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Abstract
We show that a unified description of the observed patterns of quark and lepton mixing can be achieved
if the flavor group Dn and CP symmetry are broken to Z2 × CP in the neutrino, charged lepton, up quark
as well as down quark sectors, and the smallest group is D14. We also perform a systematic study of how
a dimension six operator LH̃νR

(
H† H

)
for Dirac neutrino masses may occur at tree level and in one loop.
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1. INTRODUCTION
The experimental discovery of neutrino oscillation constitutes
the first window into particle physics beyond the standard
model (SM). The observation of neutrino oscillation implies
that the neutrino has a non-zero mass, which requires a mod-
ification to the SM of particle physics. It is well-known that
the quark and lepton flavor mixing are described by the CKM
matrix and PMNS matrix respectively [1]. Neutrino and quark
mixing parameters have been precisely measured. The global
fit results for the magnitudes of all nine CKM elements are [1],

|VCKM | =

0.97446± 0.00010 0.22452± 0.00044 0.00365± 0.00012
0.22438± 0.00044 0.97359+0.00010

−0.00011 0.04214± 0.00076
0.00896+0.00024

−0.00023 0.04133± 0.00074 0.999105± 0.000032

.

(1)
The 3σ ranges on the magnitude of the elements of the leptonic
mixing matrix [2] are given by:

|UPMNS| =

0.797→ 0.842 0.518→ 0.585 0.143→ 0.156
0.233→ 0.495 0.448→ 0.679 0.639→ 0.783
0.287→ 0.532 0.486→ 0.706 0.604→ 0.754

.

(2)
Obviously the flavor mixing structures of quarks and leptons
are very different from each other. Despite the overwhelming
success of the standard model of particle physics, it does not
shed any light on the understanding of the masses and mixings
of quarks and leptons. The non-abelian discrete flavor symme-
tries have been widely studied to explain the leptonic mixing
angles. In particular, it is found that the observed patterns of
quark and lepton flavor mixing can be accommodated if the fla-
vor and CP symmetries are broken to the residual symmetries
Z2 × CP in the charged lepton (up quark) and neutrino (down
quark) sectors [3, 4]. The minimal flavor group is ∆(294) if the
left-handed quarks and leptons are assigned to an irreducible
triplet of flavor symmetry [3, 4]. In this work, we consider the
dihedral flavor group Dn with the symmetry breaking pattern
Z2 × CP, it is remarkable that D14 is the smallest group to give
a unified description of the quark and lepton mixing [5].

Non-vanishing neutrino masses definitely requires new
physics beyond SM. Light neutrinos are frequently assumed
to be Majorana particles in the literature. Given the absence of
incontrovertible experimental signal for the existence of neu-
trinoless double beta decay, the possibility of Dirac neutrinos
is still viable. The leading order operator for Dirac neutrino
masses is LH̃νR in SM, and the smallness of neutrino masses

requires the neutrino Yukawa coupling constants to be tiny. In
this paper we shall classify and analyze the possible ways to
generate Dirac neutrino mass through a dimension six opera-
tor LH̃νR

(
H† H

)
.

The paper is organized as follows. In section 2, we show
that both quark and lepton mixing patterns can be accom-
modated if the Dn flavor group and CP symmetry are bro-
ken to Z2 × CP subgroups in the charged lepton, neutrino, up
quark and down quark sectors. In section 3, we discuss all
possible decompositions of the effective dimension six oper-
ator LH̃νR

(
H† H

)
for the Dirac neutrino masses at both tree

level and one-loop level. Finally, summary and conclusions are
given in section 4.

2. EXPLAINING LEPTON AND QUARK
FLAVOR MIXING FROM DIHEDRAL
FLAVOR GROUP AND CP SYMMETRY

We first discuss the possible underlying symmetry of the quark
and lepton flavor mixing, and the results are based on [5]. The
dihedral group Dn is the symmetry group of an n-sided regular
polygon. Since a regular polygon with n sides has 2n different
symmetries: n rotational symmetries and n reflection symme-
tries, the group order of Dn is 2n. All the group elements of Dn
can be generated by two generators R and S which satisfy,

