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1. INTRODUCTION
A nonsingular bouncing cosmology can have several interest-
ing properties which may remove the need for inflation; see the
discussion of Ref. [1] and references therein. The crucial ques-
tion, then, is what physics is responsible for such a nonsingular
bounce of the cosmic scale factor.

Recently, a very simple suggestion has been put forward,
namely to keep the structure of general relativity but to allow
for degenerate metrics [det gµν(x) = 0 at certain spacetime
points]. In that case, it is possible to make an Ansatz for the
metric which leads to a modified Friedmann equation with a
nonsingular bouncing solution [2].

A follow-up paper [3] has calculated certain cosmologi-
cal observables (for the moment, only as Gedankenexperiments).
That follow-up paper also presented, in its Appendix A, an
explicit model for the time-asymmetric nonsingular bouncing
cosmology discussed in Ref. [1]. This explicit model was con-
structed at the hydrodynamic level with a designer equation-
of-state parameter w(T), where T is the cosmic time coordinate
used for the metric (see Sec. 2.1).

The goal, here, is to obtain a dynamic realization of a time-
asymmetric nonsingular bounce with a post-bounce change of
the effective equation-of-state parameter: weff, pre-bounce(T) = 1
for T ≤ 0 and weff, post-bounce(T) < 1 for T > 0.

2. MODEL WITH A MASSIVE SCALAR
We take a scalar field φ(x) minimally coupled to Einstein grav-
ity. The scalar has self-interactions determined by a special ef-
fective potential Veff(φ), which is possibly related to a funda-
mental time asymmetry [4, 5, 6], as will be explained in Sec. 4.
Specifically, we consider a homogenous scalar field φ that prop-
agates over the spacetime manifold from Ref. [2].

In Sec. 2.1, we briefly review the metric Ansatz from Ref. [2],
which applies to the case of a spatially flat universe. In Sec. 2.2,
we introduce a dynamic scalar field and consider the reduced
field equations from a particular model. In Sec. 2.3, we ob-
tain the numerical solution of these reduced field equations,
together with analytic results for the pre-bounce behavior of
the solution and the asymptotic post-bounce behavior. Natural
units with c = 1 and h̄ = 1 are used initially.

2.1. Metric Ansatz
With a cosmic time coordinate T and co-moving spatial Carte-
sian coordinates {x1, x2, x3}, the metric Ansatz for a spatially
flat universe is given by [2]

ds2 ≡ gµν(x) dxµ dxν

= − T2

b2 + T2 dT2 + a2(T) δkl dxk dxl , (1a)

b > 0 , (1b)

T ∈ (−∞, ∞) , xk ∈ (−∞, ∞) , (1c)

where b corresponds to the regularization parameter. The cor-
responding spacetime manifold has topology R4.

Observe that the metric (1a) is degenerate: det gµν = 0 at
T = 0. The corresponding spacetime slice at T = 0 may be in-
terpreted as a 3-dimensional “defect” of spacetime with topol-
ogy R3. The parameter b then corresponds to the characteristic
length scale of this spacetime defect.

Assuming, for the moment, that the matter content of the
cosmological model is solely given by a homogeneous perfect
fluid with a relativistic-matter equation of state P(ρ) = ρ/3,
the Einstein equation from the metric (1a) gives the following
bounce solution of the scale factor [2]:

a(T) =

(
b2 + T2

b2 + T2
0

)1/4

, (2)

where a(T) has been normalized to unity at T = T0 > 0. The
solution (2) is perfectly smooth at T = 0, as long as b 6= 0. The
corresponding Kretschmann curvature scalar K ≡ Rµνρσ Rµνρσ

and the energy density ρ are given by [2]

K(T) =
3
2

1(
b2 + T2

)2 , (3a)

ρ(T) = ρ0
b2 + T2

0
b2 + T2 , (3b)

which are both finite at T = 0 for nonvanishing b and a fi-
nite value of ρ0. Further details on this particular nonsingular-
bouncing-cosmology scenario can be found in Refs. [2, 3].

