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Abstract

This is a short review of the proposal that C'P violation may be due to the fact that certain finite groups do
not admit a physical CP transformation. This origin of CP violation is realized in explicit string compacti-

fications exhibiting the Standard Model spectrum.
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1. INTRODUCTION

As is well known, the flavor sector of the Standard Model (SM)
violates CP, the combination of the discrete symmetries C and
‘P. This suggests that flavor and C’P violation have a common
origin. The question of flavor concerns the fact that the SM
fermions come in three families that are only distinguished by
their masses. SU(2), interactions lead to transitions between
these families, which are governed by the mixing parameters
in the CKM and PMNS matrices. These mixing parameters are
completely unexplained in the SM. Furthermore, C'P violation
manifests in the SM through the non-zero phase ¢, in the CKM
matrix [1]. In the lepton sector, the latest measurements from
T2K as well as the global fit for neutrino oscillation parameters
also hint at non—zero value for the Dirac phase J; in the PMNS
matrix [2], which will, if proved, establish violation of CP in
the lepton sector.

The observed repetition of families, i.e., the fact that the
quarks and leptons appear in 3 generations, hints at a flavor
symmetry under which the generations transform nontrivially.
The main punchline of this review is the statement that certain
flavor symmetries clash with CP [3, 4]. In other words, CP vi-
olation can be entirely group theoretical in origin.

1.1. What is a physical C'P transformation?

Charge conjugation C inverts, by definition, all currents. This
implies that Standard Model representations R get mapped to
their conjugates, R. Likewise, parity P exchanges the (0,1/2)
and (1/2,0) representations of the Lorentz group, which corre-
sponds to complex conjugation at the level of SL(2,C). That
is, at the level of Ggy x SL(2,C), CP is represented by the
(unique) nontrivial outer automorphism.

This fact has led to the suspicion that any nontrivial outer
automorphism can be used to coin a valid CP transforma-
tion [5]. However, this turns out not to be the case [4]. To see
this, let us review why we care about whether or not CP is vio-
lated. One reason we care is that CP violation is a prerequisite
for baryogenesis [6], i.e., the creation of the matter—antimatter
asymmetry of our universe. Therefore, a physical CP transfor-
mation exchanges particles and antiparticles, a requirement an
arbitrary outer automorphism may or may not fulfill. As dis-
cussed in detail in [4], CP transformations are linked to class—
inverting outer automorphisms.

1.2. C'P and Clebsch—Gordan coefficients

It turns out that some finite groups do not have such outer au-
tomorphisms but still complex representations. These groups
thus clash with CP! Further, they have no basis in which all
Clebsch—Gordan coefficients (CGs) are real, and CP violation
can thus be linked to the complexity of the CGs [3].

2. C’P VIOLATION FROM FINITE GROUPS

2.1. The canonical C'P transformation

Let us start by collecting some basic facts. Consider a scalar
field operator

o) = [y

where a annihilates a particle and b’ creates an antiparticle.
The CP operation exchanges particles and antiparticles,

= [a(@)e P 0" (7 eir?] (2.1)
p

CP) " a(f)CP = nepb(—p), (2.2a)
€P) ' (B)CP = nipb'(-p) (2.2b)
CP) ' b(F)CP = nipal—p), (2.20)
CP) b B CP = nepa’(-p), (2.2d)

where 77¢0p is a phase factor. On the scalar fields, CP transfor-
mations act as

p(x) €8s yep ¢*(Px) . (2.3)

At this level, 17¢p can be viewed as the freedom of rephasing the
field, i.e., a choice of field basis. Later, when we replace #¢p by
some matrix Uep, this will still reflect the freedom to choose
a basis. The important message here is that there is a well-
defined operation, the CP transformation, which exchanges
particles with antiparticles. It is this very transformation which
is broken in the K° — KO system, and whose violation is a pre-
requisite for baryogenesis.

2.2. CP vs. outer automorphisms

Next let us review what CP does in the context of most of the
continuous (i.e., Lie) groups. If the representation under con-
sideration is real, the canonical C'P does the job. For complex
representations, CP involves a nontrivial outer automorphism
(cf. Figure 1).

In particular, in the context of the Standard Model gauge
group and the usual theories of grand unification (GUTs),

Ggpm = SU(3)C X SU(Z)L X U(l)y C SU(5) - 80(10) C Eg
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FIGURE 1: C'P acts as the unique nontrivial outer automorphism on the
SU(N) groups.

