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C/ Catedrático José Beltrán, 2 E-46980 Paterna (Valencia) - SPAIN

Abstract
We consider the class of models where Dirac neutrino masses at one loop and the dark matter stability
can be obtained using only the global U(1)B−L symmetry already present in Standard Model. We discuss
how the residual Zn subgroup, left unbroken after the breaking of U(1)B−L, dictates the neutrino nature,
namely if they are Dirac or Majorana particles, as well as determines the stability of the dark matter candi-
date in such models. In particular, we show that without the correct breaking of U(1)B−L to an appropriate
residual Zn symmetry, the Dirac nature of neutrinos and/or dark matter stability might be lost. For com-
pleteness, we also provide some examples where the dark matter stability is accidental or lost completely.
Finally, we discuss one example model where the Dirac neutrinos with naturally small one loop masses
as well as dark matter stability, are both protected by the same residual Z6 subgroup, without need for
adding any new explicit or accidental symmetries beyond the Standard Model symmetries.
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1. INTRODUCTION
The Standard Model is the best description we have so far to
explain all the observed fundamental particles and their inter-
actions, namely the strong and electroweak phenomena. How-
ever, the Standard Model predicts that neutrinos are massless
particles and lacks a candidate to account for the dark matter
relic abundance in the Universe [1].

Neutrino oscillation experiments indicate that at most one
active neutrino can be massless [2, 3, 4, 5] but there is no exper-
imental hint pointing towards the exact mechanism to generate
mass for neutrinos. In this regard, the most popular approach
to alleviate this Standard Model shortcoming is to assume that
neutrinos are Majorana in nature and invoke the so-called Ma-
jorana seesaw mechanisms [6, 7, 8, 9, 10, 11]. In fact, indepen-
dent of the Dirac/Majorana nature of neutrinos and the details
of mass generation mechanism, neutrino mass generation al-
ways requires the existence of new particles and/or symme-
tries [12, 13].

From the theoretical perspective, it is very tempting to
think that one of the new fundamental fields added to the Stan-
dard Model to generate the neutrino mass might be a poten-
tial dark matter candidate. The connection between dark mat-
ter and the neutrino mass naturally arises when the mass gen-
eration mechanism is at the loop level. The simplest realiza-
tion of this idea is achieved within the scotogenic model [14].
Besides the Standard Model particle content, in this scenario
the neutrino mass is generated at the one-loop level by assum-
ing the existence of SU(3)C ⊗ SU(2)L ⊗U(1)Y gauge singlet
fermions and an extra SU(2)L doublet scalar with vanishing
vacuum expectation value (vev). All these new particles carry
an odd charge under a global Z2-symmetry. This additional Z2
symmetry remains unbroken after the electroweak symmetry

breaking (EWSB). It stabilizes the dark matter candidate and
forbids the appearance of Majorana mass terms for the neutri-
nos at tree-level.

Following the scotogenic idea, here we will consider a class
of models [15] where1

I. Neutrinos are Dirac in nature.

II. Neutrino mass is generated at one loop level.

III. In scotogenic spirit, the intermediate particles in the
loop belong to a “dark sector” with the lightest particle
among them being a good candidate for stable dark mat-
ter.

Typically, one needs to invoke several additional symmetries
to achieve this. However, as has been shown in [15], for certain
models this can be achieve only through the global U(1)B−L of
the Standard Model 2. In this setup the global U(1)B−L sym-
metry of Standard Model is broken down to its residual Zn;
n ∈ Z+ subgroup. Since we require neutrinos to be Dirac par-
ticles, this residual symmetry should be such that it can pro-
tect the Dirac nature of neutrinos as well as stabilize the dark
matter candidate [15]. This can be successfully done only if the
breaking U(1)B−L → Zn is achieved in a correct manner such
that an appropriate Zn subgroup is left unbroken. Not all Zn
subgroups of U(1)B−L can do this job. The criterion for such an
appropriate residual Zn are also listed in [15, 16]. In this paper,
we aim to construct a class of models and analyze them in de-
tails, in order to highlight the crucial role that the residual Zn
plays in protecting the Dirac nature of neutrinos as well as in
dark matter stability.

1For analogous framework for Majorana neutrinos see [16].
2The idea of obtaining dark matter stability associated to the breaking of

U(1)B−L has been explored in [17, 18, 19, 20, 21, 22, 23, 24, 13, 25, 26, 15, 27, 16].
For recent works aimed at obtaining scotogenic stability from extended gauge
symmetries see [28, 29].
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This work is organized as follows: in the next section, we
describe how the residual symmetry is connected to the neu-
trino nature. In section 3, the list of possible realizations to gen-
erate the neutrino mass dynamically is given. In order to high-
light the important role of the residual symmetry in ensuring
the dark matter stability, we provide several explicit examples
in Section 4, where, due to lack of an appropriate residual sym-
metry, the dark matter stability is lost. For completeness, we
also give examples of the cases where an additional accidental
symmetry might be present in the model leading to dark mat-
ter stability. In Section 5, we present a model where the residual
Z6 symmetry protects both the stability of the dark matter can-
didate and Dirac nature of neutrinos. We conclude after that.

