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Abstract
Automatic image segmentation is a critical component of medical image analysis, and hence quantifying
segmentation performance is crucial. Challenges in medical image segmentation are mainly due to spatial
variations of regions to be segmented and an imbalance in distribution of the classes. Commonly used
metrics treat all detected pixels indiscriminately. However, pixels in smaller segments must be treated dif-
ferently from pixels in larger segments, as smaller ones aid in early treatment of associated disease and are
also easier to miss. To address this, we propose a novel evaluation metric for segmentation performance,
emphasizing smaller segments, by assigning higher weightage to smaller segment pixels. “Small SEGment
Emphasized Performance” (SSEGEP) metric, based on weighted false positives, was proposed and eval-
uated using synthetic images and 4 publicly available clinical datasets of eye (fundus imaging, n = 33),
breast (mammogram, n = 108), liver (CT, n = 131), and pancreas cancer (CT, n = 107), where n refers
to the number of images from the dataset that were used in the study. Mean opinion score (MOS) was
calculated from the scores (5-scale scores) of 33-fundus-image segmentation as assigned by 15 researchers
(2–5 years of experience in image analysis). Statistical analysis was performed for the other datasets to
quantify the relevance of the proposed approach. Across 33 fundus images, where the largest exudate is
1.41% and the smallest is 0.0002% of the image, the proposed metric is 30% closer to MOS, as compared
to Dice Similarity Coefficient (DSC). Statistical significance testing resulted in a p value of order 10−18 that
shows the significance of SSEGEP for hepatic tumors compared to DSC. The proposed metric is found to
perform better for the images having multiple segments of a single class.
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1. INTRODUCTION
Automated disease diagnosis requires automated segmentation of region of interest (ROI), on which subsequent analysis depends.
Hence, it is important to evaluate segmentation performance. Segmentation is done in different ways depending on the image
modality and characteristics of the region to be segmented. Some common methods include histogram analysis, region segmenta-
tion, and edge detection. In a typical CAD (Computer-Aided Detection and Diagnosis) system, image segmentation is usually followed
by feature extraction and classification. One successful model used in medical image segmentation is U-net [1]. Since subsequent
diagnosis depends on segmentation, it is important to utilize robust segmentation performance evaluation metrics.

General Image Segmentation and Medical Image Segmentation
Evaluation of medical image segmentation should not be done in a similar way to the general segmentation scenarios. Commonly
used metrics include accuracy, sensitivity, specificity, Dice Similarity Coefficient (DSC, also known as F1-score), Intersection Over
Union (IOU, also known as Jaccard Index), and boundary distance scores which are applicable to general segmentation scenarios.
Information about the overlap area between ground truth and segmented image is used to evaluate the quality of general image
segmentation method. However, medical image segmentation evaluation should also consider the diagnosis aspect, like what is
more important in disease diagnosis. Some examples of medical segmentation scenarios include the detection and monitoring of
tumor progress, which is important in surgical planning [2, 3, 4], and change patterns in white matter that assist in early diag-
nosis and treatment of brain diseases [5]. There are also medical scenarios where the size/volume of the segments conveys more
information on disease grading/diagnosis. Metrics such as DSC, IOU, and volumetric overlap error are used to evaluate segmen-
tation based on size/volume of region. In certain cases, the contour of the segment is of interest, which requires the segmentation
algorithm to provide exact boundary delimitation. Boundary distance-based scores such as Hausdorff distance are used in such a
scenario. However, in other cases, like in radiotherapy, the location of the segment may be of interest.

Segmentation Challenges in Medical Images
The region to be segmented in medical images is not always distinct and localized. There may be regions with variations in loca-
tion, size, shape, and brightness. Preprocessing techniques usually take care of brightness and color. Other challenges include the
following.
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FIGURE 1: (a) MRI scan of glioma (images taken from BraTS dataset [6, 7, 8]), (b) fundus images (images taken from DIARETDB1
dataset [9]). In each of the image pairs, the image on the left is the original, while the image on the right is the segmentation ground
truth hand-marked by experts. The fraction of pixels in the ROI, in each of the cases, is very small. The number of TN pixels is large
in all these cases compared to the TP pixels.

(1) Imbalance in data distribution: when the size of the segment is significantly smaller than the background, the metrics based
on the calculation of true negatives (TN) are not suitable. The number of TN pixels is always larger in medical images
as shown in Figure 1. Accuracy, sensitivity, specificity, and positive predictive value (PPV) are not suitable for pixel-level
segmentation evaluation since TN pixels, which constitute the major portion of the image, are treated in a similar way to
other pixels. Pixel accuracy and specificity are usually high for medical images since TN are more. Quality of segmentation
cannot be measured only with sensitivity as it does not consider the false positives (FP). As PPV considers only the positive
pixels, it cannot be used to assess the overall segmentation quality. Therefore, such classical metrics are not efficient in
segmentation evaluation. DSC and IOU can be used in this case to overcome the above-stated drawback as they consider the
overlap between ground truth and prediction.