For the numerical calculations with a dynamic scalar field
(to be introduced in Sec. 2.2), we will use the auxiliary coor-
dinate τ ∈ (−∞, −b] ∪ [b, ∞) instead of T ∈ R. These two
coordinates are related as follows:

τ(T) =

+
√

b2 + T2 , for T ≥ 0 ,

−
√

b2 + T2 , for T ≤ 0 ,
(4)
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where τ = −b and τ = b correspond to a single point (T = 0)
on the cosmic time axis (see Ref. [2] for further discussion).

We remark that the coordinate transformation from T to τ
is not a diffeomorphism (an invertible C∞ function): the func-
tion (4) is discontinuous between T = 0− and T = 0+, as is
the (suitably defined) second derivative. This implies that the
metric (1a) and the metric in terms of the τ coordinate (4) give
rise to different differential structures of the respective space-
time manifolds (see Refs. [2, 7, 8] for further details). Still, we
can use the auxiliary τ coordinate (with appropriate boundary
conditions at τ = ±b) to simplify the process of obtaining ex-
plicit solutions of the field equations.

2.2. Reduced field equations with a dynamic scalar field
We now consider a particular model for a dynamic scalar field
φ(x) propagating over the spacetime manifold with metric (1a).
For the cosmological applications considered, the scalar field is
assumed to be spatially homogeneous and to depend solely on
the cosmic time coordinate, which is taken to be the auxiliary
coordinate τ from (4).

The dynamic equations for the functions φ(τ) and a(τ) are
the Klein–Gordon equation, the second-order Friedmann equa-
tion, and the first-order Friedmann equation,

φ̈ + 3
(

ȧ
a

)
φ̇ = − ∂ Veff

∂φ
, (5a)

ä
a
= −8πGN

3

(
φ̇2 −Veff −

1
2

a
ȧ

[
dVeff
dτ
− ∂Veff

∂φ
φ̇

])
, (5b)

(
ȧ
a

)2
=

8πGN
3

(
1
2

φ̇2 + Veff

)
, (5c)

Veff =
(

1− exp
[
α̂6 − a6

] )2
(

sgn [ȧ/a] + 1
2

)
1
2

m2 φ2 , (5d)

φ(b) = φ(−b) , (5e)

a2(b) = a2(−b) ≡ α̂2 , (5f)

where the overdot stands for differentiation with respect to τ
and the sign function is defined by

sgn(x) =

x/
√

x2 , for x 6= 0 ,

0 , for x = 0 .
(6)

The boundary conditions (5e) and (5f) are supplemented with
boundary conditions on the derivatives φ̇ and ȧ at τ = ±b, in
order to have well-defined functions φ(T) and a(T) at T = 0
(further details will be given in Sec. 2.3).

The effective potential (5d) consists of the standard
quadratic term multiplied by two pre-factors with large brack-
ets. The second pre-factor in (5d) gives a vanishing potential in
the contracting pre-bounce phase and a nonvanishing potential
in the expanding post-bounce phase, while the first pre-factor
makes for a smooth start at τ = b of the nonvanishing potential
in the post-bounce phase (τ > b).

The ordinary differential equations (ODEs) from (5) are
consistent, as can be checked by calculating the τ derivative of

the first-order Friedmann equation (5c) and eliminating the ob-
tained φ̈ term by use of the Klein–Gordon equation (5a). The re-
sulting equation is precisely the second-order Friedmann equa-
tion (5b) with the extra term on the right-hand side. This extra
term reads, for the explicit choice (5d),

8πGN
6

a
ȧ

[
ȧ

d
da

(
1− exp

[
α̂6 − a6

] )2
] (

sgn [ȧ/a] + 1
2

)
×1

2
m2 φ2 . (7)

As mentioned before, further remarks on the effective potential
(5d) appear in Sec. 4.