2. RESIDUAL SYMMETRIES AND THE NEU-
TRINO NATURE

Typically in high energy physics models, when a symmetry G
is broken down either spontaneously or explicitly, a subgroup
of it remains unbroken. This unbroken subgroup Gres is re-
ferred to as the residual subgroup. It is this residual subgroup
Gres and not the full group G, which dictates the dynamics of
a given theory at energy and temperatures below the scale of
G breaking. The most well known example of this is provided
by Standard Model itself. In Standard Model, the gauge group
SU(3)C ⊗ SU(2)L ⊗U(1)Y is spontaneously broken down to a
residual subgroup Gres ≡ SU(3)c ⊗U(1)em by the vev of the
Higgs. Below the electroweak breaking scale, the dynamics of
the Standard Model is dictated by the unbroken residual sub-
group SU(3)c ⊗U(1)em. Apart from this well known exam-
ple, residual symmetries occur in almost all beyond Standard
Model (BSM) extensions, with SU(3)C ⊗ SU(2)L ⊗U(1)Y itself
being a residual subgroup in most of the BSM gauge exten-
sions. Coming back to neutrinos, the residual symmetries play
an important role in determining the Dirac/Majorana nature
of neutrinos and might also be responsible for dark matter sta-
bility. We first highlight their role in determining the nature of
neutrinos before discussing their role in dark matter stability.

To see the important role played by residual symme-
tries in determining the nature of neutrinos, recall that apart
from SU(3)C ⊗ SU(2)L ⊗U(1)Y gauge symmetries, the Stan-
dard Model also has two other symmetries namely Lepton
number U(1)L and Baryon number U(1)B symmetries. The
combination U(1)B−L can be rendered anomaly free if we ex-
tend the Standard Model particle content by adding three right
handed neutrinos νRi ; i = 1, 2, 3 either carrying vector charges
(−1,−1,−1) or chiral charges (−4,−4, 5) under U(1)B−L sym-
metry [30, 31, 32, 33]. Given that the Standard Model lepton
doublets Li; i = 1, 2, 3 carry U(1)B−L charge, the Dirac or Majo-
rana nature of neutrinos depends crucially on the residual sym-
metry Gres appearing after the breaking of the U(1)B−L sym-
metry. Since U(1)B−L is an Abelian continuous group, it only
has discrete Abelian subgroups, namely Gres ≡ Zm; m ∈ Z+.
Depending on the nature of the residual Zm subgroup left un-
broken, one can classify the Dirac or Majorana nature of neu-
trinos, depending on how Standard Model lepton doublets Li;
i = 1, 2, 3 transform under the residual subgroup3. If U(1)B−L

3If there are new, as of yet unknown, conserved symmetries present in nature,
the classification presented here should be generalized to include them. Such a
generalization is straightforward.

remains unbroken then neutrinos will be Dirac particles as the
Majorana mass term for neutrinos is forbidden by U(1)B−L
symmetry. In case U(1)B−L → Zm we have [34].

U(1)B−L → Zm ≡ Z2n+1 with n ∈ Z+

⇒ Neutrinos are Dirac particles

U(1)B−L → Zm ≡ Z2n with n ∈ Z+ (1)

⇒ Neutrinos can be Dirac or Majorana

Now, if the U(1)B−L is broken to a Z2n subgroup, then one can
make a further classification depending on how the Li trans-
form,

Li

{
� ωn under Z2n ⇒ Dirac Neutrinos
∼ ωn under Z2n ⇒ Majorana Neutrinos (2)

where ω = e2π I/2n; ω2n = 1 is the 2n-th root of unity.
In order to understand last statement better, one can take,

for instance, the dimension-5 Weinberg operator [35] for Majo-
rana neutrino mass L̄cLHH (where L and H are SU(2)L lep-
ton and scalar Higgs doublets, respectively) which basically
breaks lepton number leaving a residual Z2 symmetry unbro-
ken. Neutrinos will be Majorana in this case as it satisfies the
criterion for Majorana neutrinos, listed in (2). As an example of
a ultra violet (UV) completion, one can take the type-I seesaw
mechanism, where three RH-neutrinos are added to the Stan-
dard Model, transforming as (νRi ) ∼ (−1) (with i = 1, 2, 3)
under the global U(1)B−L symmetry. In order to generate the
Majorana mass term for neutrinos, a lepton number breaking
term leading to U(1)B−L → Z2 has to be added to the La-
grangian. Hence,

L� = yν L̄H̃νR + MR ν̄c
RνR + h.c. (3)

where we have omitted the flavor indices for convenience. In
this case the mass term MR ν̄c

RνR softly breaks the U(1)B−L →
Z2 and hence neutrinos are Majorana in nature. On the other
hand, if a dynamical origin of the neutrino mass is demanded,
one has to further assume the existence of a scalar singlet σ
with non-trivial charge under U(1)B−L, i.e. σ ∼ ±2 should be
chosen. As consequence, the vev of this scalar 〈σ〉 will break
U(1)B−L → Z2 ultimately generating the Majorana mass for
neutrinos [8, 10].

To obtain Dirac neutrinos one must break U(1)B−L → Zn
with n ≥ 3 as the residual subgroup Z2 always leads to
Majorana neutrinos in accordance with (2). While tradition-
ally mass models for Majorana neutrinos have garnered lot
of attention, in recent years, Dirac neutrino mass models are
enjoying a resurgence of sorts with various seesaw [31, 32,
33, 36, 20, 21, 37, 23, 38, 39, 40, 41, 42, 43] and loops mod-
els [44, 45, 46, 22, 47, 24, 48, 49, 25, 50, 15, 27, 51, 28, 52, 53]
considered in literature4. The operator based classification of
such models at dimension-4 [58], dimension-5 [59, 13] and
dimension-6 [60, 61] have also been considered.