(2) Variation in size: another challenge faced in medical segmentation is due to the size variation of the regions to be segmented.
The region may appear clustered and not localized at a point. Here, the challenge of the segmentation algorithm is to extract
the tiniest segment. Smaller segments usually indicate the presence of associated disease at an earlier stage, and hence these
small-sized segments are required to be emphasized more compared to larger ones. Commonly-used metrics like sensitivity,
specificity, DSC, and IOU do not discriminate the segments based on the area. Therefore, it is imperative to design a metric
that highlights the detection of smaller segments. Such a scenario can be seen in fundus images with exudates of various
sizes as shown in Figure 2(a). A small protruding exudate may aid in the early detection of diabetic retinopathy. Another
scenario is calcifications on mammograms as seen in Figure 2(b) which help to identify breast cancer.

(3) Multiclass segmentation with class imbalance: multiclass segmentation arises when there are segments of different classes
in a single image, and class imbalance occurs when there is a relative size difference in segments of each class (label). For
example, the image in Figure 3(b) consists of pancreas tissue and a tumor (which occupies a smaller space compared to the
pancreas) within it. The loss function of the deep learning network (for segmentation) favors the large-sized pancreas more
than the tumor. However, the loss function should be efficient in extracting both segments. A commonly used loss function
for medical segmentation is Dice loss, which is derived based on the evaluation metric DSC. However, here, generalized
Dice loss [10] which works for multilabel cases should be used as it is not a simple binary segmentation. Another medical
scenario is multiclass segmentation with more than one segment of various sizes in each category of class. Liver and tumor
segmentation (Figure 3(a)) illustrate this situation with liver tissue and multiple hepatic tumors as the targets. In such a
scenario, generalized Dice score is not sufficient to quantify the segmentation performance, as there may be segments of
different sizes in each category of the label, and it is required to penalize the loss incurred by each pixel based on the area of
the segment it belongs to.

Importance of Small-Sized Segments in Medical Images
(1) Exudates are patches of fatty deposits on the eye formed due to leaky blood vessels. They appear as yellow-white structures

in color fundus images with variable sizes, shapes, and contrast. As exudates are among the common early clinical signs of
diabetic retinopathy (DR) [11], their detection would be critical in diagnosing the health status of the eye. The challenges
faced in exudate segmentation include drastic variations in size (small to large as an optic disc) and shape and severe im-
balanced distribution of classes (more number of nonexudate pixels). The size of diabetic hard exudates changes with the
progression of disease [12]; hence, the identification of tiny exudates is very important as it helps in the early treatment.
Therefore, the performance evaluation should be in such a way that it emphasizes the smaller exudates more. As the com-
monly used metrics treat all the TP pixels in a similar way, they are not able to quantify the small exudate segmentation.
Qing Liu et al. [13] have used sensitivity and PPV for exudate segmentation evaluation. Sreeparna et al. [14] used sensitivity,
specificity, accuracy, and area under curve of Receiver Operating Characteristic (ROC) as metrics to evaluate the detection
of hard exudates using mean shift and normalized cut method.

(2) Another medical segmentation scenario is cancer detection. Volume scans using CT for anatomies such as abdomen are used
to detect tumors [15]. These tumors show diversity in location, size, and the way they are scattered across the anatomy,
leading to several challenges in their precise segmentation. Other examples in cancer detection include using MRI to detect
brain [16] and spinal cord [17] tumor. Pancreatic tumor is smaller in size compared to the large pancreatic tissue, and a
common algorithm for multiclass segmentation (pancreatic tissue and tumor) is a challenge faced in segmentation. The loss
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FIGURE 2: Variation in size of regions to be segmented. (a) Fundus image with exudates of various sizes circled in distinct colors.
Largest exudates circled in yellow, medium-sized ones in green, and smaller ones in black. (b) Mammogram (left) and ground truth
with calcifications (right) of varying sizes. calcifications are shown in white color.

FIGURE 3: Ground truth images and segmentation showing two different classes (tissue and tumor). Top row shows the ground
truth slice and bottom row shows corresponding segmentation. (a) Liver (gray color) with tumors of varying sizes in white color
(b) Pancreas (gray color) and tumor (white color).

function used in training deep networks should overcome this imbalance due to size differences. Most recent works use
cross-entropy and generalized Dice score [10] in this scenario. Numerous lesions of varying sizes may appear in liver tissue
called hepatic lesions, which can be malignant. Studies [18] have revealed the prevalence of small hepatic lesions found at CT
in patients with cancer. These small lesions represent metastases in 11.6% of patients as identified by the research study. The
size of the lesions also changes during the course of cancer, and patients with small hepatic metastases also had associated
extra hepatic metastases.

(3) Calcifications are the earliest signs of breast cancer. Information about the size, density, and distribution of breast microcal-
cifications can give an idea about the benign or malignant nature of cancer. It is found that decreasing calcifications is not a
benign finding on mammogram [19]. Spontaneous decreases in calcifications are not necessarily indicative of better clinical
outcomes. It has been demonstrated that a decrease in or complete resolution of breast calcifications is most concerning when
it is associated with an extra breast mass, architectural distortion, or increased density [20, 21]. Small clusters of punctate or
granular calcifications may represent high-grade DCIS (ductal carcinoma in situ), where an aggressive clinical approach is
recommended [22]. If the calcifications are larger in size and well defined in shape, they are less suspicious. However, if
they appear smaller in size or appear in varying shapes, they are cancerous [23]. Hence, it is important to detect smaller
calcifications in mammograms.