For later use, we introduce the definitions

ρφ ≡
1
2

φ̇2 +
1
2

m2 φ2 , (8a)

Pφ ≡
1
2

φ̇2 − 1
2

m2 φ2 , (8b)

wφ ≡ Pφ/ρφ , (8c)

which are primarily relevant in the post-bounce phase. The two
Friedmann equations (5b) and (5c) then become asymptotically
(τ � b):

ä
a

∣∣∣∣(asymp.)
∼ −8πGN

3

[
1
2

ρφ +
3
2

Pφ

]
, (9a)

(
ȧ
a

)2
∣∣∣∣∣
(asymp.)

∼ +
8πGN

3
ρφ , (9b)

which shows that the quantities ρφ and Pφ from (8) can be inter-
preted as the energy density and the pressure of the asymptotic
homogeneous φ field [9].

Henceforth, we use reduced-Planckian units and take ex-
plicit values for b and m in these units,

8πGN = c = h̄ = 1 , (10a)

b = 1/m = 1 , (10b)

where b and 1/m correspond, respectively, to the length scale
entering the metric (1a) and the Compton wavelength of the φ
scalar in the post-bounce phase.

2.3. Numerical and analytic results
We solve the ODEs (5) numerically. Specifically, we solve the
two second-order equations (5a) and (5b), with boundary con-
ditions satisfying the first-order Friedman equation (5c).

Numerical results are shown in Fig. 1 with the following
boundary conditions at τ = ±b : a(b) = a(−b), ȧ(b) = −ȧ(−b),
φ(b) = φ(−b), and φ̇(b) = −φ̇(−b), where the φ̇2 value at τ =
±b follows from (5c). The top-left panel of Fig. 1, in particular,
makes clear that the bounce is time-asymmetric.

Two technical remarks are in order. The first remark is that
the ODEs are solved forward in cosmic time τ with the τ = b
boundary conditions and backward in cosmic time τ with the
τ = −b boundary conditions. The second remark is that we
prefer to work with the ODEs (5a), (5b), and (5c) in terms of
the auxiliary time coordinate τ, rather than the correspond-
ing ODEs in terms of the original time coordinate T. The rea-
son is that the τ-ODEs are nonsingular equations, whereas the
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FIGURE 1: Numerical solution of the second-order ODEs (5a) and (5b), with boundary conditions satisfying the first-order ODE
(5c) for effective potential (5d). The model parameters are b = 1/m = 1. Shown are the dynamic variables a(τ) and φ(τ) for
|τ| ≥ b, together with the corresponding Hubble parameter h(τ) ≡ [da(τ)/dτ]/a(τ). With b = 1, the boundary conditions are:
a(1) = a(−1) = 1, ȧ(1) = −ȧ(−1) = 1/3, φ(1) = φ(−1) = 1/10, and φ̇(1) = −φ̇(−1) =

√
2/3 ≈ 0.816497.
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FIGURE 2: Numerical solutions a(τ) and φ(τ) from Fig. 1 plotted with respect to T as defined by (4), together with the corresponding
Hubble parameter H(T) ≡ [da(T)/dT]/a(T).

T-ODEs are singular equations
[
having, for example, a term

(1 + b2/T2) d2φ(T)/dT2 in the Klein–Gordon equation
]
.

As mentioned in the previous paragraph, the results of
Fig. 1 are obtained with the auxiliary cosmic time coordinate τ,
but the physically relevant cosmic time coordinate is T from

(1). Using (4), the results from Fig. 1 are re-plotted with respect
to T in Fig. 2: the top row shows the asymptotic post-bounce
behavior for T � b, the middle row the unset of oscillatory be-
havior of the scalar field φ(T) for T > 0, and the bottom row
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FIGURE 3: On the left, prefactor f (τ) ≡
(
1− exp

[
1− a6(τ)