From now on, the focus is to explain the smallness of the
neutrino mass when neutrinos are Dirac particles in nature.
That is, there should be a dynamical mass mechanism behind
the Dirac neutrino mass generation. In order to have a natu-
ral explanation for smallness of Dirac neutrino masses, it is
desirable to forbid the tree-level neutrino Yukawa coupling

4 For Dirac neutrino models without mass mechanism see [54, 55, 56, 57, 34].
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Lν ⊃ yν L̄H̃νR. This coupling can be forbidden in many ways,
for example by imposing flavor symmetries [21, 23] or even by
a simple Z2 symmetry [20]. It can be automatically forbidden
by the U(1)B−L symmetry itself, if we use the chiral solution of
(νRa , νR3 ) ∼ (−4, 5) (with a = 1, 2), as was shown for the first
time in [31, 32, 33]. The operator that generates the neutrino
mass will then appear at higher dimensional level. For this to
happen, a singlet scalar field χ ∼ 3 under the U(1)B−L has to
be added in order to generate the mass of at least two neutri-
nos through a dimension 5 operator. The dimension 5 operator
then is given by

Lν ⊃
yν

Λ
L̄ H̃ χ νRa (4)

where Λ is the scale of UV completion. The mass of the third
neutrino can also be generated by either the dimension-6 term

Lν ⊃
yν

Λ2 L̄ H̃ χ∗ χ∗ νR3 (5)

or by adding a new singlet scalar χ6 ∼ 6 under U(1)B−L such
that the dimension-5 term

Lν ⊃
yν

Λ
L̄ H̃ χ∗6 νR3 (6)

is also allowed by the U(1)B−L symmetry.
The UV completion of such operators is model dependent,

as we will discuss in Section 3. Since the field χ ∼ 3 under
U(1)B−L, its vev will break U(1)B−L → Z3m; m ∈ Z+. The
exact residual Z3m subgroup will depend on the details on the
UV completion, a fact we discuss in further details in Section 4.
Also, note that, since the U(1)B−L charge of χ6 ∼ 6 is a mul-
tiple of the charge of χ ∼ 3, the addition of χ6 in a given UV
complete model will not change the nature of the residual Z3m
symmetry. Before moving on, let us briefly see the various pos-
sible ways the operator in (4) can be UV completed at one-loop.

3. ONE-LOOP TOPOLOGIES OF THE
OPERATOR L̄ H̃ χ νRA

Topologies Diagrams Models

2

6

T1

T2

T1−1

T2−1 T2−2

T2−3

Figure 1: One loop topologies with four external lines.

In this section, we provide the topologies and all possible one-
loop diagrams for the dimension-5 operator L̄ H̃ χ νRa , that gen-
erate Dirac neutrino masses. We have associated each topol-
ogy to graphs or Feynman diagrams without taking into ac-
count their Lorentz nature. We understand as diagrams when

the fermion and scalar lines are specified. We consider the case
where the neutrino masses arise after spontaneous breaking
of the SU(3)C ⊗ SU(2)L ⊗U(1)Y and U(1)B−L symmetry. Un-
der this requirement the lowest order comes from topologies at
dimension-5 [27], as shown in Figure 1. This implies that in the
diagrams corresponding to topologies T1 and T2, two external
legs are fermions (continuous lines) and the others are scalars
(dashed lines). One of these scalars corresponds to the Standard
Model Higgs doublet which is responsible for the EWSB and
the other one, the scalar singlet χ, is assigned to break U(1)B−L
symmetry.

It turns out that within the T1 topology, there is only one
possible diagram called T1-1 in Figure 1. There are two possi-
ble realizations of such a diagram depending on whether the
internal fermions are SU(2)L doublets or singlets5. This is in
contrast to the classification provided in [27]. For the T2 topol-
ogy, three different dimension-5 diagrams (T2-1, T2-2, T2-3)
can be drawn. In this case, the different models that can be con-
structed also depend on the SU(2)L representations of the in-
ternal fields. It is important to mention that all these diagrams
are genuine in the sense that there is no lower order contribu-
tion to neutrino mass. That is, there is no tree-level contribution
to the neutrino mass generation out of the matter content for
these cases. Note that within a model where the neutrino mass
is generated through a T2-1 diagram it can have a T1-1 diagram
when the scalar on top is integrated out. Regardless this, T2-1
remains being genuine under our previous definition. Having
considered all possible topologies and diagrams for one loop
realization of the operator L̄ H̃ χ νRa we now turn to the scenar-
ios where the intermediate particles can belong to a dark sector
with the lightest one being a potential dark matter candidate.
The dark matter stability in such scenarios again depends cru-
cially on the residual Zn symmetry which we discuss with ex-
plicit examples in next section.

4. RESIDUAL SYMMETRY AND DARK
MATTER STABILITY

We already saw the crucial role the residual symmetries play in
determining the Dirac or Majorana nature of neutrinos. They
play an equally important role in determining the stability of
the potential dark matter candidate in a given model. In this
section, we elucidate this role further by taking the one loop
completion of the dimension-5 operator L̄i H̃ χ νRa ; i = 1, 2, 3
and a = 1, 2 of previous section and scrutinizing it in more
details.