The medical scenarios explained above state that the detection of the smallest lesion is very critical in further medical analysis. The
smallest exudate in Figure 2(a) occupies only 0.0002% of the image; the smallest tumor in Figure 3(a) and (b) occupies 0.0015% and
0.00004% of the respective images. A small protruding lesion may indicate the start of a disease. In most cases, one of the factors
which are used to grade disease severity is the size/volume of the lesion or region of interest. As explained before, the size of
the hard exudates increases during the course of diabetic retinopathy [12], and lesions become bigger with stages of cancer like
hepatic cancer [18] and breast cancer. Hence, the detection of a tiny lesion helps in the early treatment of associated disease which
can thereby avoid unnecessary biopsies. Furthermore, the detection of a small liver tumor may point to the presence of a tumor
in another region [18]. These studies enunciate the idea that a performance evaluation metric that emphasizes these tiny lesions is
imperative.

DSC is commonly used to evaluate various segmentation methods [1, 24, 25, 26, 27]. Carole Sudre et al. [10] have used general-
ized Dice score for segmentation assessment for unbalanced tasks. Nur et al. [28] used the saliency method based on region to detect
exudates in retinal images of Diabetic Retinopathy. They have calculated accuracy, sensitivity, and specificity for the evaluation of
the proposed method. Fang Lu et al. [29] used volumetric overlap error (VOE), relative volume difference (RVD), average sym-
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metric surface distance (ASD), root mean square symmetric surface distance (RMSD), and maximum symmetric surface distance
(MSD) to evaluate the deep learning algorithm with graph cut refinement to automatically segment liver in CT scans. Varduhi
Yeghiazaryan et al. [30] have introduced a family of metrics to quantify the difference or similarity of segments by considering
their average overlap in fixed-size neighborhoods of points on the boundaries of those segments.

To quantify the segmentation performance of images with varying sizes of segments (exudates or tumors), we require a metric
that emphasizes the smaller-sized segments. As seen before, DSC assigns the same weightage to all the TP pixels irrespective of
whether they are part of a large/small region, which seems inappropriate. The small segments should be penalized more while
calculating the segmentation loss since the loss of a few pixels in a small segment is more severe than that in a large segment.
The existing metrics to the best of our knowledge do not discriminate between the detection of larger and smaller segment pixels.
DSC and IOU metrics reflect the human understanding when the dataset contains images with only large or only small segments
with fewer false positives. For a clinical evaluation where screening has to be done, image-level evaluation using sensitivity and
specificity is enough. However, to compare different segmentation methods or to optimize a single method, metrics that consider
overlap between ground truth and segmented images are required. As medical datasets usually consist of segments of varying
sizes, evaluation with DSC and IOU is not sufficient as they treat all segments in the same way. The proposed metric, which
incorporates the area of segments and which penalizes the loss of smaller segments would be more effective in comparing the
segmentation approaches. This paper is organized as follows: Section 2 discusses the commonly used evaluation metrics, Section 3
presents the proposed approach in detail, and Section 4 demonstrates the experimental results and analysis with the datasets used,
followed by conclusion in Section 6.

2. EXISTING EVALUATION METRICS
Different evaluation metrics are used in practice to compare the effectiveness of various segmentation algorithms. The evaluation
metric to be used depends on the problem and anatomy of the segmented region. To compare various medical segmentation
methods, we need evaluation at the pixel level for the entire image. The metric definitions of the most popular evaluation methods
are given in Table 1.

Metric Formula

Accuracy (Acc) Acc =
|I| − |G ∪ S|+ |G ∩ S|

|I|
True positive rate (TPR)/Sensitivity TPR =

|G ∩ S|
|G|

True negative rate (TNR)/Specificity TNR =
|I| − |S ∪ G|
|I| − |G|

False positive rate (FPR) FPR =
|S| − |G ∩ S|
|I| − |G|

False negative rate (FNR) FNR =
|S ∪ G| − |S|

|G|
Intersection over union (IOU) IOU =

|G ∩ S|
|G ∪ S|

Dice similarity coefficient (DSC) DSC =
2|G ∩ S|
|S|+ |G|

Generalized Dice score (GD) GD = 2
∑l

i=1
1

|Gi| |Gi ∩ Si|

∑l
i=1

1
|Gi| (|Si|+ |Gi|)

TABLE 1: Most popular evaluation metrics and their definitions are given.
“| |” represents the cardinality. G and S constitute the set of nonzero pixels
in ground truth and prediction, respectively. |I| = TP + FP + FN + TN, “l”
is the label length in multiclass segmentation.

An imbalance in data distribution is noticed in medical image segmentation where the number of TN pixels is higher compared
to other pixels, which makes classical metrics like accuracy and specificity inappropriate for performance evaluation. Overlap metrics
like DSC and IOU take into account the area of overlap between the ground truth and segmented image. Both these metrics measure
the same aspects, and hence using them together as evaluation metrics is not required. Boundary distance-based scores calculate
the distance between the boundaries of segments in ground truth and prediction. They are used when boundary delineation of
segmentation is important. They do not take into account the size information of regions. It is not recommended that Hausdorff
distance be directly used in medical image segmentation as it is sensitive to outliers [31] and time-consuming.