])2 (sgn [h(τ)] + 1
)/

2 entering the effective potential (5d) for the numer-

ical solution displayed in Fig. 1 and, on the right, the corresponding prefactor f (T) ≡
(
1− exp

[
1− a6(T)

])2 (sgn [H(T)] + 1
)/

2
for the numerical solution displayed in Fig. 2.
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FIGURE 4: Analytic expressions a(τ), φ(τ), and h(τ), as given by (11) and (13) for b = 1/m = 1 with constants c1 = 1/10 and
c2 = arccos

(
−
√

3/20
)
− 1 + π ≈ 3.7991.

the smoothness at T = 0 (for further discussion on the smooth-
ness, see Ref. [2] and references therein).

The top-right panel in Fig. 2 has, in the asymptotic pre-
bounce phase (T � −b), a Hubble parameter H(T) ∼ (1/3) T−1

corresponding to the scale factor a(T) ∝ (T2)1/6 and, in the
asymptotic post-bounce phase (T � b), a Hubble parameter
H(T) ∼ (2/3) T−1 corresponding to the scale factor a(T) ∝
T2/3. This behavior results from having effective equation-of-
state parameters weff, pre-bounce ∼ 1 and weff, post-bounce ∼ 0.
Figure 3 shows, for the obtained numerical solution, the pre-
factors entering the effective potential (5d).

We also have some analytic results. In the pre-bounce phase
(τ ≤ −b < 0), we obtain the following analytic solution:

φpre-bounce(τ) =
√

1/6 ln(τ2/b2) + c1 , (11a)

hpre-bounce(τ) = (1/3) τ−1 , (11b)

apre-bounce(τ) = (τ2/b2)1/6 , (11c)

with an appropriate constant c1 to match the numerical value
of φ(−1) from Fig. 1. Notice that if the effective potential (5d)
were absent (for example, from having m = 0), the nonsingu-
lar bouncing cosmology would be time-symmetric with the be-
havior (11) over the whole cosmic time axis, τ ∈ (−∞, −b] ∪
[b, ∞).

Moreover, it is possible to obtain analytic results for the
asymptotic post-bounce behavior of the dimensionless vari-
ables φ(τ) and h(τ). We consider τ � b with Veff ∼ (1/2)m2 φ2.
Making the Ansatz

φ(τ) = ξ(τ) τ−1 (12)

and considering the resulting O(τ−1) and O(τ−2) terms of the
ODEs (5a) and (5c), we obtain the following asymptotic solu-

tion (for τ � b):

φpost-bounce(τ)
∣∣∣(asymp.)

∼ 2√
3

cos
(
mτ + c2

)
mτ

, (13a)

hpost-bounce(τ)
∣∣∣(asymp.)

∼ (2/3) τ−1 , (13b)

apost-bounce(τ)
∣∣∣(asymp.)

∼ (τ/b)2/3 , (13c)

with an appropriate constant c2 to match the numerical value
of φ(1) from Fig. 1. Higher-order terms are given by Eqs. (5.45)
and (5.46) in Ref. [9]. In any case, we see that the appropriate
Ansatz (12) inserted in the original ODEs (5a) and (5c) already
gives the leading terms of the asymptotic solution for τ � b.

Figure 4 shows the analytic behavior (11) and (13) over the
whole τ range, even though the post-bounce results are only
valid asymptotically. The analytic results from Fig. 4 may be
compared with the numerical results from the bottom-row pan-
els in Fig. 1.