CP always involves outer automorphisms,

OO0 <« O-0O-0-0

-

One may thus expect that this is also true for discrete (fam-
ily) symmetries. However, this is an accident, and is already not
the case for SO(8), the only Lie group with a non-Abelian outer
automorphism group, namely S3. Which of those outer auto-
morphisms, if any, corresponds to the physical CP transforma-
tion? As we shall discuss next, in particular for finite groups, it
is not true that there is a unique outer automorphism. In addi-
tion, not all non-trivial outer automorphism qualify as a physi-
cal CP transformation [3, 4].

2.3. Generalized C'P transformations
To see this, consider a setting with discrete symmetry G. One
can now impose a so—called generalized C'P transformation,

(07)7 (5)07’ = Ucpb(— ﬁ) (2.4a)
(C€P) " a'(H)CP = b'(—p) Ucp (2.4b)
(C€P) " b(F)CP = a(—p)Ucp', (2:4¢)
(CP)” 1b*(ﬁ) = Ucpa'(-7), (2.4d)

where a is a vector of annihilation operators and a' is a vector
of creation operators. Ucp is a unitary matrix.

The reader may wonder whether or not the need to “gener-
alize” is specific to the CP transformation. This is not the case.
A very close analogy is the Majorana condition. In the Majo-
rana basis, it boils down to the requirement that ¥ = ¥* for a
Dirac spinor Y. However, in the Weyl or Dirac basis, this condi-
tion becomes ¥ = CY* with some appropriate matrix C. That
is, the antiparticle of a particle described by ¥ is described by
CY¥*, and not just ¥*. Likewise, in the above discussion around
(2.4), the C'P conjugate (i.e., antiparticle up to a transformation
of the spatial coordinates) of a scalar described by ¢ will be
described by Ugp ¢*, see (2.9) below. So, in a way, U¢p is the
analogy of the matrix C for Dirac fermions.

As is evident from this argument and as pointed out in [5],
generalizing C’P may not be an option, but a necessity. To see
this, consider a model in which G is A4 (or T’). Then a T'-
invariant contraction/coupling is given by

P1, @ (x3 ®y3)ll}lo « ¢ <x1y1 +w2x2y2+wX3y3> , (25)

where w = e?1/3_ Crucially, the canonical CP transformation
maps this invariant contraction to something noninvariant,

€8 v &y EB oy & ¢ EB g 2.6)

Hence, the canonical CP transformation is not an (outer) au-
tomorphism of T'(in this basis). Therefore, in order to warrant
CP conservation, one needs to impose a so—called generalized

C'P transformation CP under which ¢ <P, ¢* as usual but

0\ o [ n\ o (U

* *
Xl — b |, V24 == LY | . 2.7)
x3 x5 ¥s3 Vs

2.4. Constraints on generalized C'P transformations

In order for a C'P transformation not to clash with the group,
i.e., in order to avoid mapping something that is invariant un-
der the symmetry transformations to something that isn’t (cf.
(2.6)), it has to be an automorphism u : G — G of the group.
An automorphism u corresponding to a physical CP transfor-
mation has to fulfill the consistency condition [5] (see also [7])

p(u(g)) = Ucpp()* Ucp®

Here, Ucp is a unitary matrix that enters the generalized
CP transformation,

VgeG. (2.8)

CD(X) @ Ucpq3*(7)x), (29)

where ® denotes collectively the fields of the theory/model,
and P (t,X¥) = (t,—X) as usual. In particular, each represen-
tation gets mapped on its own conjugate, i.e., Ucp is block—
diagonal in Equation (2.9),

0 N 1
P,y u"il ‘P;‘:‘l

I B !

T ez, ~ T
¢r, U, o,

! N !

(2.10)

where the U, are unitary matrices that depend on the rep-
resentation r; only. The a subscripts in ¢, label the particles
whereas the i, subscripts indicate the representations, i.e., dif-
ferent particles can furnish the same representations under G.
The transformation law (2.10) disagrees with [5], where it was
suggested that one can use any outer automorphism in order
to define a viable C'P transformation.

Therefore, the requirement that the candidate transforma-
tion is a physical C'P transformation, which exchanges particles
and their antiparticles, amounts to demanding that u be class—
inverting. In all known cases, 1 can be taken to be an automor-
phism of order two. Of course, this does not exclude the inter-
esting possibility to make CP part of a higher—order transfor-
mation [8].

2.5. C'P vs. C'P-like transformations

However, it is important to distinguish physical C'P transfor-
mations, and their proper generalizations, from CP-like trans-
formations. Unfortunately, the latter have sometimes been
called “generalized CP transformations” in the literature.!

More detailed comments on the literature can be found in Section VII.15 of

[91.
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However, some of the proposed “generalized CP transforma-
tions” do not warrant physical CP conservation. Thus, they do
not have a connection to the observed CP violation in the CKM
sector, nor to baryogenesis and so on. That is, the violation of
physical CP is a prerequisite of a nontrivial decay asymmetry,
but the violation of a so—called “generalized CP transforma-
tion” is not. That is to say some of the operations dubbed “gen-
eralized C’P transformation” in the literature are not physical
CP transformations, which is why we refer to them as “CP-
like”.