Rn = S2 = (RS)2 = 1 , (3)

where R refers to the rotation and S is the reflection. The group
elements of Dn can be expressed as

g = SαRβ (4)

where α = 0, 1 and β = 0, 1, . . . , n − 1. The irreducible pre-
sentations of Dn are one-dimensional and two-dimensional. If
the index n is an odd integer, Dn has two singlet representa-
tions and n−1

2 doublet representations. For n being even, Dn
has four singlet representations and n

2 − 1 doublet representa-
tions. We denote the one-dimensional representations with 1i
and the two-dimensional ones with 2j. The generators R and S
for the one-dimensional representations are given by

11 : R = S = 1 , 12 : R = 1, S = −1 ,

13 : R = −1, S = 1 , 14 : R = S = −1 ,
(5)

where 13 and 14 exist only for even n. In the doublet represen-
tations, we have

2j : R =

(
e2πi j

n 0

0 e−2πi j
n

)
, S =

(
0 1
1 0

)
, (6)
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with j = 1, . . . , n−1
2 for odd n and j = 1, . . . , n

2 − 1 for even n.
In this work, we shall extend the dihedral flavor group to

involve CP also as symmetry. Note that the D3 group in combi-
nation with CP has been studied in [6]. The CP transformation
is strongly constrained by the requirement that the subsequent
application of the CP transformation, the flavor symmetry and
the CP transformation should be another element of the flavor
group [7, 8, 9, 10], i.e.

Xrρ∗r (g)X†
r = ρr(g′), g, g′ ∈ G f , (7)

where ρr(g) is the representation matrix of the element g in the
representation r, g and g′ are in general different, and Xr is the
CP transformation. Solving the consistency condition of Eq. (7),
we find that the CP transformations compatible with Dn are of
the same form as the flavor symmetry transformations in our
working basis, i.e.

Xr = ρr(g), g ∈ Dn . (8)

Without loss of generality, the three generations of left-handed
lepton and quark doublets are assigned to transform as a direct
sum of singlet 11 and doublet 21 representations of Dn,

L ∼ (11, 21) , Q ∼ (11, 21) . (9)

We assume that the flavor group Dn and CP symmetry are
broken to Zge

2 × Xe and Zgν

2 × Xν in the charged lepton and
neutrino sectors respectively. The charged lepton and neu-
trino mass matrices invariant under these residual symmetries
would be diagonalized by the following unitary transforma-
tions [11, 3, 4, 12]

Ue = ΣeS23(θe), Uν = ΣνS23(θν)Q†
ν , (10)

up to independent column permutations. Here Σe and Σν are
the Takagi factorizations for Xe and Xν respectively and they
satisfy

Xe = ΣeΣT
e , Σ†

e ρ(ge)Σe = ±diag(1,−1,−1) ,

Xν = ΣνΣT
ν , Σ†

ν ρ(gν)Σν = ±diag(1,−1,−1) .
(11)

The symbol S23(θ) in Eq. (10) denotes a rotation in the (23)−
plane through an angle θ,

S23(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , (12)

where the fundamental region of the rotation angle θ is [0, π).
For Majorana neutrinos, Qν is a diagonal matrix with elements
±1 and ±i to ensure positiveness of the light neutrino masses,
and it can be parametrized as

Qν = diag(1, ik1 , ik2 ) , (13)

with k1,2 = 0, 1, 2, 3. As a consequence, the residual symmetry
enforces the lepton mixing matrix to be of the form [11, 3, 5]

U ≡ U†
e Uν = ST

23(θe)Σ†
e ΣνS23(θν)Q†

ν , (14)

up to permutations of rows and columns. We see that the mix-
ing matrix as well as mixing angles and CP phases only depend
on two real rotation angles θe and θν in the range between 0

and π. Analogously if the residual symmetries Zgu
2 × Xu and

Zgd
2 × Xd are preserved by the up quark and down quark mass

matrices respectively, the CKM mixing matrix would be

V = ST
23(θu)Σ†

uΣdS23(θd) , (15)

up to possible rows and columns permutations are omitted, Σu
and Σd are the Takagi factorizations for Xu and Xd, respectively
and the identities similar to Eq. (11) should be fulfilled. Consid-
ering all possible residual subgroups from Dn and CP symme-
try, we find that the hierarchical CKM mixing matrix can only
be accommodated for gu = SRx, Xu = SRn/2, gd = SRy and
Xd = S with x, y = 0, 1, . . . , n− 1. The quark mixing matrix up
to permutations of rows and columns is determined to be

V =

 cos ϕ −cd sin ϕ sd sin ϕ
cu sin ϕ cdcu cos ϕ + isdsu −sdcu cos ϕ + icdsu
−su sin ϕ −cdsu cos ϕ + isdcu sdsu cos ϕ + icdcu

.

