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Abstract

For decades, a lot of work has been devoted to the problem of constructing a non-trivial quantum field theory in
four-dimensional space-time. This article addresses the attempts to construct an algebraic quantum field theory in the
framework of non-standard theories like hyperfunction or ultra-hyperfunction quantum field theory. For this purpose,
model theories of formally interacting neutral scalar fields are constructed and some of their characteristic properties
like two-point functions are discussed. The formal self-couplings are obtained from local normally-ordered analytic
redefinitions of the free scalar quantum field, mimicking a non-trivial structure of the resulting Lagrangians and

equations of motion.
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1. INTRODUCTION

Standard relativistic quantum field theory (QFT) in the sense of
Gérding and Wightman [1] uses the Schwartz space S (]R4) of rapidly
decreasing C*-functions as a test function space, and in this context
a quantum field O is an operator-valued distribution, expressing the
fact that O(f) is an (unbounded) operator defined on a dense subset
D of a Hilbert space H for all f € S(R*). The underlying symmetry
of the theory is the Poincaré group PL i.e., the semidirect product
of the abelian group of time-space translations Tj 3 and the restricted
Lorentz group SO (1, 3), or, to be more precise, the covering group

751 = Ty 3 % SL(2, C) when fermionic fields are included [1].

The free neutral scalar field ¢(x) with the Wightman two-point
function (0]@(x)g(y)|0) = iA*(x —y) given by the positive-
frequency Pauli-Jordan C-number distribution AT which has the
Fourier transform

A d*x
B0 = [ G ®

where kx = kyxt = KOx0—k-7= kox® + kyxl + kox? + k3x3® =
KOx0 — klxt — k2x2 — k3x3 and kO = (k2 + m2)/2, provides a sim-
ple example for a quantum field associated with a free particle of mass
m in 3 + 1 space-time dimensions. As operator-valued distributions,
all ¢(f) act on a common dense set of the standard bosonic Fock-
Hilbert space F with a non-degenerate vacuum represented by a nor-
malized state vector |0), as discussed in many textbooks.

Using Schwartz functions as test function space, it is possible to
express the causal structure of QFT by the help of (anti-)commutation
relations for (fermionic) bosonic operators smeared with test func-
tions having compact support. E.g., a neutral scalar field fulfills the
commutation relation [2, 3]

[p(f), @(h)] =0 2

if the compact supports of the test functions f, h € S(IR*) are space-
like to each other, i.e., if all x € supp(f) and y € supp(h) are space-
like separated: (x — y)2 < 0.

= —i®(k°)5(k2 —m?), (1)

+ ikx
(x)e =

Distribution theory is a linear theory and no associative product of
two distributions extending the product of a distribution by a smooth
function can be defined. In the case of the free field operator ¢, a par-
tial solution of the problem is offered by the normal ordering of field
operators which corresponds to a recursive point-splitting regulariza-
tion described in a formal manner as follows

Fo(x) = 9(x), ©)
Ho(x)” = lim[p(x)g(y) — (Ole(x)(1)I0)], “

Lp(x)" = liml: 9(x)" " 9(y)
—(n=1)(0lp(x)p(y)[0) : (x)" ] Q)

The normally ordered product : ¢(x)" : is an operator-valued distri-

bution again [4, 5], as well as the tensor product : ¢(x)" :: @(y)" :.
Accordingly, also Wick polynomials defined as finite sums of nor-
mally ordered products

N . n.
p() = Y 0, PO ©)
=0 n:

are densely defined operator valued distributions in the Fock-
Hilbert space F with well-defined correlation distributions a la
0lp(x)p()]0).

But a problem arises from the fact the two-point function (1)
shows a singular behaviour on the light cone. In s > 2 space di-
mensions, (0|¢(x)@(y)|0) has a local singularity of the form [(x —
¥)2](1-9)/2 and therefore extending Wick polynomials to infinite
power series

n

o) = 3 PO @
n=0 :

and calculating correlation distributions (0]p(x)p(y)|0) yields an es-
sential singularity at the origin, and consequently objects like p(x)
will not be tempered.

Despite this problem, Nagamachi and Mugibayashi [6, 7] were
able to show that the concept of localization can be implemented in
the non-standard framework of hyperfunction quantum field theory
(HFQFT) without making use of compactly supported test functions,
but in terms of Fourier hyperfunctions. The space of Fourier hyper-
functions is the dual of the space of rapidly decreasing holomorphic
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functions. One of the characteristics of this space is that it is topo-
logically invariant under Fourier transformations as is the case for the
spaces S(IR"), but it does nor contain test functions of compact sup-
port. But introducing smaller test function spaces than S seems to be
desirable in view of the fact that in four-dimensional space-time no
non-trivial standard quantum fields have ever been constructed, indi-
cating that the axioms of QFT based on tempered distributions are too
narrow.

