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Abstract

The first part of the paper proves that a subset of the general set of Ermakov-Pinney equations can be
obtained by differentiation of a first-order non-linear differential equation. The second part of the pa-
per proves that, similarly, the equation for the amplitude function for the parametrix of the scalar wave
equation can be obtained by covariant differentiation of a first-order non-linear equation. The construc-
tion of such a first-order non-linear equation relies upon a pair of auxiliary 1-forms (¢, p). The 1-form ¢
satisfies the divergenceless condition div(y) = 0, whereas the 1-form p fulfills the non-linear equation
div(p) + p* = 0. The auxiliary 1-forms (i, p) are evaluated explicitly in Kasner space-time, hence, ampli-
tude and phase function in the parametrix are obtained. Thus, the novel method developed in this paper

can be used with profit in physical applications.
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1. INTRODUCTION

Although the modern theoretical description of gravitational
interactions [1] has completely superseded Newtonian gravity,
the investigation of ordinary differential equations provides an
invaluable tool in the analysis of chaotic dynamical systems [2]
and in studying the interplay between linear and non-linear
differential equations [3]. Moreover, ordinary differential equa-
tions may prove useful in developing methods which are part
of the framework necessary to solve more difficult cases of par-
tial differential equations. We are going to provide a concrete
example of application: the scalar wave equation in curved
space-time. This is of special interest because, as was proved
by Cohen and Kegeles [4], the evaluation of electromagnetic
fields in curved space-times can be reduced to solving a com-
plex linear scalar wave equation. Several space-times of astro-
physical relevance can be studied in this way, e.g., black-hole
and neutron-star spaces and cosmological models [4].

In our paper particularly, we are interested in the Ermakov-
Pinney [5, 6] non-linear differential equation

V' +py=aqy3, 6)

which has found, along the years, many applications in theoret-
ical physics, including quantum mechanics [7, 8] and relativis-
tic cosmology [9]. The first aim of our work is to provide an-
other perspective on the way of arriving at equations of type 1.
For this purpose, section 2 provides a concise summary of well-
established results on the canonical form of second-order lin-
ear differential equations. Section 3 applies an ansatz based on
amplitude and phase functions, and proves eventually equiva-
lence between Egs. of type 1 with p = 0 and our Eq. 17, which
is a nonlinear equation with only first derivatives of the desired
solution. Section 4 studies the correspondence between sections
2 and 3 on the one hand, and the parametrix construction for
scalar wave equation on the other hand. Section 5 obtains a

first-order non-linear equation for the amplitude function oc-
curring in such a parametrix. Section 6 evaluates in Kasner
space-time the auxiliary 1-forms that are needed for a success-
ful application of our method. Section 7 solves the first-order
equations for amplitude and phase function in Kasner space-
time. Concluding remarks are then made in section 8.

2. CANONICAL FORM OF SECOND-ORDER
LINEAR DIFFERENTIAL EQUATIONS

In the theory of ordinary differential equations, it is well-
known that every linear second-order equation

a2 d
Frel + P(x)a +Q(x)|u(x)=0 )

can be solved by expressing the unknown function u in the
form of a product

u(x) = @(x)x(x), ®)
where [10, 11]

o) =exp (3 [ Plotx), @

while x solves the linear equation

d2
| 109 xt0) =0, ®)
having defined
() = Q) ~ 3 P(x) ~ 3P'(v). ©)

All complications arising from the variable nature of coefficient
functions P and Q in Eq. 2 are encoded into the potential term
J(x) of Eq. 5 defined in Eq. 6. One can therefore hope to gain in-
sight by the familiar solution of linear second-order equations
solved by sin(x), cos(x) or real-valued exponentials. More pre-
cisely, a theorem [12] guarantees that, if J(x) is continuous on
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the closed interval [a, b], and if there exist real constants w, ()
such that

0 < w?<J(x) < Q? ?)

one can compare the zeros of solutions of Eq. 5 with the zeros
of solutions of the equations

0+ ut =0, pu=worQ. (8)

Equations 8 are solved by periodic functions sin(p(x — xp))
which have zeros at xg + %ﬂ, k being an integer and p being

equal to w or O as in Eq. 8. One can then prove that the differ-
ence ¢ between two adjacent zeros of a solution of Eq. 5 lies in
between % and Z [12]. Equation 5 is therefore regarded as the
canonical form of every linear second-order differential equa-
tion [10].