If images in the dataset consist of segments of various sizes, the segmentation algorithm should be able to detect most of the
pixels in the smaller segments, even if it misses a few larger segment pixels. Thus, to assess the quality of prediction, the evaluation
metric should be able to penalize more for smaller segment pixels than for larger segment pixels. This aspect is not considered in
simple overlap and boundary distance-based metrics. For the evaluation of multiclass segmentation performance as in pancreatic
tumor, generalized Dice score [10] which gives a weightage of the inverse of the total area for each label is used. However, if
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FIGURE 4: Synthetic images to illustrate the limitations of evaluation metrics: (1) boundary distance-based score and (2) Dice Simi-
larity Coefficient. (b) and (c) depict two different segmentation scenarios of over- and under-segmentation compared to the ground
truth by the same differences in radius, leading to the same boundary distance-based scores. (e) and (f) are two segmentation sce-
narios where the same number of pixels was missing from the ground truth: (e) TP = 120 + 10 + 5 = 135, FP = 0, FN = 55; (f) TP =
110 + 25 + 0 = 135, FP = 0, FN = 55, leading to the same DSC. Ground truth is shown using dashed lines, and predictions are shown
as solid lines. The numbers shown in the figure indicate the number of pixels that make up the area of the nearest segment. The
numerator in the fractions denotes the number of pixels in a ground truth segment, while the denominator denotes the number of
pixels in a predicted segment.

there are many segments in a single class (many hepatic lesions), DSC is not sufficient for performance evaluation as it cannot
discriminate between the segments in a single class. Few synthetic images which represent different binary segmentation scenarios
are constructed as shown in Figure 4. The distance between the boundaries of ground truth and prediction for the images in (b)
and (c) is the same, even though two different cases are depicted, which shows the failure of the boundary-based metric. Since the
same number of pixels is lost in (e) and (f), DSC will be the same for both, even though a full small segment is lost as seen in (f).
This drawback is overcome by the proposed metric as it weighs the TP pixels based on the area of the segment it is derived from.
Higher weightage is given to the smaller segment pixels and lower weightage to the larger segment pixels.

3. METHODOLOGY
3.1. Proposed Metric
We have proposed an evaluation metric to quantify the performance of various segmentation scenarios, especially the cases where
small segments in the prediction need to be emphasized more. We have illustrated the analysis in medical scan images which
contain segments of various sizes. The proposed metric, SSEGEP, penalizes the loss of smaller segments more in comparison to the
larger ones. Each pixel in the ground truth image is assigned a weightage which is calculated based on the area of the segment it
belongs to. The weightage of a segment is the inverse of its area, which results in high-weighted small-sized segments and low-
weighted bigger segments. Accordingly, while calculating SSEGEP, instead of a simple count of true positive pixels, the weighted
sum of TP pixels is considered. FP pixels are also weighted, which is given as the inverse of TP count. If the task given is to quantify
the combined segmentation of organ and tumor, two different weights are given to the FP pixels: one for tumor case, which is given
as the inverse of TP count of tumor mask, and the other for organ case, which is given as the inverse of TP count of organ mask.

3.2. Implementation and Explanation
The general block diagram for 2D images is shown in Figure 5. Ground truth and segmented images are given as inputs. Segments
of labels 1 and 2 are given in different colors. The segmentation evaluation methodology is comprised of assigning weightage to
segments in ground truth image, finding true positive pixels in each segment, finding and assigning weightage to the false positive
segments, and finally calculating the proposed metric. Initially, from the ground truth image, distinct segments belonging to each
label are found. Here, in the block diagram, there are two different labels, and every distinct segment of these two labels is found.
Similarly, the distinct segments of each label are found from the segmented image. This is done by finding the contours of the
input image. Then, a weightage is allotted to these ground truth segments which is given as the inverse of the area of that segment
as shown in Figure 5. Then, the number of pixels in TP segments (overlapping region of segments between ground truth and
prediction) is calculated, which is given by ai as shown in the block diagram. XOR operation is performed separately for each label
between the ground truth and segmented image to find the false positive images for each label (here, two FP images are obtained
as there are two labels), and the separate count of these pixels is recorded. Weightage of inverse TP count is given to those FP pixels
as shown in the block diagram. Therefore, when the number of FP is very much higher than that of TP, the SSEGEP value becomes
small, indicating poor segmentation, and when the number of FP is small compared to TP, SSEGEP value becomes high, indicating
good segmentation (provided that the number of FN is less). The final SSEGEP value is calculated from this set of metrics which
quantifies the quality of the prediction.
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The proposed metric is given by the following equation:

SSEGEP =
∑ns

i=1 wtpiai

ns + ∑j n f pj
, (1)

where wtpi and ai represent the weightage and TP count of the ith segments, respectively, and ns represents the total number of
segments in the ground truth image. Here, i is used to indicate segment and j to indicate label

n f pj = f pj ∗
(

1
∑label(ai)=j ai

)
, (2)

where f pj represents the total FP count for segments of label j.

4. EXPERIMENTAL DETAILS AND MATERIALS USED
The experiments were performed on real scan images of three different modalities: fundus imaging, mammogram, and CT, to
analyze and compare the proposed metric in different scenarios with commonly-used metrics.

4.1. Datasets Used
We used four different publicly available datasets to evaluate the proposed metric:

(1) DIARETDB1, containing fundus images (imaging modality = fundus imaging, anatomy = eye),
(2) CBIS-DDSM, containing mammogram images (imaging modality = mammogram, anatomy = breast),
(3) MSD challenge, containing liver images (imaging modality = CT, anatomy = liver),
(4) MSD challenge, containing pancreas images (imaging modality = CT, anatomy = pancreas).