It is the aim of this paper to give some insight into the problems
which arise when interactions are taken into account in relativistic
quantum field theory by studying some specific examples of formally
interacting field theories, leaving aside the mathematical technicali-
ties involved in the theory of Fourier hyperfunctions and performing
formal calculations.

In this context, the main result of Nagamachi and Briining [8]
shall be quoted here as a theorem:

Theorem 1. Let ¢ be a free massive neutral scalar field and
{an}nen, a sequence of real numbers satisfying the condition
limy, —co[|@n|?/n!]Y/" = 0. Then the Wick power series

n.

fmzéw%%

is a hyperfunction quantum field, but not a standard quantum field if
infinitely many of the coefficients a,, are non-zero.

Of course, the condition lim,_yeo[|a,|?/n!]'/" = 0 ensures that for
zeC

v 27
h(z) _rg)a"”! ®)

is an entire function.

The hyperfunction approach to quantum field theory has been ex-
tended to ultra-hyperfunction approaches with even more restricted
test function spaces during the last years indeed [11]. But these ap-
proaches also do not seem to lead anywhere from a physical point of
view.

2. EXAMPLE OF A NON-STANDARD
QUANTUM FIELD

Before tackling models of formally interacting quantum fields in
Minkowski space, we briefly discuss a typical example of a hyper-
function quantum field ® given by the Wick power series containing
a free neutral field ¢ [9, 10]

)L‘rl
i p(x)": ©))

n!

ngh

P(x) =: M) =

n=0

with some length parameter A. The corresponding two-point function
is

w® (x —y) = (0|@(x)®(y)[0)

oo )\Tl . oo /\nl -
0% 2 e 2 A gy 10)
n=0 """ m=0 """
o A o iAA (r-y)
= ZO AT -y = : (10)

since for combinatorial reasons
(O : p(x)" =

Considering the massless case, the positive-frequency Pauli-Jordan
distribution is given in configuration space by

P(y)™ : |0) = Spmn![int (x —y)]". (11)

i 1

AT (x)= —— | 12
0 (%) 472 (xg — i0)2 — 32 12

hence, the massless two-point function becomes

2

Do LIAAS (x—y) _ _ A
wy (x =" "0 = —— | - 13
0(x—y) exp 4712 (x2 — ix(0) (13)

Due to its essentially singular behaviour, wab (and the massive w®)
cannot be a tempered distribution in S’ (R*). Tempered distributions
can always be represented as a finite sum of distributional derivatives
of continuous functions of polynomial growth.

Trying to evaluate the two-point function of an expression like,

e.g.,

0 (_1)n+1/\n
Y(x) =:2In(1+ Ap(x)/2) := Z iy, sp(x)" (14)
n=1
formally leads to
© - A2npr " n
(O[F(x)¥(y)]0) = ) o 2,2 [inT(x—y)]", 15)
n=1

an expression which does not converge in any sense.

3. FORMAL INTERACTIONS THROUGH
POINT TRANSFORMATIONS OF THE
CLASSICAL LAGRANGIAN OF THE
FREE NEUTRAL SCALAR FIELD

The following exercises on models of formally interacting fields will

shed some additional light on some of the comments in the introduc-

tion. They may also serve as interesting examples for point transfor-
mations in lectures on Lagrangian field theory.

3.1. Massive free and formally interacting field: classical and
quantum aspects

The Lagrangian density £ of the non-interacting classical real scalar
field ¢

Lo(@, — 15 pon _m o 16
0(9,9u9) = 509 4 (16)

can be cast in a less familiar form by a local point transformation with
a real parameter A

p(x) = A T tan(Ay(x)) . (17)

A point transformation

L1(,0u9) = Lo(9(¥), 0 () (18)

leaves the form of the Euler-Lagrange equations

Ly 9Ly Ly 9Ly

T T T T

19)
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invariant. The free field ¢ obeys the Klein-Gordon equation

0Ly 9Ly

Vaaﬂgo 847 O_D(P""m ¢- (20)

With
a;ﬂl’(x)
W) = ot () b
follows
9, WM 2
L1 (,9,9) = PO M2 (A). 22)

2cos*(Ayp) 272
The Euler-Lagrange equations for i are obtained from

9Ly _ m? sin(Ay)

ap A cos3(Ay) @3
and

oLy oty
9y 0.y O <cos4(/\1p)>
Oy 4A sin(Ayp)
~ cost(Ay)  cosS(Ay) Oupotyp, 24
i.e. one has

2

Oy = —4A tan(Ay)9d, 1oy — mT sin(Ay) cos(Ay) . (25)

Of course, solutions of the seemingly complicated equation of motion
(25) can be generated by taking a solution of the real Klein-Gordon
equation (0 + m?)¢ = 0 and calculating ¢ = A~!arctan(Ag).
However, the field theories defined by L ; are not completely equiva-
lent, since a solution ¢ = A1 tan(A4) of the Klein-Gordon equation
corresponds to a denumerable discrete set of solutions {¢p + m7t/A |
m € Z}. There exists an infinity of parallel -worlds.