As discussed in details in Section 2, taking the anomaly free
solution with νR = (−4,−4, 5) under U(1)B−L has the advan-
tage that the tree level Yukawa term is automatically forbid-
den. However, the dimension-5 operator L̄ H̃ χ νRa is allowed
by U(1)B−L and paves way for generating small Dirac masses
at one loop level as shown in [15, 27]. Once the scalar χ carry-
ing 3 units of U(1)B−L charge gets vev, the U(1)B−L symmetry
is broken to a residual Zn subgroup. In such a setup, without
adding any extra symmetry, the intermediate particles running
in the loop can in principle be arranged to belong to the “dark

5In this work, we restrict to only colorless SU(2)L singlet and doublet repre-
sentations. Models with intermediate fields carrying non-trivial color, exotic hy-
percharge or having higher SU(2)L representations are also possible but will not
be considered here.

3



Letters in High Energy Physics LHEP 124, 1, 2019

Fields SU(2)L ⊗U(1)Y U(1)B−L Z3

Fe
rm

io
ns Li (2,−1/2) −1 ω2

νRa (1, 0) −4 ω2

νR3 (1, 0) 5 ω2

NL(R) (1, 0) q ωq

Sc
al

ar
s H (2, 1/2) 0 ω0

χ (1, 0) 3 ω0

η (2, 1/2) 1− |q| ω1−|q|

ξ (1, 0) 4− |q| ω1−|q|

Table 1: Matter content and charge assignments for realizing T1-1. For all integer values of B− L charge q, the U(1)B−L → Z3. The residual Z3 charges are shown in
last column where ω = e2π I/3; ω3 = 1 is the cube root of unity.

sector” with the lightest of them being potentially stable à la
scotogenic mechanism [14]. However, whether such a potential
dark matter particle will be stable or not is dictated by the resid-
ual Zn subgroup and not by the U(1)B−L symmetry [15, 16]. In
this section, we demonstrate this fact explicitly by taking the
model realizations of the T1 topology of Section 3. A similar
analysis can also be done for all other diagrams belonging to
the T2 topology.

The first thing to notice is that when U(1)B−L → Zn, the
type of residual Zn subgroup that is left unbroken depends
on the vev of the U(1)B−L charge carrying scalar as well as on
the details of charges of the intermediate fields required for UV
completion. For the operator L̄i H̃χνRa ; i = 1, 2, 3 and a = 1, 2,
since χ ∼ 3 under B − L, the residual Zn subgroup can only
be a Z3m; m ∈ Z+ group. However, exactly which Z3m is left
unbroken after the breaking of the U(1)B−L symmetry, is de-
pendent on the details of a given model and in particular to the
lowest U(1)B−L charge in the model. Now we further illustrate
this fact with explicit examples.

To see the crucial role of residual symmetry in dark mat-
ter stability, lets consider the model realizations of the T1-1
diagram of Figure 1. The diagram can be UV completed by
adding new SU(3)C ⊗ SU(2)L ⊗U(1)Y singlet fermions NL, NR
and scalar ξ along with the inert SU(2)L doublet scalar η. All
these fields are charged under U(1)B−L symmetry with their
charges as listed in Table 1.

As shown in Table 1, the one-loop neutrino mass can be
generated for all values of the U(1)B−L charge q. However,
the residual symmetry in all cases need not be same. To be-
gin with, lets consider the cases where q ∈ Z, i.e., q only takes
integer values. In all such cases, the lowest U(1)B−L charge in
the model is ±1, the charge of the lepton doublets Li. Since,
χ ∼ 3 under U(1)B−L, its vev will then break U(1)B−L → Z3.
The residual Z3 symmetry, being an odd Zn group, is enough
to protect the Dirac nature of neutrinos in accordance with (1).
The one loop Dirac neutrino mass realization for q ∈ Z− and
q ∈ Z+ are shown in Figure 2a and in Figure 2b, respectively.
Notice that the SU(3)C ⊗ SU(2)L ⊗U(1)Y singlet fermions NL
and NR simple switch roles for the q ∈ Z− and q ∈ Z+ cases.

Notice that the neutral components of the intermediate par-
ticles in the loops of Figure 2 can in principle belong to the
“dark sector” with the lightest of them being a good dark mat-
ter candidate à la scotogenic model. Although the residual Z3
symmetry is enough to protect the Dirac nature of neutrinos,
it is not enough to protect the stability of a potential dark mat-
ter candidate. In fact, as has been argued in [15], any odd Zn

U(1)B−L → Z3

〈H〉, 〈χ〉 ⇒ SSB

H χ

NR NLL νR

η ξ
(1− q) (4− q)

(0) (3)

U(1)B−L → Z3

〈H〉, 〈χ〉 ⇒ SSB

U(1)B−L → Z3

〈H〉, 〈χ〉 ⇒ SSB

(−1) (−q) (−q) (−4)

〈H〉 〈χ〉

NR NLL νR

η ξ

(ω2) (ω−q) (ω−q) (ω2)

(ω1−q) (ω1−q)

(ω0) (ω0)

(a) For the case q ∈ Z− .

U(1)B−L → Z3

〈H〉, 〈χ〉 ⇒ SSB

H χ

N c
L N c

RL νR

η ξ
(1− q) (4− q)

(0) (3)

U(1)B−L → Z3

〈H〉, 〈χ〉 ⇒ SSB

U(1)B−L → Z3

〈H〉, 〈χ〉 ⇒ SSB

(−1) (−q) (−q) (−4)

〈H〉 〈χ〉

N c
L N c

RL νR

η ξ

(ω2) (ω−q) (ω−q) (ω2)

(ω1−q) (ω1−q)

(ω0) (ω0)

(b) For the case q ∈ Z+ .