(16)
where su = sin θu, sd = sin θd, cu = cos θu, cd = cos θd, and the
parameter ϕ is fixed by residual symemtry

ϕ =
y− x

n
π . (17)

Taking into account all possible permutations of rows and
columns, following nine mixing patterns can be obtained,

V1 = V, V2 = VP12, V3 = VP13 ,

V4 = P12V, V5 = P12VP12, V6 = P12VP13 ,

V7 = P23P12V, V8 = P23P12VP12, V9 = P23P12VP13 ,
(18)

with the permutation matrices

P12 =

0 1 0
1 0 0
0 0 1

 , P13 =

0 0 1
0 1 0
1 0 0

 , P23 =

1 0 0
0 0 1
0 1 0

 .

(19)
For each group index n and the possible values of ϕ, we have
numerically analyzed whether the quark mixing angles and CP
violation phase can be reasonably close to their measured val-
ues for certain values of the free parameters θu,d. We find that
the experimental data on CKM mixing matrix can be described
by the two mixing patterns V1 and V2, and the minimal flavor
group is D14.

For both mixing patterns V1 and V2, the three quark mix-
ing angles θ

q
12, θ

q
13, θ

q
23 and one CP phase δ

q
CP depend on two

free parameters θu and θd. Therefore two sum rules among the
mixing parameters can be obtained,

sin δ
q
CP '

sin 2ϕ

sin 2θ
q
12 cos2 θ

q
13 cos θ

q
23

,

cos2 θ
q
13 cos2 θ

q
12 = cos2 ϕ, for V1 ,

cos2 θ
q
13 sin2 θ

q
12 = cos2 ϕ, for V2 .

(20)

It is notable that good agreement with experimental data can
be achieved for V1 with ϕ = π/14 and V2 with ϕ = 3π/7, and
we give two numerical benchmark examples,

V1 :


ϕ = π/14, θu = 0.01237π, θd = 0.99473π ,

sin θ
q
12 = 0.22249, sin θ

q
13 = 0.00369 ,

sin θ
q
23 = 0.04206, Jq

CP = 3.104× 10−5 ,
(21)

V2 :


ϕ = 3π/7, θu = 0.01326π, θd = 0.00117π ,

sin θ
q
12 = 0.22252, sin θ

q
13 = 0.00357 ,

sin θ
q
23 = 0.04166, Jq

CP = 3.223× 10−5 ,
(22)
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which are compared with the observed values [13]

sin θ
q
12 = 0.22500± 0.00100, sin θ

q
13 = 0.003675± 0.000095 ,

sin θ
q
23 = 0.04200± 0.00059, Jq

CP = (3.120± 0.090)× 10−5 .
(23)

In a similar way, the experimentally measured values of the
lepton mixing angles can be accommodated if the residual
symmetries of the charged lepton and neutrino sectors are
gν = SRy, Xν = S, ge = SRx and Xe = SRn/2 with x, y =
0, 1, . . . , n− 1. The lepton mixing matrix would be of the same
form as Eq. (16), and the possible permutations of rows and
columns can give rise to nine mixing patterns Ui (i = 1, . . . , 9).
The mixing matrix Ui can be obtained from Vi by substituting
θu, θd with θe, θν respectively. For the D14 flavor group and the
residual symmetry indices y = 4, x = 0 which imply ϕ = 2π/7,
the mixing pattern U9 can give experimentally favored values
of the PMNS matrix, and the best fit values of the mixing pa-
rameters are

θbf
e = 0.439π, θbf

ν = 0.814π, χ2
min = 1.841 ,

sin2 θ13 = 0.0224, sin2 θ12 = 0.310 ,

sin2 θ23 = 0.602, δCP/π = 1.532 ,

α21/π = 0.167 (mod 1), α31/π = 0.116 (mod 1) .