3. MODEL WITH A MASSIVE SCALAR
AND RELATIVISTIC MATTER

If the massive scalar field φ(x) of Sec. 2 is coupled to other
fields, then the oscillatory behavior of the post-bounce scalar
field φ(x) gives rise to particle creation and reheating [10],
with weff ∼ 1/3 from massless or ultrarelativistic created parti-
cles. In this section, we present a simplified calculation for the
decay of an oscillating massive scalar field propagating over
the spacetime manifold with topology R4 and metric (1a). An
alternative calculation for a massless scalar with quartic self-
interactions is given in Appendix A.
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FIGURE 5: Numerical solution of the ODEs (18a), (18b), and (18c), with boundary conditions satisfying (18d) for effective potential
(18e). The model length scales are b = 1 and 1/m = 1, and the model decay constant vanishes, γ = 0. The top row shows the
dynamic variables a(τ), φ(τ), and ρrel(τ) for |τ| ≥ b. The middle row shows the asymptotic post-bounce behavior of certain derived
quantities, the Hubble parameter h(τ) ≡ [da(τ)/dτ]/a(τ) and the energy density ρφ(τ) and pressure Pφ(τ) as defined by (8). The
bottom row shows the behavior near the spacetime defect at τ = ±b with the post-bounce onset of φ oscillations (solely dampened
by the expansion of the model universe). With b = 1, the boundary conditions are: a(1) = a(−1) = 1, ȧ(1) = −ȧ(−1) = 1/3,
φ(1) = φ(−1) = 1/10, φ̇(1) = −φ̇(−1) =

√
2/3 ≈ 0.816497, and ρrel(1) = ρrel(−1) = 0.

All further calculations in this paper will be performed
solely with the auxiliary coordinate τ from (4). Still, the behav-
ior of the cosmic scale factor a(T), the Hubble parameter H(T),
and matter fields such as φ(T) will be smooth at the defect sur-
face T = 0, as shown by the bottom-row panels in Fig. 2.

In Sec. 3.1, we consider the reduced field equations from
a particular model that incorporates the energy exchange be-
tween the scalar field and a relativistic matter component. In
Sec. 3.2, we obtain the numerical solution of these reduced field
equations.

3.1. Reduced field equations
The rapid oscillations of the post-bounce scalar field φ in Fig. 2
are expected to decay rapidly [10], as long as the scalar particle
φ of mass m > 0 is coupled to light particles (for example, a
scalar particle χ of mass µ m with 0 ≤ µ � 1). A coupling
term g m φ χ2 in the Lagrange density gives a tree-level decay
rate Γ = g2 m/(8π) for the process φ → χ χ. In a cosmological
context, there are other effects which may increase the effective
decay rate [9], but, here, we only intend to present a simplified
(but consistent) model.

Our particular model involves the bounce field φ(τ) to-
gether with a relativistic matter component which is described
by a homogeneous perfect fluid with energy density ρrel(τ) and

pressure Prel(τ) = (1/3) ρrel(τ). In fact, the model extends the
discussion of Sec. 5.5.1 in Ref. [9] and aims to give a consistent
description of the post-bounce evolution.

In addition to the homogeneous scalar field φ(τ) responsi-
ble for the bounce, we thus consider a homogeneous relativistic
matter component with a constant equation-of-state parameter,

wrel(τ) ≡ Prel(τ)/ρrel(τ) = 1/3 . (14)

We now proceed in three steps. First, we modify the Klein–
Gordon equation by the introduction of a friction term [9] with
decay constant Γ,

φ̈ + 3
(
ȧ/a + Γ

)
φ̇ + m2 φ = 0 , (15)

where the overdot stands for differentiation with respect to τ.
Second, we obtain the corresponding evolution equation for ρφ

from (15) and the definitions (8) for ρφ and Pφ,

ρ̇φ + 3 (ȧ/a)
(
ρφ + Pφ

)
= −3 Γ

(
ρφ + Pφ

)
. (16)

Third, energy conservation then gives the evolution equation
for ρrel,

ρ̇rel + 4
(
ȧ/a

)
ρrel = +3 Γ

(
ρφ + Pφ

)
, (17)
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FIGURE 6: Same as Fig. 5, but now with a nonvanishing decay constant, γ = 1/10.

where the right-hand side can also be written as 3 Γ φ̇2. The
terms on the right-hand sides of (16) and (17) describe the
energy exchange between the scalar-field matter component
and a relativistic matter component characterized by ρrel and
Prel = (1/3) ρrel.