Figure 2: One loop neutrino mass generation diagrams highlighting the
U(1)B−L → Z3 breaking pattern. The B− L charges (left diagram) of the fields
are in blue while the residual Z3 charges (right diagram) are in red. For Z3

symmetry ω = e2π I/3; ω3 = 1 is the cube root of unity. Notice that the Standard
Model gauge singlet fermions NL and NR have switched their roles in the two
cases.

subgroup of U(1)B−L, on its own cannot protect the dark mat-
ter stability in models employing scotogenic mechanism. The
dark matter stability in all such models has to be achieved ei-
ther by adding another explicit symmetry or by choosing “ex-
otic” U(1)B−L charges for the intermediate fields such that an
accidental symmetry also appears in the model. We now fur-
ther elaborate on this by looking case by case at models with
q = 0, · · · ± 6. We start with looking at the cases where the dark
matter stability is completely lost and then move on to the cases
where a new accidental symmetry comes into play.

4.0.1. q = ±1 case
Let’s start with the simplest case of q = ±1. For definiteness, we
take the case of q = −1 but analogous discussion can be carried
out for q = +1 case as well. The one loop neutrino mass gener-
ation diagram along with the residual Z3 charges is shown in
Figure 3a.

However, for this case the Yukawa term L̄H̃NR is also al-
lowed by the symmetry. This term leads to mixing as well as
decay of the NR fields as shown in Figure 3b. Since NR is a
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〈H〉 〈χ〉

NR NLL νR

η ξ

(ω2) (ω2) (ω2) (ω2)

(ω0) (ω0)

(ω0) (ω0)

(a) The q = −1 case, raditative neutrino mass generation diagram along with
residual Z3 charges. Analogous diagram can be drawn for q = +1 case, following
Figure 2b.

NR (ω2)

νL (ω2)

H (ω0)

NR (ω2) νL (ω2)

(b) The mixing and decay diagrams of dark sector particles, ultimately leading to
the decay of potential dark matter candidate.

Figure 3: The raditative neutrino mass generation diagram and the mixing
and decay diagrams of dark sector particle, for the q = −1 case. Anologous
diagrams can also be drawn for q = +1 case with NL and NR switching their
roles like in Figure 2a and Figure 2b

“dark sector” field, this coupling ultimately provides a channel
for the dark matter decay, even if NR itself is the not the dark
matter candidate. This is because just like in scotogenic model,
here also, all intermediate fields can “decay” among each other.
If one of them has a decay channel to Standard Model particles
or to the new external fields νR, χ, then any potential dark mat-
ter candidate will ultimately decay by first going to real/virtual
NR which will finally decay to νL and H as shown in Figure 3b.

4.0.2. q = ±2 case
For the q = −2 case, the Feynman diagram leading to neu-
trino mass generation along with the residual Z3 charges of the
fields is shown in Figure 4a. As before, the case of q = 2 can be
analogously discussed with NL and NR fields switching their
roles.

In this case, one can again write down a dimension-4 term
N̄c

RνR3 χ∗ which leads to the decay of NR field as shown in Fig-
ure 4b. As can be seen from Figure 4b, the residual Z3 symme-
try does not forbid this decay. Now, since N̄c

R is a dark sector
particle, its decay channel ultimately provides a decay path for
any potential dark matter candidate. Thus, the dark matter sta-
bility is again lost.

4.0.3. q = ±3 case
Turning to the q = ±3, the Feynman diagram for neutrino mass
generation is shown in Figure 5a. The diagram in Figure 5a is
drawn for the case q = −3 but a similar diagram can also be
drawn for q = +3 case.

In this case the dimension-4 operator ξνRa νR3 connecting in-
termediate scalar ξ to right handed neutrinos νRa νR3 is allowed
by the symmetries. This operator leads to decay of ξ to right
handed neutrinos as shown in Figure 5b. As can be seen from
Figure 5b, this decay is again allowed by the residual Z3 sym-
metry. Since ξ is a dark sector field, its decay ultimately implies

〈H〉 〈χ〉

NR NLL νR

η ξ

(ω2) (ω) (ω) (ω2)

(ω2) (ω2)

(ω0) (ω0)

(a) Neutrino mass diagram for q = −2 case.

N̄ c
R (ω)

χ∗ (ω0)

νR3 (ω
2)

(b) The decay diagram of dark sector particle.

Figure 4: The q = −2 case, raditative neutrino mass generation diagram along
with residual Z3 charges. Analogous diagram can be drawn for q = +2 case,
following Figure 2b. Shown also, the decay diagram of dark sector particle,
ultimately leading to the decay of potential dark matter candidate.

〈H〉 〈χ〉

NR NLL νR

η ξ

(ω2) (ω0) (ω0) (ω2)

(ω) (ω)

(ω0) (ω0)

(a) Neutrino mass diagram for q = −3 case.

ξ (ω)

νR1,2(ω2)

νR3 (ω
2)

(b) The decay diagram of dark sector particle.

Figure 5: The q = −3 case for raditative neutrino mass generation and decay
channel of dark sector particles. Analogous diagram can be drawn for q = +3
case.
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decay of any potential dark matter candidate. Thus, the dark
matter stability is again explicitly lost.

4.0.4. q = ±4 case
For the case of q = −4, the neutrino mass diagram is as shown
in Figure 6a. A similar diagram can also be drawn for the q =
+4 case as well.