Regarding the fact that ¢ ~ 1 for small fields |¢|, |p| < 1,
one might be tempted to invoke perturbation theory for the involved
Lagrangian density £1(¢,d,1). Expanding

os H(AY) = 1+2A%¢% +o(yp?) (26)
and
tar?(Ap) = A292 + 2244 + o(y) @7)

and inserting it in (22) leads to

1 2
Lr($,3u) = 53,9y — - ¢?
242
A2, — %w‘* T

m2)\2
= Lo(y,0u1p) + A2, ol — ——p* + ... (28)

Naive power counting indicates that quantization of the La-
grangian density £q describing a free field leads to a non-
renormalizable perturbation expansion, since already the lowest
quadrilinear interaction term

£ = 2292, pary — —4] 29)

1,int

contains the dimension-6 operator (29,9 1p.
Expressing the quantized field ¢ in terms of the free quantized
field ¢ according to

)nfl 90( )Zn 1
2n —1

)= 3

n=1

P(x) = A71 sarctan (Ag(x
(30)

as a formal solution of the wave equation (25) does not work. ¢ does
not belong to the class of fields according to theorem (1), and it is im-
possible to calculate a corresponding meaningful two-point function
using expression (30).

3.2. Formally interacting massless model

In this section, ¢ represents the (quantized) free massless neutral
scalar field (with the two-point function (0[¢(x)@(y)[0) = iA] (x —
y)) fulfilling the distributional wave equation O¢(x) = 0 following
from the (classical) Lagrangian density

< 1
Lo(,0u9) = an(paf‘q). 31)

We introduce a new field ¢ which is related to ¢ by the one-to-one
correspondence

¥ = A 'sinh(Ag). (32)
Using cosh?(A¢@) — sinh?(A¢) = 1 and
9up(x) = cosh(A¢(x))d,¢(x) (33)

leads to the classically equivalent Lagrangian density for i

Li(,0u9) = Lo(9, )
_ 1 ooty 1 oty 34)
© 2cosh’(Ag) 21+ A%y
In the present case,
1 > AM 2n41
/\ :Slnh()L(P(x)) = Z W (P(x) (35)

is a well-defined quantum field with corresponding n-point functions
in the sense of HFQFT.

3.3. Scalar gravity in the absence of matter

The Lagrangian density for a self-coupled field /(x) in Minkowski
space

_ 10,hd"h 36

21+ Ak 36)
has some interesting properties. From

L oth Oh A
= = —_ "{

a”eazayh o <1+/\h) 1+ Ah (1+Ah)2a”ha ko GD
and
oL = —Layhaf‘h (38)

oh 2(1+ Ah)?
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follows the equation of motion

A 3yhdth
thza:xm. (39

The energy-momentum tensor of the scalar field is given by

oL Mhd'h — Lghva,hath
pv _ Ok vy v 28" 9
L T T+ Al

(40)
with the metric tensor ¢V = diag(1, —1, —1, —1). The trace follows
immediately

y:7%m%
H 1+ AR’

(41

i.e., the source of the field & in (39) is proportional to the trace of the
energy-momentum tensor of the field itself. The Lagrangian density
(36) defines the ostensibly non-geometrical flat space theory of Fre-
und and Nambu [12], which has been shown by Deser and Halpern
[13] to be equivalent to the geometrical Nordstrgm theory [14], i.e.,
the conformally flat metric analog of Einsteins theory.

Relating /1 to a new field ¢ by

(1+A¢p/2) = (14 )2 (42)
results in
dup = (1+An)"V29,h, 43)
hence

190t 1

= = ~d,¢@d" 44
21 An MY @9
describes a free field ¢ fulfilling the wave equation (g = 0.
From the analytic structure of the relation (42) follows that & can-
not be related to the free massless quantized field ¢ by a Wick power
series, despite the classical equivalence of /1 and ¢.

4. CONCLUSIONS

The examples of formally interacting scalar field theories presented in
this letter illustrate the fact that local non-linear analytic transforma-
tions of a free quantum field, interpreted as an operator valued fem-
pered distribution on Schwartz functions, may not result in operator
valued tempered distributions, but in a more general kind of distribu-
tions which can be treated in the framework of (ultra-)hyperfunction
quantum field theory.

However, even when analytic redefinitions of free fields are con-
sidered only, restrictive analytic conditions must hold for the field
transformations even when they are one-to-one in order for the de-
formed fields to be interpretable in any distributional sense. This
shows the rigidity of the approach to quantum fields via tempered dis-
tributions or (ultra-)hyperfunctions, and the severe problems of quan-
tum field theory on a classical four-dimensional space-time in general.
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