Replacing the decay constant Γ in (15) and (17) by a time-
dependent quantity Γeff, the following consistent ODES are ob-
tained:

φ̈ + 3
(

ȧ
a
+ Γeff

)
φ̇ = − ∂ Veff

∂φ
, (18a)

ρ̇rel + 4
(
ȧ/a

)
ρrel = 3 Γeff φ̇2 , (18b)

ä
a
= −8πGN

3

(
φ̇2 −Veff + ρrel −

1
2

a
ȧ

[
dVeff
dτ
− ∂Veff

∂φ
φ̇

])
,

(18c)(
ȧ
a

)2
=

8πGN
3

(
1
2

φ̇2 + Veff + ρrel

)
, (18d)

Veff = f
1
2

m2 φ2 , (18e)

Γeff = f γ m , (18f)

f (τ) ≡
(

1− exp
[
α̂6 − a6(τ)

] )2
(

sgn [ȧ(τ)/a(τ)] + 1
2

)
,

(18g)

φ(b) = φ(−b) , (18h)

a2(b) = a2(−b) ≡ α̂2 , (18i)

with Newton’s constant GN temporarily displayed and a non-
negative coupling constant γ in Γeff (the φ-scalar mass m is
taken to be positive). Two technical remarks are in order. First,
the additional term ρrel on the right-hand side of (18c) corre-
sponds to the extra contribution (1/2) ρrel + (3/2) Prel , just as
in the ODE (9a) for the φ field. Second, more or less the same
numerical results are obtained without the smoothing factor(
1− exp

[
α̂6 − a6])2 in Γeff from (18f) and (18g).

3.2. Numerical results
We have obtained numerical solutions of the ODEs (18) for non-
vanishing decay coupling constant γ and with the same bound-
ary conditions as in Fig. 1. For comparison, we first show in
Fig. 5 (which partly reproduces Fig. 1) the numerical solution
without φ decay (γ = 0). The φ oscillations in the post-bounce
phase give a vanishing average pressure Pφ and an average en-
ergy density ρφ ∝ 1/a3, as shown by the right and mid panels
of the middle row in Fig. 5. The resulting post-bounce expan-
sion has a(τ) ∝ τ2/3 with Hubble parameter h(τ) ∼ (2/3) τ−1,
as shown by the left panel of the middle row in Fig. 5.

With decay coupling constants γ = 1/10 and γ = 1,
Figs. 6 and 7 show that the post-bounce φ oscillations are
rapidly damped (with ρφ dropping to zero even faster than
1/a4) and that the φ-oscillation energy is completely trans-
ferred to the relativistic component ρrel ∝ 1/a4. The resulting
post-bounce expansion has a(τ) ∝ τ1/2 with Hubble param-
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FIGURE 7: Same as Fig. 6, but now with a larger decay constant, γ = 1.

eter h(τ) ∼ (1/2) τ−1. Observe that the behavior of the post-
bounce φ-oscillations in the bottom-mid panels of Figs. 5–7
ranges from underdamped to overdamped.

4. DISCUSSION
The construction of the scalar-field model for the asymmetric
nonsingular bounce in Sec. 2 (and also in Appendix A) is rela-
tively straightforward, but there is a subtle point.

Indeed, the crucial property of the effective potential
Veff(φ) in (5d) is its time-reversal-noninvariance: the effective
potential vanishes in the contracting phase and is nonvanish-
ing in the expanding phase. A possible origin of such an ef-
fective potential may come from a fundamental arrow-of-time,
one example being the anomalous time-reversal violation [4]
obtained from the chiral SO(10) gauge theory containing the
three-family Standard Model defined over a manifold with
topology R× T3 (see Ref. [5] for the original paper on the CPT
anomaly and Ref. [6] for a recent review).