3. AN ANSATZ IN TERMS OF AMPLITUDE
AND PHASE FUNCTIONS

The work in Ref. [13] has shown long ago that, upon looking
for solutions of Eq. 5, one can use with profit the ansatz

x(x) = u(x)exp (i/n(x)uf)‘(x)dx) . )

By doing so, we find
X0 = )i (A

+i2 = A () (x)u M x) — () ul 7 (x)

X

exp (i/n(x)u_A(x)dx) . (10)

If the potential term J(x) vanishes in Eq. 5, we therefore find (A
and B being integration constants)

x(x) = A+ Bx. (11)
On the other hand, by virtue of Eq. 11, Eq. 10 yields

u” (x) + it () M) +i(2 = A) ()’ (x)u= (x)

2 (x)ul =M (x) = 0. (12)
Equation 12 suggests setting A = 2, hence we find
ud (x)u” (x) — 72 (x) = —irt' (x)u?(x). (13)

Thus, if 7t(x) = constant = 7, we obtain a particular case of the
Ermakov-Pinney equation 1 with p = 0 and q = 72 therein, i.e.

u (x)u” (x) = 72 (14)

Furthermore, we can write that

x(x) = A+ Bx = u(x)exp <iT/ u;lgcx)) , (15)

which implies

log(A + Bx) = log(u(x)) + it / uf(’;) . (16)

By differentiation, this eventually yields the non-linear equa-
tion
w(x) . T B

= 17
TEITIE) o

(A+Bx)’
In other words, the Ermakov-Pinney equations with p = 0 in
Eq. 1 are equivalent to the non-linear equation 17, provided that
u is a function of class C2. On the other hand, Eq. 17 allows
for solutions for u which are just of class C. A useful check of
our calculation is obtained by differentiating with respect to x
both sides of Eq. 17 when u is of class C?, and then using 17

u'(x)
u(x)
Ermakov-Pinney Eq. 14, which therefore originates from Eq. 17,
and in turn from Eq. 16.

. One then recovers the

in order to re-express the square of

4. AMPLITUDE-PHASE ANSATZ FOR THE
PARAMETRIX OF THE SCALAR WAVE
EQUATION

The work in Ref. [14] has studied the parametrix for the scalar
wave equation in curved spacetime. The topic is relevant both
for the mathematical theory of hyperbolic equations on mani-
folds [11] and for the modern trends in mathematical relativity
[15]. For our purposes, we can limit ourselves to the following
outline.

In a pseudo-Riemannian manifold (M, g) endowed with a
Levi-Civita connection V, the wave operator

4
= Z (gil)wvvvu (18)
uyv=1

is a variable-coefficient operator, and the homogeneous wave
equation [¢ = 0, for given Cauchy data

Pt =0)=00(x), Pier=0)= ), (19)

can be solved in the form
1
o(x,t) =) Ej(t)g;(x), (20)
=0

where E; are the Fourier-Maslov integral operators [14, 16]

2 . ~
Ei(g(x) = Lo [t (x, 1,01 @)d%
=1

+ R]‘(i‘)gj(x), (21)

the R;(t) being regularizing operators which smooth out the
singularities upon which they act [16]. In the simplest possible
terms, the meaning of Eq. 21 is that the integral operators which
generalize the Fourier transform to pseudo-Riemannian mani-
folds involve again an integrand proportional to amplitude x
eponential of (i times a phase function), but, unlike flat space-
time, the amplitude function depends explicitly on all cotan-
gent bundle coordinates, while the phase function is no longer
linear in these variables [16].

The amplitude and phase functions, denoted by « (of class
C?) and ¢ (of class C'), respectively, can be obtained by solving
the coupled equations [14]

4
Y (g7)PVp(a2Vr9) =0, 22
B=

7,8=1
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4
ﬁ2<g P (Tp0) (V) = E°. (23)
7,=1

These equations lead in turn to the following recipe [14]. First,
find a divergenceless covector 1, i.e.

4 4
divp = Y Vi, = Y (8 )PV, =0, (24)

=1 7,8=1

then solve the non-linear equation

4 4
Sa=Y gy =Y (g7 )Py, (25)

r=1 7.8=1

and eventually obtain the phase from the equation

Vo = a2, (26)

Interestingly, upon defining

4
9= ), 9", (27)
=1

Eq. 25 becomes of the type 1 with p = 0. Thus, bearing in mind
our finding in Sec. III, we remark that a simple but non-trivial
correspondence exists between a subset of the general set of
Ermakov-Pinney equations and their tensor-calculus counter-
part for the analysis of the scalar wave equation, expressed by
the following recipes:

n(x) = T = constant in Eq. 13 + Eq.24,

Eq. 14 < Egq. 25 with constant value g
of the right — hand side,
u” in Eq. 14 + [Hain Eq. 25.