Given all these considerations, it is a valid question
whether or not one can impose a physical CP in any model.
As mentioned above, this is not the case. Certain finite sym-
metries clash with CP. Here “clash” means that any physi-
cal C'P transformation maps some G—invariant term(s) on non-
invariant terms, and thus does not comply with G, i.e., isnot an
automorphism thereof. We will discuss next how one may tell
those symmetries that clash with CP apart from those which
do not.

2.6. The Bickerstaff-Damhus automorphism (BDA)

In a more group-theoretical language the question whether or
not one can impose CP can be rephrased as whether or not
a given finite group has a so—called Bickerstaff-Damhus auto-
morphism (BDA) [10] u,
pri(u(g)) = Urpr(8)* Ui, VgeGandVi, 2.11)
where U is unitary and symmetric. The existence of a BDA im-
plies the existence of a basis in which all Clebsch-Gordan (CG)
coefficients are real. In physics, such a basis is often referred to
as “CP basis”. The connection between the BDA, the complex-
ity of the CG’s, and C'P has first been pointed out in [3].2

Of course, this raises the question whether or not one
can tell if a given group has an BDA. There is a rather
simple criterion for this, based on the so—called extended
twisted Frobenius-Schur indicator® (see [10, 12] for the so—
called twisted Frobenius—-Schur indicator),

n dim#; n—-1
B (ry) = % Y xn(g1u(g1) - gnulsn))
g,‘EG

(2.12)

where x;, denotes the character and

ord(u)/2 if ord(u) is even, (2.13)
ord(u) if ord(u) is odd. '

It has the crucial property

FSE,n) (r;) = £1Vi <= uisclass—inverting . (2.14)

So one has to scan over all candidate automorphisms u to de-
termine whether one of them is a BDA, a task that can be au-
tomatized.

2However, the example used there, T’, turns out not to be of the CP violating
type.

SRecall that the Frobenius-Schur indicator FS(r) allows one to distinguish be-
tween real, pseudo-real and complex representations, for which FS(r) takes the
values 1, —1 and 0, respectively [11].

Even though the steps in Fig. 2 may, at first sight, appear
a bit cumbersome, one should remember that they allow us to
uniquely determine, in an automatized way, whether or not a
symmetry has a basis in which all CG’s are real, or, if a symme-
try clashes with CP. Of course, this analysis is independent of
bases, as it should be.

2.7. Three types of groups

Given these tools, one can distinguish between three types of
groups [4]:

Case I: for all involutory automorphisms 1y, i.e., automor-
phisms that square to unity, of the flavor group there is at
least one representation #; for which FS, (r;) = 0. Such
discrete symmetries clash with CP.

Case II: there exists an involutory automorphism u for which
the FS;,’s for all representations are non-zero. Then there
are two sub—cases:

Case IT A: all FS,’s are +1 for one of those u’s. In this
case, there exists a basis with real Clebsch—-Gordan
coefficients. The BDA is then the automorphism
that corresponds to the physical CP transforma-
tion..

Case II B: some of the FS;,’s are —1 for all candidate u’s.
That means that there exists no BDA, and, as a con-
sequence, one cannot find a basis in which all CG’s
are real. Nevertheless, any of the u’s can be used to
define a physical C’P transformation.

The distinction between the groups is illustrated in Fig. 3.

3. C’P VIOLATION WITH AN UNBROKEN
CP TRANSFORMATION

Having seen that there are finite groups that do not admit a
physical C’P transformation, one may wonder about the follow-
ing question: if one obtains this finite group from a continuous
one by spontaneous breaking, at which stage does C’P violation
arise? That is, take an SU(N) gauge symmetry, impose CP, and
break it down to a type-I subgroup. The obvious options how
C'P violation may come about include

1. CP gets broken by the VEV that breaks SU(N) to G, and
2. the resulting setting always has additional symmetries
and does not violate CP.

Rather surprisingly, none of these are the true answer. As
demonstrated explicitly in an example in which an SU(3) sym-
metry gets broken to T; = Z3 x Zy, the outer automorphism of
SU(3) merges into the outer automorphism of T;, which how-
ever does not entail CP conservation [13].