〈H〉 〈χ〉

NR NLL νR

η ξ

(ω2) (ω2) (ω2) (ω2)

(ω0) (ω0)

(ω0) (ω0)

(a) Neutrino mass diagram for q = −4 case.

NL (ω2) νR1,2 (ω
2)

(b) The mixing diagram of dark sector particle.

Figure 6: The q = −4 case for raditative neutrino mass generation and mixing
diagram of dark sector particle. Analogous diagram can be drawn for q = +4
case.

In this case, there is a direct coupling N̄LνRa between the
intermediate field NL and the right handed neutrinos νRa as
shown in Figure 6b. This coupling leads to mixing between the
two fields which is allowed by the residual Z3 symmetry. Ow-
ing to this mixing, all the dark sector particles, including any
potential dark matter candidate, again have a decay channel
available to them. Thus, in this case as well, the dark matter
stability is explicitly lost.

4.0.5. q = ±5 case
The Feynman diagram leading to the neutrino mass generation
for q = −5 is shown in Figure 7a. A very similar diagram can
also be drawn for the q = +5 case with the fields NL and NR
switching their roles.

In this case, analogous to the q = ±4 case, there is a direct
coupling N̄c

RνR3 allowed by the symmetries. This leads to the
mixing between these two fields as shown in Figure 7b. Again
this mixing is allowed by the residual Z3 symmetry and it ul-
timately leads to the decay of any potential dark matter candi-
date.

4.0.6. Accidental symmetry: The q = 0 and q = ±6 cases
Finally, we turn to the cases where an additional accidental
symmetry of the model leads to dark matter stability. The pres-
ence of accidental symmetries as well as stability of particles
owing to accidental symmetries is not a new concept. In the
Standard Model, the Lepton U(1)L and Baryon number U(1)B
appear as accidental symmetries of the model [35]. As we al-
ready saw, the combination U(1)B−L and its residual symme-
tries are intimately connected with the Dirac/Majorana nature
of neutrinos. The other combination U(1)B+L is responsible for
stability of proton. Its breaking pattern and residual symme-

〈H〉 〈χ〉

NR NLL νR

η ξ

(ω2) (ω) (ω) (ω2)

(ω2) (ω2)

(ω0) (ω0)

(a) Neutrino mass diagram for q = −4 case.

NR (ω) νR3 (ω
2)

(b) The mixing diagram of dark sector particle.

Figure 7: The q = −5 case for raditative neutrino mass generation and mixing
diagram of dark sector particle. Analogous diagram can be drawn for q = +5
case.

tries are intimately connected with not only stability of proton
but also dictate the possible proton decay channels [62, 63, 64].
Just like the accidental U(1)B+L protects proton decay in Stan-
dard Model, in many dark matter models an accidental symme-
try can protect dark matter decay [65, 24, 27]. A well know ex-
ample of this is the case of “minimal dark matter” where even
after the SU(2)L ⊗U(1)Y → U(1)em, dark matter remains sta-
ble thanks to an accidental symmetry present in the model [65].

In our setup where U(1)B−L → Z3, the cases of q = 0 and
q = ±6 provide such examples. The Feynman diagrams for
neutrino mass generation are shown in Figure 8. As can be seen
from Figure 8, the intermediate fermions NL, NR do not carry
any charge under the residual Z3 symmetry and hence their
decays are not protected by it. Furthermore, although the scalar
field ξ does carryZ3 charge, still its decay ξ → νR is allowed by
the residual symmetry. Thus, the dark matter stability in both
these cases is not protected by the residual Z3 symmetry. Still
the dark matter particle in both these cases is stable thanks to
presence of an accidental symmetry in the model.

The presence of an accidental symmetry in both these cases
can be seen from the fact that in the unbroken phase the
U(1)B−L symmetry allows one to write down decay terms like
η† HνRa νR3 (for q = 0) and ξχνc

Ra
νc

R3
(for q = ±6). Yet with

the particle content of these models, see Table 1, these decay
operators cannot be UV completed, clearly indicating presence
of an accidental symmetry stabilizing dark matter. This situ-
ation is akin to the proton stability in Standard Model where
again the gauge symmetries allow non-renormalizable proton
decay operators which cannot be UV completed with the par-
ticle content of Standard Model [35]. In fact, similar analysis
can be carried out for q < −6 or q > 6. In each case it can
be shown that the residual Z3 alone cannot stabilize dark mat-
ter. In fact it has been shown in [15], arguing at very general
grounds that any odd residual Zn symmetry and in particular
Z3 symmetry cannot stabilize dark matter. However, appropri-
ately chosen even Zn residual symmetries can indeed stabilize
dark matter while simultaneously protecting the Dirac nature
of neutrinos. In next section, we present one such example. For
the most general treatment we refer to [15].
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〈H〉 〈χ〉
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(a) Neutrino mass diagram for q = 0 case.
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(b) Neutrino mass diagram for q = −6 case.

Figure 8: The neutrino mass generation diagrams for both q = 0 and q = −6
cases. In both these cases, the internal fermions do not carry non-trivial Z3

charges. However, one can still have a stable dark matter thanks to the presence
of an extra accidental symmetry in the models.