Moreover, we know that Eq. 14 is solved by a function solving
the possibly simpler equation 17. This implies in turn that Eq.
25 for the amplitude & must be obtainable from the as yet un-
known solution ¢/ of an unknown nonlinear equation involv-
ing at most first-order derivatives of U{. This is the topic of next
section.

5. A FIRST-ORDER NON-LINEAR EQUA-
TION FOR THE AMPLITUDE IN THE
PARAMETRIX

Now, we are going to prove that not only does our approach
shed new light on the Ermakov-Pinney equation as resulting
from differentiation of the non-linear equation 17, which is
therefore more fundamental (allowing also for solutions which
are only of class C1, but not C2), but that also the second-order
equation for the amplitude & in the parametrix can be replaced
by a first-order equation. For this purpose, since [« should be
the counterpart of 1’/ (x), and the divergenceless condition, Eq.
24, the counterpart of 7/ = 01in Section 3, we are led to consider
the first-order non-linear equation

T ity —p, 29)

where o, are the components of a suitable covector that should

generalize the behaviour of R(x) = on the right-hand

B
(A+Bx)

side of Eq. 17.1 At this stage, inspired by Section 3, we perform
covariant differentiation V7 of both sides of Eq. 28, finding first
the equation

i 8 (V) (V40) L0 9 (V)
Sl o « o a2
4
= Y (&)Y, (29)
’Y/ﬁzl

because the divergenceless condition 24 holds by assumption.
Next, we exploit Eq. 28 by re-expressing all first covariant
derivatives of & in Eq. 29 in the form

(Vpa) N
it

hence finding

B ) )

4 v 4
23 8 (i) = ¥ P 0
y=1

%
7.p=1

In this equation, the terms proportional to ny:l 7Py add up
to 0, and hence we obtain

« v R
Oa Z 1/’74’ =Y (g )P (vﬁpv+PﬁP7>- 31)
S| 1=1
Thus, provided that
< 1
¥ (7P ( Vo +pper) =0, (32)
71.6=1

we obtain eventually the second-order equation 25 for the am-
plitude « in the parametrix for the scalar wave equation. Re-
markably, Eq. 32 is precisely the tensorial generalization of the
dlfferentlal equation obeyed by the right-hand side R(x) =
(A+B ) of Eq. 17, because

d

a 2
I B“(A + Bx)

R(x) + R%(x) = 24+ B*(A+Bx)2=0.

6. EVALUATION OF THE AUXILIARY 1-
FORMS ¢ AND p

So far, the critical reader might think that our method, de-
spite being elegant and correct, does not offer any concrete ad-
vantage with respect to the direct investigation of the coupled
equations 22 and 23, or 25 and 26. The aim of the present section
is to prove that the 1-forms i and p fulfilling Eqs. 24 and 32 are
explicitly computable in a non-trivial case of physical interest.
For this purpose, inspired again by our Ref. [14], we con-
sider Kasner spacetime, whose metric in ¢ = 1 units reads as

(1]
g = —dt @ dt + 1P dx @ dx + P2 dy @ dy + PP dz @ dz,  (33)

!Note that, strictly speaking, since &, ¢ and ¢, are real-valued, we are deal-
ing with a complex-valued vector field Ei:l o7 % [17], with the associated dual
concept of complex-valued 1-form field.
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where the real numbers py, p2, p3 satisfy the condition

Yom=1 (34)

as well as the unit 2-sphere condition

3
Y (p)? =1 (35)
k=1

Let us assume for simplicity that the only non-vanishing com-
ponent of the desired 1-form ¢ is 1 = g (t). Hence, we find
(since the Christoffel coefficients I'Y, = pt?P~1, vk = 1,2,3)

4

) ()" Vot

uv=1

div(y) =

2 2 0
Y Ty

k=1

= —doo + o (1"80 -

leo 1Po dll)o Po
Z - (36)

The vanishing divergence condition 24 is therefore satisfied by

K
Py = T K = constant. (37)

Similarly, assuming that also the auxiliary 1-form p has only
one non-vanishing component py (), one finds
dpo _po  (,~1y00., \2 _ _9P0

L~ (o). (39)

div(p) +p* =

But we know from section 5 that p should be complex-valued,
hence we set

po(t) = B1(t) +iBa(t), (39)