The idea is that Veff(φ) in (5d) originates from quantum ef-
fects, where the CPT anomaly [4, 5, 6] is responsible for a micro-
scopic “time-direction” (giving the second prefactor with the
sign function in Veff) and where gravitational effects involving
H2(T) are responsible for the smooth turn-on (giving the first
prefactor with the exponential function in Veff). The outstand-
ing task is to calculate such an effective potential ab initio. Note
that previous results for particle creation in nonsingular bounc-
ing cosmology appear to rely on time-reversal-noninvariant
boundary conditions; see, e.g., Ref. [11].

Another issue is the physical interpretation of the funda-
mental scalar field φ(x) used in Secs. 2 and 3. Perhaps it is pos-
sible to interpret this fundamental scalar field φ(x) [or rather
an extra copy of it] as the fluctuating component ξ(x) of the
composite scalar field q(x) = q0 + ξ(x) from the so-called
q-theory approach to the cosmological constant problem (see
Refs. [12, 13, 14, 15, 16] and references therein). The results
of Sec. 3 then illustrate, for an assumed nonzero and positive
value of γ, how the oscillating homogeneous component ξ(x)
of the q-field transfers its energy to relativistic particles in the
post-bounce phase (this energy-transfer process differs from
the one considered in Ref. [13]).
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Appendix A. MODEL WITH A MASSLESS
SCALAR AND QUARTIC
SELF-INTERACTIONS

In Sec. 2, we considered a massive free scalar φ in the post-
bounce phase. Here, we take a massless scalar χ with quartic
self-interactions in the post-bounce phase. The spacetime man-
ifold has, again, topology R4 and metric (1a). The actual calcu-
lations use the auxiliary cosmic time coordinate τ from (4) and
the overdot stands for differentiation with respect to τ.
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FIGURE A.1: Numerical solution of the ODEs (5a) and (5b) with φ(τ) replaced by χ(τ). The boundary conditions satisfy (5c) in
terms of χ(τ), for effective potential (A.1). The model length scale is given by b = 1 and the quartic coupling constant by λ = 1.
The top row shows the dynamic variables a(τ) and χ(τ) for |τ| ≥ b, together with ρχ(τ) from (A.2a). The middle row shows
the asymptotic post-bounce behavior of certain derived quantities, the Hubble parameter h(τ) ≡ [da(τ)/dτ]/a(τ) and the energy
density ρχ(τ) and pressure Pχ(τ) as defined by (A.2). The bottom row shows the behavior near the spacetime defect at τ = ±b
with the post-bounce onset of χ oscillations. With b = 1, the boundary conditions are: a(1) = a(−1) = 1, ȧ(1) = −ȧ(−1) = 1/3,
χ(1) = χ(−1) = 1/10, and χ̇(1) = −χ̇(−1) =

√
2/3 ≈ 0.816497.

Specifically, we have the ODEs (5a), (5b), and (5c) with φ(τ)
replaced by χ(τ) and the following effective potential:

Veff =
(

1− exp
[
α̂6 − a6

] )2
(

sgn [ȧ/a] + 1
2

)
λ

4
χ4 , (A.1)

with α̂2 ≡ a2(b) = a2(−b) and a positive coupling constant λ.
Also define the following quantities:

ρχ ≡
1
2

χ̇2 +
λ

4
χ4 , (A.2a)

Pχ ≡
1
2

χ̇2 − λ

4
χ4 , (A.2b)

wχ ≡ Pχ/ρχ , (A.2c)

which are primarily relevant in the post-bounce phase. Nu-
merical results are presented in Fig. A.1. The left panel of the
middle row in Fig. A.1 shows that the post-bounce expansion
a ∝ τ1/2 for τ � b

[
with h ≡ ȧ/a ∼ (1/2) τ−1] resem-

bles the one of a standard radiation-dominated FLRW universe
(wmatter = 1/3), as noted already in Sec. 5.4.2. of Ref. [9].