DIARETDB1 database (https://www.it.lut.fi/project/imageret/diaretdb1/) [9] consists of 89 fundus images, of which 48 had
signs of hard exudates as marked by experts. Therefore, these 48 cases were selected for the study, of which 15 cases with diverse
features were manually selected for training, and the 33 remaining cases were used for testing. The segmented images were gen-
erated using the multi-space clustering approach [32] (refer to Supplementary Material for network and training information). The
original images of 1500 pixels × 1152 pixels were downsized to 800 pixels × 615 pixels, to enable the running of the segmentation
algorithm. The largest exudate present is 1.41% and the smallest is 0.0002% of the processed image. A few sample images in the
database with exudates are shown in Figure 6.

CBIS-DDSM [33] (available at https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM) database is considered,
which is a standardized version of DDSM database. It contains 753 cases of calcifications and 891 cases of mass. Out of 753 cases
of calcifications, there are 414 benign and 339 malignant cases. 264 images were selected from malignant calcification cases, of
which 156 images were used for training, and the 108 remaining images were used for evaluation of the proposed metric. The
mammogram images are in DICOM format, and updated ROI segmentation is provided for each lesion. U-net based segmentation
approach [1] is used to obtain the segmentation results for calcifications. The images were cropped to remove the majority-black
pixels in the background for U-net segmentation (refer to Supplementary Material for network and training information). The first
column in Figure 11 shows sample mammogram images with calcifications.

Medical Segmentation Decathlon liver dataset (source: IRCAD, Hopitaux Universitaires) [34] (available at http://

medicaldecathlon.com/results.html) contains 201 3D volumes with liver and tumor as targets for segmentation, of which 131
images are grouped into the training set and 70 images grouped into the testing set. The dataset is rich in terms of the challenges
and variability of the images contained in it. Since ground truth labels are not available for images from the testing set, the eval-
uation of the proposed metric is performed using the ground truth and segmentation results of 131 images from the training set.
The segmentation results for those 131 images were obtained using the nnU-Net framework proposed by Fabian Isensee et al. [35]
(refer to Supplementary Material for network and training information of nnU-Net framework). The ground truth images of the
training set are multi-labeled, where 0, 1, and 2 are the respective labels for background, liver, and tumor. Few sample slices with
tumors are shown in Figure 7. Tumors appear in diverse sizes as seen in the figure.

Medical Segmentation Decathlon pancreas dataset (source: Memorial Sloan Kettering Cancer Center) [34] contains 420 3D
volumes of CT images with segmentation targets being pancreas and tumor, of which 282 images are grouped into the training
set and 139 images grouped into the testing set. The dataset contains cases with good variability. Since ground truth labels are
not available for images from the testing set, the evaluation of the proposed metric is performed using the ground truth and
segmentation results of 107 images taken from the training set. The segmentation results for those 107 images are obtained using the
nnU-Net framework proposed by Fabian Isensee et al. [35] (refer to Supplementary Material for network and training information
of nnU-Net framework). Here, only one tumor is present in a pancreas segment. In some slices, the pancreas tissue and tumor are
of similar size, whereas in a few slices, the tumor is small compared to the tissue, leading to class imbalance.

4.2. Experimental Details
Segmentation evaluation was done on the following.
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FIGURE 6: Representative image (from DIARETDB1). Left: original image; right: ground truth image.

FIGURE 7: Representative images (from Liver tumor dataset). Left: original image slice; right: ground truth image slice.

(a) Images with multiple segments from the same class: The images may contain segments of various sizes in which smaller seg-
ments are crucial in disease diagnosis. For example, the liver contains multiple tumors, and the fundus image consists of exudates
and mammograms with calcifications of various sizes.

(b) Images with multiple segments from two different classes: Usually a single algorithm may not be efficient in extracting
segments of different labels in multi-class segmentation. In scenarios where a common algorithm is required to perform multi-class
segmentation, where the smaller segments are more important in disease diagnosis, it is imperative to use an evaluation metric that
discriminates the segments in such a way as to weigh smaller segments more. As the proposed metric SSEGEP assigns size-based
weight to the segments in the input image, the smallest segment gets the highest importance and the largest one gets the least
weightage.

Further, the relevance of the proposed metric, SSEGEP is analyzed with two different approaches.

4.2.1. Mean Opinion Score
The proposed metric is compared with accuracy, DSC, and IOU, and its relevance is tested with mean opinion score calculated
based on the scores assigned by 15 subjects to the segmentation results obtained for 33 fundus images. 15 subjective scores were
sought from researchers with varying levels of experience (2 to 5 years) in image analysis. The scores given were 0, 0.25, 0.5, 0.75, 1,
where 0 and 1 indicated poor and best segmentation, respectively. Then, the average of the absolute difference between the mean
opinion score and the value of the evaluation metric is found, which indicates the deviation of that metric from the mean opinion
score.

4.2.2. Statistical Analysis
As we have a greater number of images in liver, pancreas, and mammogram datasets, the statistical significance of SSEGEP was
measured separately for each dataset by hypothesis testing. To assess the statistical significance of the proposed metric, Welch’s
t-test was performed since Levene’s test for homogeneity of variances indicated unequal variances between groups and sample
sizes were unequal. The null hypothesis is given as follows: “The two populations have equal mean.”

