wires are positioned perpendicular
to one another to measure the X and Y coordinates within a plane that runs parallel to the Earth’s surface. The configuration of
these layers ensures coverage across an effective area of about 1 m2. Each detector provides a measurement for the position x⃗ at
which the cosmic muon crosses the layers and the direction v⃗ of the trajectory.

FIGURE 1: Real picture of the set up at Muon Systems (left). Scheme of the setup (right).

Cosmic muons are generated using the CRY generator. The propagation of muons through matter is performed using GEANT4
including typical physics processes used in muography applications. A realistic description of both the detectors and the pipes
is provided to GEANT4. The detector response is simulated with customized software calibrated to match the response of the
detectors of Muon Systems.

This work studies the problem of the estimation of the corrosion in the inner walls of insulated pipes. A set of simulations with
pipes of different sizes have been performed. Pipes are made of steel and have a surrounding 2 mm-thick layer of aluminum. The
outer radius of the pipe is 20 cm while the inner radius varies according to the simulation. The number of samples used for training
and evaluation is summarized in Table 1.

Pipe thickness (mm) Number of training samples Number of evaluation samples
4 619605 300000
6 618798 300000
8 617951 300000
10 616700 300000
14 614944 300000
16 615216 300000
18 614109 300000
20 613692 300000
12∗ — 300000

TABLE 1: Dataset composition. ∗Only used to evaluate interpolation capabilities.

The information provided to the GAN network as a single element of the data sample is the position (x, y) and the vector
direction (vx, vy, 1) of the muon in the first and the second detectors, and the value of the thickness of the pipe that the muon went
through (r), constituting a total of 9 variables.
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3. GAN ARCHITECTURE
The objective of this work is to train a conditional GAN model to generate the position and direction of the outgoing muon, using as
input the coordinates of the incoming muon and the thickness of the pipe, which is defined as the parameter of interest. Therefore,
the input of the desired model will be conformed by three parts: the position and direction (x and y coordinates) of the incoming
muon, the thickness r of the pipe, and 16 latent variables that seed the generation. The output of the model will be determined
by 4 variables that represent the shift in position and trajectory of the muon with respect to the straight line. These are defined as
follows:

∆x∗ = x2 − x1 + Lvx1, ∆y∗ = y2 − y1 + Lvy1, ∆vx = vx2 − vx2, ∆vy = vy2 − vy2, (1)

where L is the vertical distance between the two detectors. These 4 variables contain all the relevant information about the muon
propagation process.

The architecture considered for the training of the model has been the Wasserstein GAN with Gradient Penalty (WGAN-GP)
[10]. The generator network (G) has 3 hidden layers with 32, 64, and 128 nodes, activated with Leaky ReLU functions, and outputs
4 values. The critic (C) inputs the 8 variables plus the thickness label and has the same hidden layers as G but in reverse order.
This configuration was obtained after a process of hyperparameter optimization based on trial and error in which the network
architecture was varied, as well as the dropout intensity (finally discarded), and the activation functions.

The model has been trained for 1000 epochs using the Adam optimizer with a learning rate of 0.0001. Batches of 5000 samples
have been used, and the C weights have been updated 5 times for each G update. Nearly 620000 samples for each pipe thickness
were used for the training, keeping the class population balanced. Samples corresponding to pipes with thickness r = 12 mm are
not used in the training but are kept for testing purposes exclusively.

FIGURE 2: Distributions of real (solid) and generated (dashed) samples corresponding to two different values of thickness.

4. RESULTS
The performance of the network has been evaluated in two ways: first, by producing samples conditioned to the same thickness
classes used in training and by testing the similarities between the real and generated samples. The comparison between the
distributions generated with GEANT4 and the GAN can be found in Figure 2. Then, the interpolation capabilities of the model
have also been tested by producing samples conditioned to a thickness value in the middle of two values already seen by the
model. In this way, the network’s capability to generalize and interpolate results out of the points in which it was trained is tested.
The results can be seen in Figure 3. From these figures, it can be seen, qualitatively, that the model is capable of replicating the
distributions of the 4 kinematic variables, both in the bulk and in the tails. Also, it can be observed that it is possible to tune its
generation using a parameter and that the model is able to interpolate and generate samples that correspond to thickness values to
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which it was not exposed in the training process. Indeed, the Wesserstein distance between the GEANT4 and the GAN distributions
is 0.024 ± 0.007 cm and 0.00051 ± 0.00008 for the spatial and angular coordinates, respectively, where the average over all the pipe
thickness cases has been used. The distance between the interpolated case of r = 12 mm and the corresponding GEANT4 simulation
is 0.021 cm and 0.0004 indicating that the interpolation works as well as the other simulations.

FIGURE 3: Distributions of real (black) and generated (red) samples corresponding to a value of r = 12 mm, which the model never
learned.

It should be noted that in this work we are aiming for a model that generates a 4D distribution. Therefore, the model should
reproduce not just the 4 kinematic variables but also the correlations among them. Figure 4 shows the correlations of the predicted
variables. In this setup, the strongest correlations are found between the pairs of variables ∆x∗-∆vx and ∆y∗-∆vy. The figure shows,
qualitatively, that the trained model is able to reproduce well these correlations, meaning that the sample-by-sample generation is
good.

Finally, the gain in computation time with respect to GEANT4 has been evaluated. For this, 10000 muon events have been
generated in a controlled environment. The muon propagation part took GEANT4 about 37 seconds, while for the GAN model this
time is reduced to 0.7 seconds. This constitutes an improvement of roughly a factor of 50, which is very significant when producing
large amounts of simulation data. It should be noted that the sampling of the GAN was not optimized and probably sampling
more than one event, as it was done, at the same time could speed up this factor much more when using a GPU.

5. CONCLUSIONS
This work studies the application of generative ML models and, more in particular, Generative Adversarial Networks, for sim-
ulation purposes in the context of muon tomography for industrial applications. This first approach on the subject shows that it
is indeed possible to train a GAN model to simulate the propagation of muon events through different objects and also that the
model has interesting capabilities, such as modulation of the output and interpolation between labels. Nevertheless, this work is
intended as a starting point for the exploration of many other new generative ML models for the same purpose. More exhaustive
tests will be done in the future in order to assess the suitability of generated samples to replace the GEANT4 simulation.
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FIGURE 4: Correlations of real (left) and generated (right) samples corresponding to a thickness of r = 20 mm.
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