This leads to a novel way to address the strong CP prob-
lem. Start with a theory based on SU(3)c x SU(3)g (and of
course the other gauge symmetries of the Standard Model).
Now impose CP, which implies that the coefficient 6 of the
QCD Gy GHM term vanishes. Next, break the continuous flavor
symmetry down to a type I flavor symmetry. Then 6 still van-
ishes, but CP is violated in the flavor sector. This is required to
solve the strong C’P problem of the Standard Model. An explicit
example will be discussed elsewhere.
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FIGURE 2: Sequence of steps to determine whether or not a group admits a basis in which all CG’s are real. From [4].
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FIGURE 3: The regular and extended twisted Frobenius-Schur indicators FS,, and FS;,;’ allow us to distinguish between the three types of groups.

Here, nis n = ord(u)/2 for even and n = ord(u) for odd ord(u). From [4].

4. C’P VIOLATION FROM STRINGS

Of course, there are alternatives to embedding the discrete fla-
vor symmetry G into a continuous gauge symmetry (in four
spacetime dimensions). In fact, anomaly considerations seem
to disfavor this possibility: an SU(3)g symmetry with the fam-
ilies transforming as 3—plets has un-cancelled anomalies (see
e.g. [14]). On the other hand, non—Abelian discrete flavor sym-
metries may originate from extra dimensions [15]. In particular,
orbifold compactifications of the heterotic string lead to various
flavor groups [16, 17]. These symmetries originate from gauge
symmetries in higher dimensions [18, 19], as they should [20].
As it turns out, already the very first 3—-generation orbifold
model [21] has a A(54) flavor symmetry [16], which is accord-
ing to the classification [4] type I and thus C’P—violating. There-
fore, CP is violated in such models [22].

When establishing explicitly that CP is violated, it was no-
ticed that at the massless level only 1- and 3—dimensional repre-
sentations of A(54) occur. There exist outer automorphisms of
A(54) which map all these representations on their conjugates.
However, this is no longer the case when one includes the mas-

sive states. In particular, the winding strings (see Figure 4) give
rise to A(54) doublets.

The presence of these doublets leads to CP violation [22].
This can be made explicit by finding a basis-invariant contrac-
tion (see [23]) that has a nontrivial phase. Of course, at this level
the flavor symmetry is unbroken, and there is no direct con-
nection between the phase of the contraction presented in [22]
and the CP violation in the CKM matrix or baryogenesis. One
would have to study, how, in explicit models (e.g. [24]) in which
the flavor symmetry gets broken and potentially realistic mass
matrices arise, this C'P violation from strings manifests itself in
the low—energy effective theory. This has not yet been carried
out. Nevertheless, it is clear that if C'P is broken at the orbifold
point, it won’t un-break by moving away from it by e.g., giving
the flavons VEVs.

More recently, an additional amusing observation has been
made [25]. In orbifold compactifications (without the so—called
Wilson lines [26]), the flavor symmetry G is simply the outer
automorphism group of the space group S. In a bit more detail,
the states of an orbifold correspond to conjugacy classes of the
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FIGURE 4: Winding strings. Linear combinations of 4a—4c give rise to three A(54) doublet representations while 4d leads to the fourth and last one.

space group, and can be represented by space group elements
(Bk, ngey), where 6k stands for a discrete rotation and n,e, an
element of the underlying torus lattice. These conjugacy classes
form multiplets under the outer automorphism group of the
space group, thus G = out(5). This leads to the picture of “out
of out”,

CP € out(G) = out(out(9)) . 4.1)

Let us also mention that other orbifold geometries come
with different flavor symmetries. The probably simplest op-
tion is a Z, orbifold plane, which leads to a D4 family symme-
try [27, 16]. Dy is a type II group, meaning that here one cannot
immediately conclude that CP is violated. On the other hand,
it entails a fo symmetry, which solves several shortcomings of
the supersymmetric Standard Model at once [28, 29, 30, 31]. In
particular, it solves the y problem and explains the longevity
of the proton and the stability of the LSP. All these examples
illustrate the impact of properties of compact dimensions on
particle phenomenology.

Arguably, it is rather amusing that CP violation can be tied
to the presence of states that are required anyway for complet-
ing the models in the ultraviolet. One may thus say that, at least
in these models, consistency in the ultraviolet requires CP to be
violated.

5. SUMMARY

CP violation may originate from group theory. We have re-
viewed the observation that there are certain finite groups that
clash with CP in the sense that, if these groups are realized as
(flavor) symmetries, CP is violated. To the best of our knowl-
edge, this is a situation that is not too ubiquitous in theory
space. What usually happens is that an extra symmetry results
from imposing a symmetry. Here, the opposite happens: CP
can get broken because another (flavor) symmetry is imposed
or emerges.

These C’P-breaking symmetries emerge from explicit string
models. Even the earliest 3—generation string models in the lit-
erature have a CP violating discrete symmetry. In the string
models, all symmetries have a clear geometric interpretation,
which is why it is fair to say that the origin of CP violation
described in this review deserves to be called “geometric”.
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