The two populations that we considered here are a set of images from 2 different categories. The first category consists of values
of evaluation metric obtained for “good segmentation” cases, and the second category consists of values of evaluation metric
obtained for “poor segmentation” cases. The threshold for TPR and FPR which are used to decide the samples in two groups were
selected based on the condition: if TPR is greater than 80% and FPR is less than 20%, the corresponding segmented image belongs
to “good segmentation” category. If TPR is less than 40% and FPR is more than 50%, the image belongs to “bad segmentation”
category. Extreme cases of good and poor segmentation categories are selected for better understanding. Hypothesis testing was
performed with a confidence level of 99.9999. We wanted to check if the evaluation metrics obtained for both categories were
overlapping or if the evaluation metrics were able to differentiate between the two categories. The statistical significance testing
was performed separately for DSC and the proposed metric. Then we compared the p-values obtained with both the metrics to find
the metric resulting in a smaller p-value. The smaller p-value with the proposed metric indicated that it has a better discriminating
capability between good and bad segmentation. The statistical tests were performed only to compare DSC and proposed metric as
DSC is mostly used in medical segmentation scenarios.

All metric values DSC, accuracy, IOU, and SSEGEP lie in the range of 0 to 1. Accuracy, DSC, IOU, and SSEGEP are computed
for fundus images, mammograms, and liver images involving single-class segmentation, and generalized Dice score and SSEGEP are
computed for multi-class segmentation (liver and pancreas). Python 3.6 is used for the implementation.
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5. RESULTS AND DISCUSSION
The effectiveness of our metric in the evaluation of segmentation performance is demonstrated in this section. Results obtained on
applying the proposed metric to each of the datasets have been reported. Comparisons with existing widely used metrics have also
been presented. Besides, hypothesis testing in order to establish the statistical significance of the proposed metric is also carried
out.

5.1. Experiments with Synthetic Images
Few synthetic images with multiple segments of varying sizes which represent different segmentation scenarios are constructed as
shown in Figure 8 for illustrating the proof of concept. Consider Figure 8(a) as the ground truth image. Figure 8(b)–(d) need to be
considered as predictions made with different segmentation algorithms. From visual inspection, it is obvious that Figure 8(d) is a
better prediction than others since all the segments including the smallest one are segmented out. Figure 8(b) consists of FP and
FN pixels due to which the segmentation is worst compared with other segmentation results. However, in Figure 8(c), the smallest
segment is completely missing, and the loss of that smallest segment should be penalized most. The values of commonly-used
metrics wrongly indicate that the result of the second segmentation in Figure 8(c) is better than that of the third segmentation in
Figure 8(d) (it is because the number of correctly detected exudate pixels with the second algorithm is greater than that of the third
algorithm). However, a small exudate is missing in Figure 8(c), which means the corresponding segmentation algorithm is not
efficient in detecting smaller exudates. The proposed metric can discriminate these cases as it weighs the TP pixels based on the
area of the segment it is derived from. SSEGEP for Figure 8(d) is higher than that for Figure 8(c) which indicates that the quality of
prediction is better with algorithm 3 than with algorithm 2.

FIGURE 8: A sample synthetic ground truth image (a) and predictions (b)–(d) with different segmentation algorithms to illustrate
the proof of concept. Calculated metric values are also given.

5.2. Experiments with Real Scan Images
5.2.1. Experiments with Retina Images: Multiple Segments of Same Type
Figure 9 shows a few fundus images with their ground truth and segmentation. The values of the proposed metric and commonly-
used metrics are compared with the average MOS. Accuracy is not sufficient to evaluate segmentation performance for imbalanced
data (here, the number of TN pixels is large). DSC can be used when there is no much variation in exudate size (Figure 9(a), (b),
and (e)). However, DSC fails to quantify segmentation performance when there are exudates of varying sizes (Figure 9(d)). In such
a case, SSEGEP outperforms other metrics as it is able to discriminate different segments according to the count of the pixels in
them.

Evaluation Spearman’s rank Average deviation
metric correlation w.r.t. MOS
Accuracy 0.76 0.15
DSC 0.85 0.11
IOU 0.83 0.11
SSEGEP (proposed) 0.89 0.08

TABLE 2: Correlation of evaluation metrics with the mean MOS
for the DIARETDB1 database is shown in the second column.
Average deviation of metrics from the MOS is given in column
3. MOS is calculated from scores assigned by 15 subjects, and
comparison is done on a scale of 0 to 1.

The average of the difference between mean opinion score and value of the evaluation metric (accuracy, DSC, IOU, and SSEGEP)
along with correlation of the metrics with mean MOS is tabulated in Table 2. The deviation value is least with the proposed metric,
which indicates its higher correlation with human interpretability.
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FIGURE 9: First column represents the original fundus images. Corresponding ground truths and predictions (using multi-space
clustering) are shown in the second and third column, respectively. Values of evaluation metrics (accuracy, DSC, IOU, and SSEGEP)
and MOS are given in the last column.

5.2.2. Experiments with Mammogram Images: Multiple Segments of Same Type
The bar plots of SSEGEP values and DSC for a few sample mammogram images are shown in Figure 10. DSC and SSEGEP values for
images of good segmentation category are almost in the same range. This implies that both metrics can reflect good segmentation.
However, the DSC values for many images under the poor segmentation category are higher than those of SSEGEP. Even though
the segmentation result is poor, DSC is high. However, the proposed metric can reflect the poor quality of segmentation since those
values are lower.