The analytic pre-bounce solution is given by (11) with φ(τ)
replaced by χ(τ). We will now get the asymptotic post-bounce

expressions for the dimensionless variables χ(τ) and h(τ). Just
as for the case of the quadratic potential discussed in the penul-
timate paragraph of Sec. 2.3, the crucial step is to make an ap-
propriate Ansatz for χ(τ).

Using reduced-Planckian units (10a), the relevant equations
for χ(τ) and h(τ) are

χ̈ + 3 h χ̇ = −λ χ3 , (A.3a)

h2 =
1
3

(
1
2

χ̇2 +
λ

4
χ4
)

. (A.3b)

The asymptotic solution χasymp(τ) for τ � b > 0 will be seen
to fluctuate around zero and the asymptotic solution hasymp(τ)

around (1/2) τ−1.
The procedure consists of two steps. First, we modify the

ODE (A.3a) by replacing h(τ) with (1/2) τ−1 and we get(
χ̈ +

3
2

1
τ

χ̇ + λ χ3
) ∣∣∣∣(asymp.)

= 0 . (A.4)

Second, we make the following Ansatz:

χ(τ) = η(ρ)
2
ρ

, (A.5a)

ρ(τ) ≡ 2
√

τ , (A.5b)
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FIGURE A.2: Asymptotic post-bounce solution (A.8) with λ = 1 and c3 ≈ 1.78523. Also shown is the analytic pre-bounce solution
(11) with φ(τ) replaced by χ(τ) and λ = 1 and c1 = 1/10.

where η(ρ) fluctuates around zero. From (A.4) and (A.5), we
obtain

1
τ3/2

(
η′′ + λ η3

)
= 0 , (A.6)

where the prime stands for differentiation with respect to ρ.
As the auxiliary cosmic time coordinate τ is nonvanishing for
nonzero defect scale b, (A.6) reduces to

η′′ + λ η3 = 0 , (A.7)

which corresponds to a nonlinear second-order ODE (in fact,
a type of Bellman’s equation, d2y/dx2 = k xl ym for k = −λ,
l = 0, and m = 3).

The solution of the ODE (A.7) is given by a Jacobian elliptic
function sn(u |m), in the notation of Ref. [17]. Taking the two
integration constants appropriately (see below), the asymptotic
(τ � b) post-bounce solutions of χ(τ) and h(τ) are given by

χ(τ)
∣∣∣(asymp.)

= 4
√

3/λ sn
(

4
√

12 λ
√

τ + c3

∣∣∣ − 1
) 1√

τ
,

(A.8a)

h
2
(τ)

∣∣∣(asymp.)
=

1
3

(
1
2

χ̇2
asymp(τ) +

λ

4
χ4

asymp(τ)

)
, (A.8b)

with a real constant c3 that is, for the moment, set to zero.
The leading behavior of h2 from (A.8b), for the χ solution
(A.8a) with c3 = 0, equals (1/4) τ−2 upon use of the identity
cn2 dn2 + sn4 = 1, which holds [17] for parameter m = −1.
The asymptotic behavior h2 ∼ (1/4) τ−2 explains a posteriori
the particular choice of one of the two integration constants
needed to get (A.8a) with c3 = 0, the other integration con-
stant is chosen to get the simplest possible argument of the sn
function (an argument just proportional to

√
τ). Finally, we ob-

serve from (A.7) that the ρ variable in a particular η(ρ) solution
can be shifted by an arbitrary constant and we determine an
appropriate real constant c3 in (A.8a) to match the numerical
value of χ(1) from Fig. A.1.

The asymptotic solution (A.8) for τ � b is shown in Fig. A.2
and compares reasonably well with the numerical solution in
Fig. A.1. For completeness, the analytic pre-bounce solution for
τ ≤ −b is also displayed in Fig. A.2. The mismatch at τ = ±b
in the left- and right-panels of Fig. A.2 is of no concern, as the
asymptotic solution (A.8) is only approximative at τ = b.
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