(24)

In short, the D14 group in combination with CP symmetry al-
lows for a unified description of quark and lepton mixing, and
it provides a new starting point for building models of quark
and lepton mixing.

3. GENERATION OF DIRAC NEUTRINO
MASSES

In this section, we proceed to discuss the possible new physics
in Dirac neutrino mass generation. The results are already pub-
lished in [14]. The signal of neutrinoless double beta decay has
not been observed, the nature of neutrinos is still unclear. Al-
though usually neutrinos are assumed to be Majorana parti-
cles, and we can not exclude the possibility of Dirac neutrinos
at present. In the context of standard model, the most general
effective operators for the Dirac neutrino masses take the fol-
lowing form

L D
4+2n = −yαβLα H̃νRβ

(
H† H
Λ2

)n

+ H.c. , (25)

where L = (νL, lL)
T is the left-handed lepton doublet, H =

(H+, H0)T is the Higgs doublet with H̃ = iσ2H∗, and νR de-
note the right-handed neutrino fields. Since νR are SM singlets,
the Majorana mass term mN νc

RνR is allowed such that the light
neutrinos would be Majorana particles. In order to realize Dirac
neutrinos, additional symmetry is generally needed to forbid
this right-handed neutrino Majorana mass term and it is usu-
ally taken to be U(1)L lepton number. Obviously the lowest di-
mensional operator is −yαβLα H̃νRβ for n = 0 and it generates
the neutrino mass after electroweak symmetry breaking. The
smallness of neutrino masses require the coupling constant be
tiny yαβ ∼ O(10−11). This renormalizable operator can also be
generated at one loop, and the messenger fields should be quite
heavy to give a tiny yαβ.

We shall focus on the dimension six operator of the
Dirac neutrino masses corresponding to n = 1, this non-
renormalizable operator can be induced at either tree level or

loop level [14, 15]. Moreover, renormalizability fixes possible
vertices to only dimension-four three and four point vertices.
The trilinear couplings can involve two, one or none SM fields,
i.e. FLH, FLH̃, FνR H, FνR H̃, LνRS, FLS, FνRS, F1F2H, F1F2H̃
and F1F2S where F and S denote fermion and scalar beyond
SM. For each possible three point vertex, the SU(2) × U(1)Y
gauge invariance requires,

FLH : nF = 1, 3, YF = 0,

FLH̃ : nF = 1, 3, YF = −2,

FνR H : nF = 2, YF = 1,

FνR H̃ : nF = 2, YF = −1,

LνRS : nS = 2, YS = −1,

FLS : nF ⊗ nS ⊃ 2, YS −YF = 1,

FνRS : nF = nS, YF = YS,

F1F2H : nF1 ⊗ nF2 ⊃ 2, YF1 −YF2 = 1,

F1F2H̃ : nF1 ⊗ nF2 ⊃ 2, YF2 −YF1 = 1,

F1F2S : nF1 ⊗ nF2 ⊃ nS, YF2 −YF1 + YS = 0 , (26)

where nX corresponds to the SU(2) representation under
which the X field transforms, and YX refers to the U(1)Y charge
of the X field. The four point interaction vertex must involve
four scalar fields, and three, two, one or none of them can be SM
Higgs fields. Explicitly they can be HHHS1, HHH̃S1, HH̃H̃S1,
H̃H̃H̃S1, HHS1S2, HH̃S1S2, H̃H̃S1S2, HS1S2S3, H̃S1S2S3 and
S1S2S3S4. In this case, the SM gauge invariance implies,

HHHS1 : nS1 = 4, YS1 = −3,

HHH̃S1 : nS1 = 2, 4, YS1 = −1 ,

HH̃H̃S1 : nS1 = 2, 4, YS1 = 1,

H̃H̃H̃S1 : nS1 = 4, YS1 = 3 ,

HHS1S2 : nS1 ⊗ nS2 ⊃ 3, YS1 + YS2 = −2,

HH̃S1S2 : nS1 ⊗ nS2 ⊃ 1, 3, YS1 + YS2 = 0 ,

H̃H̃S1S2 : nS1 ⊗ nS2 ⊃ 3, YS1 + YS2 = 2,

HS1S2S3 : nS1 ⊗ nS2 ⊗ nS3 ⊃ 2, YS1 + YS2 + YS3 = −1 ,

H̃S1S2S3 : nS1 ⊗ nS2 ⊗ nS3 ⊃ 2, YS1 + YS2 + YS3 = 1,

S1S2S3S4 : nS1 ⊗ nS2 ⊗ nS3 ⊗ nS4 ⊃ 1, YS1 + YS2 + YS3 + YS4 = 0 .(27)