Figure 11 shows sample mammogram images with their ground truth and segmentation masks. The values of the proposed
metric and commonly used metrics are also shown. As seen for fundus images, sensitivity and accuracy are not sufficient to
quantify segmentation performance. Panels (a) to (e) consist of calcifications of varying sizes. Smaller calcifications indicate higher
severity of the disease. Even though a smaller segment is lost in mammogram segmentation for those panels, commonly-used
metrics fail to reflect it. For example, DSC is 0.91 for mammograms in panel (a) even though the segmentation algorithm failed to
detect the smaller segment. However, SSEGEP is 0.43, which indicates poor segmentation in terms of medical diagnosis. Panels
(f) and (g) consist of calcifications of similar sizes; hence, the values of the proposed metric, SSEGEP, are comparable to those of
commonly-used metrics. Panel (h) comprises a single large segment, and hence all metric values are of a similar range.

FIGURE 10: Bar plots for SSEGEP and DSC values for “good” and “bad” segmentation categories for 27 mammogram images (as
mentioned in Section 4.2.2). Metric values are comparable for images in good segmentation group. However, DSC is greater than
SSEGEP for images under poor segmentation category.
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FIGURE 11: First column represents the original mammogram images. Corresponding ground truths and predictions (using U-net)
are shown in the second and third columns, respectively. Values of evaluation metrics (accuracy, DSC, IOU, and SSEGEP) are given
in the last column.

The results for the statistical significance test are tabulated in Table 3. The p-value for SSEGEP is less than that of DSC, which
indicates the better discriminating capability of the proposed metric.

5.2.3. Experiments with Liver Images

Multiple Segments (Tumors) of the Same Type. Figures 12, 13, and 14 show the evaluation metrics obtained for a few sample cases
of (1) images with all small tumors, (2) images with small and large tumors, and (3) images with similar-sized (medium-sized)
tumors. Here, performance evaluation is conducted only for tumors. Accuracy for all the cases is high (0.98, 0.99) as the number of
TN pixels is high compared to other pixels. As seen in Figure 12, all the tumors appear small. SSEGEP and IOU values are varying
in a similar way. DSC is slightly higher than IOU as the former gives higher weightage to TP pixels. Since tumors are smaller in size,
even though few pixels are missed in segmentation, they should be highly penalized, which is reflected by the proposed metric.

Figure 13 consists of tumors of varying sizes. There are tiny tumors and large tumors present in a single tissue. Therefore, the
loss of a small tumor should be highly penalized. However, still, the values of other metrics are closer to 0.90. However, SSEGEP
value is in the range of 0.70–0.75, thereby reflecting the level of quality of segmentation.

Figure 14 comprises scan images with similar- and moderately sized tumors. The SSEGEP values are comparable with other
commonly used metrics because of similar-sized segments. There is a FP present in the third case, which resulted in a smaller
SSEGEP value compared to the other two cases. Since weightage of FP is decided by the inverse of TP pixels and number of TP
pixels is less in this case, SSEGEP value is not too low.

Hence, we can conclude that if there are tumors of varying sizes in the ground truth and if the segmentation algorithm fails to
extract the smaller tumors, it should be severely penalized (as seen in Figure 13). As it can be seen in Figure 13, even though other
metric values are at a higher side indicating best segmentation, the proposed metric is less than that since smaller tumors are lost
in segmentation. Commonly used metrics fail to discriminate between the varying-sized distinct tumors. However, the proposed
metric assigns different weightage to tumors based on their size, emphasizing smaller ones.

Multi-Class Case with Many Segments of Different Types (Liver and Tumor) with Class Imbalance. Figure 15 shows sample multi-class
segmentation and the corresponding evaluation metrics. Here, SSEGEP is compared with the generalized multi-class Dice value,
which is the commonly used performance metric for unbalanced multi-class segmentation. Even though generalized multi-class
Dice can discriminate the two different labels, it fails to differentiate the multi-sized tumors present. As seen in Figure 15, the liver
occupies more space compared to the tumors. Even though small tumors are not identified in each case, DSC is the same as it gives
the same weightage to every tumor irrespective of its size. However, SSEGEP value is not high unlike DSC, since the proposed
metric emphasizes the smallest tumor more by assigning a higher weightage to it, thereby penalizing the loss of smaller segments.
The results for hypothesis testing are tabulated in Table 3. The test says that the inputs come from different distributions for both
the metrics, with the p-value for SSEGEP being less than that of DSC. This implies that both the metrics (SSEGEP and DSC) can
distinguish between good and poor segmentation, with a better discriminating capability for SSEGEP.
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FIGURE 12: Performance evaluation of tumor segmentation (using nnU-Net) of liver (all tumors are smaller in size) is illustrated in
the figure. The first row represents the original image slices. The second row represents the ground truth images. Corresponding
segmentation is shown in the third row. The values of evaluation metrics (only for tumor), SSEGEP, DSC, IOU, and accuracy, are
given in the last row.

FIGURE 13: Performance evaluation of tumor segmentation (using nnU-Net) of liver (consisting of larger and smaller tumors) is
illustrated in the figure. The first row represents the original image slices. The second row represents the ground truth images.
Corresponding segmentation is shown in the third row. The values of evaluation metrics (only for tumor), SSEGEP, DSC, IOU, and
accuracy, are given in the last row.