5. DIRAC NEUTRINOS AND DARK MAT-
TER STABILITY FROM A RESIDUAL
SYMMETRY: U(1)B−L→Z6

We already saw that U(1)B−L → Z3 can protect the Dirac
nature of neutrinos but Z3 being an odd group, cannot pro-
vide dark matter stability. However, if U(1)B−L → Z2m, m ∈
Z+, m ≥ 3; then one can indeed have dark matter stability as
well as protect Dirac nature of neutrinos in a scotogenic like
setup [15]. In this section, we show this by explicitly construct-
ing one such example where:

I. Neutrinos are Dirac in nature.

II. Neutrino mass is generated at one loop level.

III. The intermediate particles in the loop belong to a “dark
sector” with the lightest particle among them being a
good candidate for stable dark matter.

We achieve this by U(1)B−L → Z6 in the νR = (−4,−4, 5)
setup with the residual Z6 protecting both Dirac nature of neu-
trinos and dark matter stability. An alternative model to the one
considered here, was also constructed in [15] which the inter-
ested reader can consult for more details6.

To start with, as discussed before, since the scalar field χ ∼

6For anologous treatment in case of Majorana neutrinos see [16].

3 under U(1)B−L symmetry, its vev breaks U(1)B−L → Z3m;
m ∈ Z+. However, exactly which residualZ3m symmetry is left
unbroken depends on the details of the UV completion and in
particular on what is the lowest U(1)B−L charge in the full UV
complete theory. In the case, when the Standard Model lepton
doublets Li carry the lowest charge i.e., the lowest charge is±1,
then the residual symmetry is Z3. But in case when there is a
smaller charge present in the UV complete model, the residual
symmetry will be different. For example, if the lowest U(1)B−L
charge in the model is ±1/2 then the residual symmetry be-
comes Z6 while for the lowest charge of ±1/3, the residual
symmetry will be Z9, and so on. We will exploit this feature
now to break U(1)B−L → Z6 by introducing intermediate par-
ticles with ±1/2 charges.

For the sake of uniformity and to allow quick comparison,
we again take the first topology described in Section 3 and con-
struct a topologically similar model to the ones considered in
Section 4. We construct a Standard Model extension where the
residual symmetry Z6, stemming from the spontaneous sym-
metry breaking of U(1)B−L, protects the stability of the dark
matter candidate and the Dirac nature of neutrinos. As before,
we demand that the model is anomaly free. Hence, again the
simplest option is to consider that the RH-neutrinos transform
as (νRa , νR3 ) ∼ (−4, 5) (with a = 1, 2) under the U(1)B−L sym-
metry. In order to complete the diagram, as before, we need to
introduce three additional scalars, χ, ξ and η. The former one is
responsible for breaking the U(1)B−L symmetry and the other
two will be required to UV complete the model and will belong
to the dark sector. A pair of neutral fermions NL, NR are also
needed and these along with the scalars ξ and η are part of the
dark sector with the lightest of them being a good dark matter
candidate. In Table 2, we summarize the matter content and the
charge assignments of the model. The right column with Z6 la-
bel indicates the charge of the particles under the residual Z6
symmetry.

Notice that the intermediate particles carry U(1)B−L
charges in units of 1/2. Owing to presence of these particles,
the vev of χ now breaks U(1)B−L → Z6. The charges of the
fields under the residual Z6 are also listed in Table 2. Since the
lepton doublets Li transform as ω4 under Z6, therefore in ac-
cordance with (1) and (2), the neutrinos will be Dirac fermions
with their Dirac nature protected by the Z6 symmetry.

The invariant Lagrangian of the theory that describes the
neutrino interactions is given by,

Lν = yν L̄η̃NR + yν′N̄LνRξ + MN̄R NL + h.c., (1)

where η̃ = iτ2η∗ and we are omitting flavour indices for con-
venience. The relevant term, in the scalar potential, to generate
the Dirac neutrino mass is given by

V ⊃ λD H†ηχξ∗ + h.c., (2)

where λD is an dimensionless quartic coupling.
After spontaneous symmetry breaking two neutrinos ac-

quire a mass through the loop depicted in Figure 9.
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Fields SU(2)L ⊗U(1)Y U(1)B−L Z6

Fe
rm

io
ns Li (2,−1/2) 1 ω4

νRa (1, 0) −4 ω4

νR3 (1, 0) 5 ω4

NL(R) (1, 0) 1/2 ω

Sc
al

ar
s H (2, 1/2) 0 1

χ (1, 0) 3 1
η (2, 1/2) 3/2 ω3

ξ (1, 0) 9/2 ω3

Table 2: Matter content and charge assignments of the model. Here Z6 is the residual symmetry with ω = e2π I/6; ω6 = 1.

H χ

NLL νR

η ξ

H χ

NR NLL νR

η ξ

(−1) (1/2) (1/2) (−4)

(3/2) (9/2)

(0) (3)

U(1)B−L → Z6

〈H〉, 〈χ〉 ⇒ SSB

〈H〉 〈χ〉

NR NLL νR

η ξ

(ω4) (ω) (ω) (ω4)

(ω3) (ω3)

(ω0) (ω0)χ

U(1)B−L → Z6

〈H〉, 〈χ〉 ⇒ SSB

〈H〉 〈χ〉

NR NLL νR

η ξ

(ω4) (ω) (ω) (ω4)

(ω3) (ω3)

(ω0) (ω0)

Figure 9: One loop neutrino mass generation diagram highlighting the
U(1)B−L → Z6 breaking pattern. The B− L charges (left diagram) of the fields
are given in blue while the residual Z6 charges (right diagram) are in red. For Z6

symmetry ω = e2π I/6; ω6 = 1 is the six-th root of unity.