Similar to the well-known seesaw models, we find that there
are only two possible topologies named as F1 and F2 at tree
level, as shown in Table 1. Then we specify the fermion and
scalar internal lines as well as the external lines of each topol-
ogy, the quantum numbers of the messenger fields are deter-
mined from the invariance of each interaction vertex under the
SM gauge group. The classification of what particles can induce
this d = 6 operator LH̃νR

(
H† H

)
at tree level is summarized

in Table 1. The transformation properties of the new fields are
denoted by the notation nLY , where n refers to the SU(2) trans-
formation (1 for singlet, 2 for doublet, and 3 for triplet), Y is its
hypercharge, and L represents the Lorentz nature and it can be
either S for scalar or F for fermion. We assume new fermions
are vector-like to ensure anomaly cancellation. The diagrams
with scalar and vector bosons are equivalent, and the resulting
neutrino masses for the diagrams with vectors can be straight-
forwardly obtained from those of the diagrams with scalars.
In addition, vector bosons are generally the gauge bosons of a
certain gauge symmetry, their mass are generated via the spon-
taneous breaking of that symmetry. As a result, the scalar sector
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νR

ℓL

H

H

H

φ

y λ νR

ℓL

H

H

H

φ

ϕ
y

µ

µ′

F1-1-1 F2-1-1
φ φ ϕ

F1 F2 A 2S
1 A 2S

1 3S
−2

(mν)αβ/〈H〉3 = − λyαβ

M2
φ

(mν)αβ/〈H〉3 = − µµ′yαβ

M2
φ M2

ϕ

νR

ℓL

H

H

H

φ

ϕ
y

µ

µ′ νR

ℓL

H

H

H

ψ

Ψ

y

Y

y′ νR

ℓL

H

H

H

ψ

Ψ

y

Y

y′ νR

ℓL

H

H

H

ψ

Ψ

y

Y

y′

F2-1-2 F2-2-1 F2-2-2 F2-2-3
φ ϕ ψ Ψ ψ Ψ ψ Ψ

A 2S
1 1S

0 A 2F
1 1F

0 A 2F
−1 1F

0 A 2F
−1 3F

−2B 2S
1 3S

0 B 2F
1 3F

0 B 2F
−1 3F

0

(mν)αβ/〈H〉3 = − µµ′yαβ

M2
φ M2

ϕ
(mν)αβ/〈H〉3 = −

yαiYijy′jβ
MΨi

Mψj
(mν)αβ/〈H〉3 = −

yαiYijy′jβ
MΨi

Mψj
(mν)αβ/〈H〉3 = −

yαiYijy′jβ
MΨi

Mψj

νR

ℓL

H

H

H

ψ

φ

y

y′ µ
νR

ℓL

H

H

H

ψ

φ

y

y′ µ
ℓL

νR

H

H

H

ψ

φ

y

y′ µ
ℓL

νR

H

H

H

ψ

φ

y

y′ µ

F2-3-1 F2-3-2 F2-3-3 F2-3-4
ψ φ ψ φ ψ φ ψ φ

A 3F
−2 3S

2
A 1F

0 1S
0 A 2F

1 3S
2

A 2F
−1 1S

0
B 3F

0 3S
0 B 2F

−1 3S
0

(mν)αβ/〈H〉3 = −
µyαiy′iβ
Mψi M2

φ
(mν)αβ/〈H〉3 = −

µyαiy′iβ
Mψi M2

φ
(mν)αβ/〈H〉3 = − µy′αiyiβ

Mψi M2
φ

(mν)αβ/〈H〉3 = − µy′αiyiβ

Mψi M2
φ

TABLE 1: Possible topologies and diagrams for the tree level decomposition of the dimension six effective operator LH̃νR
(

H† H
)
.