FIGURE 14: Performance evaluation of tumor segmentation (using nnU-Net) of liver (similar- and moderately sized tumors) is
illustrated in the figure. The first row represents the original image slices. The second row represents the ground truth images.
Corresponding segmentation is shown in the third row. The values of evaluation metrics (only for tumor), SSEGEP, DSC, IOU, and
accuracy, are given in the last row.
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FIGURE 15: Combined segmentation (using nnU-net) of liver and tumor with the evaluation metrics is given. Gray colored region
in the image refers to the liver, and white color refers to the tumor. The first row represents the original image slices. The second
row represents the ground truth images. Corresponding segmentation is shown in the third row. The values of evaluation metrics,
SSEGEP and DSC, are given in the last row.

5.2.4. Experiments with Pancreas Images: Multi-Class Case with One Segment Each of Different Type (Pancreas and Tumor)
Here, only one tumor is present in a pancreas segment. Therefore, the evaluation is done for the combined pancreas and tumor
image as explained for the liver and tumor cases. Sample images with generalized multi-class Dice and SSEGEP values are shown
in Figure 16. The tumor is not detected for ground truth in the first and last column in Figure 16. For all cases, DSC and SSEGEP
values vary similarly, since each class (pancreas and tumor) contains only one segment(one tissue and one tumor) unlike combined
liver and tumor cases (in liver and tumor segmentation, there were multiple tumors in the liver tissue). Hence, for multi-label
segmentation evaluation where there is only one segment present in a class (or label), either generalized Dice or SSEGEP can be
used.

The results for hypothesis testing are tabulated in Table 3. The p-value is the same for both metrics, indicating the applicability
of both metrics in that case. This is because there is only one segment corresponding to each label in an image slice and both
SSEGEP and generalized Dice act similarly for that scenario, whereas in liver tumor segmentation there are tumors of various sizes,
and the size variation within a label is not reflected by DSC value.

FIGURE 16: Combined segmentation (using nnU-net) of pancreas and tumor with the evaluation metrics is given. Gray colored
region in the image refers to the pancreas, and white color refers to the tumor. The first row represents the original image slices. The
second row represents the ground truth images. Corresponding segmentation is shown in the third row. The values of evaluation
metrics, SSEGEP and DSC, are given in the last row.

Segmentation scenarios p value (DSC) p value (SSEGEP)
Calcification 1.8e-19 3.5e-35
Tumor (liver) 7.6e-12 1.2e-18
Combined liver tumor 2.9e-17 3.6e-19
Combined pancreas tumor 3.3e-19 3.3e-19

TABLE 3: Hypothesis testing with α = 0.00001.

5.3. Analysis of Impact of Parameter Changes on SSEGEP
The various parameters used in the study are as follows.
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(1) Number of connected components in the ground truth: if the number of connected components in the ground truth, as an
extreme case, happens to be only 1, the proposed metric will not result in any significantly different way compared to DSC,
since it simply involves the calculation of total overlap area like DSC.

(2) The relative sizes of each of the connected components in the ground truth: if the sizes of each of the connected components
in the ground truth are all comparable, the advantage of assigning them different weights will not lead to many distinctions
across them. However, if the sizes of the connected components in the ground truth are very diverse, the significance of
assigning differential weights to each of them becomes very perceptible.

(3) Impact of weightage on TP: weightage assigned to TP depends on the size of the corresponding connected component in the
ground truth. If the connected component is of smaller size, higher weightage is assigned to that TP pixel, and vice versa.

(4) Impact of weightage on FP: weightage assigned to FP depends on the size of total TP pixels. When the number of FP pixels
is less, the segmentation performance is better, and when FP is more, segmentation performance is poor. To weight the FP
pixels, inverse of TP pixels is considered. Hence, if the FP number is higher than TP number, a higher weightage is assigned
to FP, thereby leading to smaller value of SSEGEP.

Study Limitations
The above experiments say that the proposed metric gives better performance than other metrics for the evaluation of the seg-
mentation performance of medical images with segments of varying sizes. For images with segments of comparable size, SSEGEP
performs in a comparable way to other overlap-based metrics (DSC, IOU). If segmentation is done at random or by chance, the
metric value should ideally be zero. However, this is not the case with SSEGEP. It will be near zero. We have computed the metric
only for 2D segmentation as of now and need to extend it for 3D segmentation as well. Statistical analysis was performed between
good and bad segmentation classified by thresholding TPR and FPR only. It would be better to consider the number of segments
and size of the ROIs as well, but it is difficult for cases with multiple segments and diverse sizes. Moreover, we have not performed
visual assessments to measure MOS for liver, mammogram, and pancreas datasets.

6. CONCLUSION
Segmentation of smaller lesions that appear in medical image scans is important as they assist in the early treatment of associated
diseases. The evaluation metric used should be able to quantify segmentation performance emphasizing these smaller lesions. The
proposed metric assigns weightage to each segment in the image based on its area in such a way as to emphasize the smaller
segments more. The applicability of our metric across different imaging techniques is shown by testing on four public datasets of
different anatomies, and its significance is proved with mean opinion score and hypothesis testing. It is observed that the proposed
metric is 30% closer to MOS, as compared to DSC for fundus images, and statistical significance testing resulted in a p-value of the
order 10−18 with SSEGEP for liver tumor compared to DSC. The experimental results show that the proposed metric outperforms
other metrics with respect to human interpretability and understanding for those images with multiple segments of various sizes.
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