Note that only two RH-neutrinos, νR1 and νR2 , get mass
after spontaneous symmetry breaking. The third one νR3 re-
mains massless which is consistent with the current experi-
mental data [5]. Furthermore, it is trivial to extend this simple
model by adding another vev carrying scalar χ6 ∼ 6 under
U(1)B−L to generate mass for the third neutrino. As mentioned
before, since the U(1)B−L charge of χ6 is just an integer multi-
ple of the charge of χ field, presence of χ6 in the model will not
change the U(1)B−L → Z6 breaking pattern.

Apart from protecting the Dirac nature of neutrinos, the
residual Z6 symmetry also protects the dark matter from de-
cay. To see this, notice that under the Z6 symmetry all inter-
mediate particles carry odd units of the fundamental charge ω,
while all the Standard Model particles as well as νR and χ carry
even units of ω charge. Thus, just like in scotogenic models,
here also the intermediate particles split into a separate “dark
sector” with the decay of any dark sector particle to only Stan-
dard Model particles or to νR and χ, forbidden by the residual
Z6 symmetry. Therefore, the lightest of the dark sector parti-
cles becomes a good candidate for dark matter with its stability
protected by the residual Z6 symmetry. An alternative model
employing similar mechanism is also discussed in [15] which
can be consulted for more details. For a similar treatment for
Majorana neutrinos, we refer to [16].

6. CONCLUSIONS
We have discussed the importance of residual symmetries for
models that try to make a connection between dark matter sta-
bility and the Dirac nature of neutrinos. We showed that in
absence of any other conserved symmetry beyond Standard
Model symmetries, the Dirac/Majorana nature of neutrinos
is dictated by the residual Zn symmetry left unbroken after
U(1)B−L breaking. We then discussed the possible one loop

realization of the models that can be constructed where Dirac
neutrino mass has a dynamical origin at the 1-loop level. These
models employ the chiral solutions to U(1)B−L anomaly free
solution. Therefore, the tree level dimension-4 Yukawa term
between left and right neutrinos is automatically forbidden by
the U(1)B−L. The small Dirac mass for neutrinos is then gener-
ated through one loop realizations of the dimension-5 operator
L̄H̃χνR.

For such one loop models, we also discussed how the same
residual Zn symmetry protecting the Dirac nature of neutrinos,
can also protect the dark matter stability by employing a sco-
togenic like mechanism. We showed that in such scenarios, not
all Zn subgroups can protect the dark matter stability. To this
end, we gave several examples where the dark matter stabil-
ity is lost as it is unprotected by the residual Zn subgroup. For
completeness we also discussed scenarios where a new acci-
dental symmetry might be present in the model, thus protect-
ing the dark matter stability. Finally, we constructed an explicit
model with U(1)B−L → Z6 breaking pattern, where the Dirac
nature of neutrinos and dark matter stability are indeed simul-
taneously protected by the residual Z6 symmetry.
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[13] S. Centelles Chuliá, R. Srivastava, and J. W. F. Valle, “See-
saw roadmap to neutrino mass and dark matter,” Phys.
Lett. B781 (2018) 122–128, arXiv:1802.05722 [hep-ph].

[14] E. Ma, “Verifiable radiative seesaw mechanism of neu-
trino mass and dark matter,” Phys. Rev. D73 (2006) 077301,
arXiv:hep-ph/0601225 [hep-ph].

[15] C. Bonilla, S. Centelles-Chulia, R. Cepedello, E. Peinado,
and R. Srivastava, “Dark matter stability and Dirac
neutrinos using only Standard Model symmetries,”
arXiv:1812.01599 [hep-ph].

[16] S. Centelles Chulia, R. Cepedello, E. Peinado, and
R. Srivastava, “Scotogenic Dark Symmetry as a
residual subgroup of Standard Model Symmetries,”
arXiv:1901.06402 [hep-ph].

[17] M. Kadastik, K. Kannike, and M. Raidal, “Matter parity
as the origin of scalar Dark Matter,” Phys. Rev. D81 (2010)
015002, arXiv:0903.2475 [hep-ph].

[18] M. Kadastik, K. Kannike, and M. Raidal, “Dark Mat-
ter as the signal of Grand Unification,” Phys. Rev.
D80 (2009) 085020, arXiv:0907.1894 [hep-ph]. [Erra-
tum: Phys. Rev.D81,029903(2010)].

[19] E. Ma, “Derivation of Dark Matter Parity from Lep-
ton Parity,” Phys. Rev. Lett. 115 no. 1, (2015) 011801,
arXiv:1502.02200 [hep-ph].
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[38] S. Centelles Chuliá, “Dirac neutrinos, dark matter sta-
bility and flavour predictions from Lepton Quarticity,”
in 7th International Pontecorvo Neutrino Physics School
Prague, Czech Republic, August 20-September 1, 2017. 2017.
arXiv:1711.10719 [hep-ph].

[39] D. Borah and A. Dasgupta, “Naturally Light Dirac Neu-
trino in Left-Right Symmetric Model,” JCAP 1706 no. 06,
(2017) 003, arXiv:1702.02877 [hep-ph].

[40] C. Bonilla, J. M. Lamprea, E. Peinado, and J. W. F. Valle,
“Flavour-symmetric type-II Dirac neutrino seesaw mecha-
nism,” Phys. Lett. B779 (2018) 257–261, arXiv:1710.06498
[hep-ph].

[41] R. Srivastava, C. A. Ternes, M. Tórtola, and J. W. F. Valle,
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