This table is taken from [14].

of these models should be discussed carefully as well, the corre-
sponding analysis is highly model dependent. Hence we shall
consider the scalar and fermion mediated models here.

Following the diagram-based approach of Refs. [16, 17], we
can find out all possible one-loop realizations for this dimen-
sion six Dirac neutrino mass operator. Firstly, we use the pro-
gram FeynArts [18] to construct the one-loop topologies with
five external legs, the self-energy and tadpole diagrams are ex-
cluded. It turns out that there are totally 16 distinct topologies.
Then we specify the Lorentz nature (spinor or scalar) of each
line. For each topology, we can use FeynArts to find out all pos-
sible scalar or fermionic assignments for lines. We denote the
fermions with solid line, and scalars with dashed line. There
are usually more than one possibilities of assigning the five ex-
ternal legs to the lepton doublet L, the right-handed neutrino
singlet νR, two Higgs doublets H and the Higgs conjugate H†,

therefore a given topology can give rise to several Feynman di-
agrams. All possible Feynman diagrams are generated with the
help of FeynArts.

All the Feynman diagrams can be divided into two cate-
gories: the diagrams which lead to finite loop integrals and the
ones which involve infinite loop integrals. Since the divergence
can be absorbed by the counter terms of the tree level realiza-
tions of this dimension six operator, we are concerned with the
diagrams with finite loop integrals. Eventually we find five di-
agrams T2-2, T3-6, T8-3, T8-4 and T8-5 displayed in Figure 1
for which both the tree level realizations of d = 6 operator and
one-loop diagrams of d = 4 operator can be avoided for cer-
tain assignments of the mediators. The quantum numbers of
the mediator fields can be fixed from the requirement of gauge
invariance in Eqs. (26, 27). Similar to the scotogenic model for
Majorana neutrinos [19], the new messenger fields in the above
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T2-2 T3-6 T8-3

T8-4 T8-5

FIGURE 1: Finite one-loop diagrams for the d = 6 Dirac
neutrino mass operator LH̃νR

(
H† H

)
, where the dashed lines

denote scalars and the solid lines denote fermions. The lower
order contributions can be absent for certain quantum numbers
of the messengers in these diagrams [14].

one-loop diagrams could possibly be identified as dark mat-
ter particles such that neutrino masses and dark matter can be
accounted for in a single model, please see Ref. [14] for details.
Before closing this section, we note that the analysis of section 2
is independent of the neutrino mass generation mechanism. If
the neutrinos are Dirac particles and the mass term preserves
the residual symmetry Z2 × CP shown in section 2, the same
viable lepton mixing pattern can be achieved as well.

4. CONCLUSION
This paper is based on the talk in the conference “The quest
for new physics, 12-14 December 2018, Casa de la Ciencia del
CSIC”. The origin of the masses and mixings of quarks and lep-
tons is a fundamental problem in particle physics. Neutrino os-
cillation and the existence of neutrino mass provide a guide
for the nature of the new physics beyond SM. It turns out that
broken flavor symmetry based on the discrete groups is par-
ticularly suitable to describe the three lepton mixing angles. A
recent progress is to extend the discrete flavor symmetry by
including the CP symmetry, it allows to predict both lepton
mixing angles and CP violation phases in terms of few free pa-
rameters. The dihedral group Dn as flavor symmetry and the
interplay with CP symmetry are discussed in this work. The
three generations of left-handed lepton and quark fields are as-
signed to a direct sum of the one-dimensional representation 11
and two-dimensional representation 21 of Dn, this is in contrast
with the usual irreducible triplet assignments. The experimen-
tally measured values of the CKM and PMNS mixing matrices
can be obtained if the flavor group Dn and CP symmetry are
broken down to Z2×CP subgroups in the charged lepton, neu-
trino, up quark and down quark sectors, and minimal group is
D14. New physics beyond SM is necessary to generate the tiny
neutrino masses, and the underlying physics are different for
Majorana neutrinos and Dirac neutrinos. A systematical classi-
fication of all possible tree and one-loop realizations for a d = 6
Dirac neutrino mass operator LH̃νR

(
H† H

)
is performed here.
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