B1 and B, being the real and imaginary part of p, respectively.
Thus, by virtue of the identity 38, Eq. 32 leads to the non-linear
coupled system

B B gy~ (B0 =0, w0
a2 . palt) B
2 P25 opi (0B (1) = 0. a

Equations 40 and 41 suggest re-expressing them in terms of the
unknown function

B(t) = 228 (42)

This leads to the equivalent system

a0+ (%2 B2

+ (BX(t) = 1)(Ba(1)* =0, (43)
Bz 1 B2 om(s) a1 =0, (a4)
By insertion of Eq. 44 into Eq. 43, we find
Balt) = 20 (45)

(1+B2(1)

B(HB()
and hence Eq. 44 yields for B(t) the equation
B"(t) B(H(B'(1)? | 1_ B'(t)
(1+B2(1) “(1+BXH)? ¢ (1+B(D)
B(t)(B'(1))*
+ 2(1+B2(t)) =0, (47)
which is equivalent to the linear differential equation?
B"(t) + %B’(t) =0. (48)

Equation 48 implies that B/ (t) is proportional to %, and hence,
upon introducing the real parameter ¢, one can write that (x
being the same parameter used in 37)

dj_al

it Kt 49)
hence
B(t) = B(T) +  log (%) (50)

Hereafter we set B(T) = 0 for simplicity. By virtue of 45, 46 and
50 we obtain eventually, upon defining

DU()E§+alog (t) (51)
the exact formulae
_ olog(g)
ﬁl(t) - ? Dg(t) ’ (52)
x 1
‘52(1') = n Dg‘(t). (53)

Remarkably, the exact solution of the non-linear equations 40
and 41 has been obtained from the general solution of the linear
equation 48.

7. AMPLITUDE AND PHASE FUNCTIONS
IN KASNER SPACE-TIME

In light of 28, we can now evaluate the amplitude function &
from the equation

v, (log(a)) +i%F =, (54)
and eventually the phase function ¢ from Eq. 26, which reads

in our case

de K

2Note also that (1 + B2(t)) in Eq. 47 can never vanish, bearing in mind the real
nature of B(t) from the definition 42.

3The work in Ref. [18] arrives instead at Eq. 51 by solving directly for the
amplitude &, without making any use of the auxiliary 1-form p and of our Eq. 28.
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From Eq. 54 we obtain, in Kasner space-time, the ordinary dif-
ferential equation

%log(zx(t)) +i

gy = PO+ iBa), (56)

i.e., upon separating real and imaginary part, the pair of equa-
tions

T tog(a() = (1), 7)
g = 0 =00, (58)

Hence we find in Kasner space-time the amplitude function

a(t) _ “(T)exp /t UlOg(%)dT _ lg_'_o.logZ (%), (59)

T T Dy(T)
for which a(T) = 4/ %, as well as the phase function

todr

o(t) = p(T) +x [

which holds for all positive values of the real ratio ﬁ It

should be stressed that, in a generic space-time without any
symmetry, the amplitude and phase, if computable, will de-
pend on all cotangent bundle local coordinates [16] (see further
comments in Section 8).

8. CONCLUDING REMARKS

In our paper, starting from well known properties in the the-
ory of linear differential equations, we have first proved that
the Ermakov-Pinney equations with p = 0 in Eq. 1 result from
differentiation of the more fundamental equation 17, provided
that the function u solving 17 is taken to be at least of class C2.

By comparison with the construction of amplitude and
phase in the scalar parametrix, we have then proved that find-
ing the amplitude « for which Eq. 25 holds with a divergence-
less covector 1, is equivalent to finding also a covector p, for
which Eq. 32 holds. One can then obtain the amplitude « from
the first-order non-linear equation 54. Our successful calcula-
tions of sections 6 and 7, have evaluated the auxiliary 1-forms
with components

yu() = (7,000, (61)

pu(t) = (ﬁ (alog (%) +iK) ,0,0,0> , (62)

prove that our original method leads to a powerful tool
for studying the scalar wave equation with the associated
parametrix. This will be of concrete interest in applied math-
ematics and in the theoretical physics of fundamental interac-
tions.

Note also that, in principle, there might exist solutions of
Eq. 54 which are of class C! but not C2. Thus, the considera-
tion of Eq. 28 is closer to the modern emphasis on finding new
solutions of partial differential equations under weaker differ-
entiability properties. Of course, the corresponding physical in-
terpretation is a relevant open problem.

t
Jr Do) = ¢(T) + arctan (% log (f)) ,(60)
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