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Abstract
This article extends the single-fluid relativistic irreversible thermodynamics theory of Müller, Israel, and
Stewart (hereafter the MIS theory) to a multifluid system with inherent species interactions. This is illus-
trated in a two-fluid toy model where an effective complex 4-velocity plays the role of a primary dynam-
ical parameter. We find that an observer who resides in the real part of this universe will notice that their
knowledge of the universe parametrized using real, rather than imaginary, quantities is insufficient to fully
determine properties such as the total energy density, pressure, or entropy. In fact, such an observer will
deduce the existence of some negative energy that affects the expansion of their perceived real universe.
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1. INTRODUCTION
The extended relativistic thermodynamics theory by Müller,
Israel, and Stewart developed in [1, 2, 3, 4] has found wide
application in scenarios where the material content under in-
vestigation can be modelled using single-fluid approximation,
whether the material is made of (1) one species or (2) several
species whose properties are given by the average or the bulk
behaviour. This treatment forms the foundation of most stud-
ies in relativistic nonequilibrium thermodynamics found in the
literature for idealised fluids. How closely this approximation
models realistic fluid mixture needs to be investigated. To this
end, we formulate a multifluid approximation as the first step
in the relaxation of the conditions governing the MIS theory.
We will demand that MIS theory is recovered in the appropri-
ately motivated limit. Part of the requirement will be that the
resulting system of differential equations must retain their hy-
perbolicity [5, 4] in line with the principle of causality and be
stable [6] for the formulation to be viable and predictive [7].
The aim of this article is modest and is primarily to present
a formalism for the thermodynamics of the relativistic system
of multifluid. Since we intend to extend the MIS theory, we
will begin with the assumption that the MIS model is the stan-
dard theory and extension must necessarily recover it when
subjected to physically motivated constraints or conditions that
impact the nature of fluid approximation. Several properties
that are established in the single-fluid approximation suddenly
lose clarity. In terms of thermodynamics, these are the defini-
tions of (i) a universal temperature [8, 9], (ii) entropy, (iii) heat,
and (iv) work, to mention but the primary one. This lack of
clarity impacts the laws of thermodynamics and will require
scrutiny.

The problem of defining a universal temperature was first
encountered in the nonequilibrium thermodynamics theories
in the single-fluid approximation. At the core of the problem is
the seeming nonexistence of a Lorentzian type transformation
between reference frames that readily recover the black-body
temperature given the necessary constraints [8]. Some progress

has been made in this regard, see [9], for example, but the de-
bate is not closed. It is important to emphasise that we will
make some assumptions in this paper regarding how temper-
ature is transformed to allow for progress but the description
should not be taken as definitive. A detailed analysis of such
transformations will be pursued in the future [10]. As for the
definition of entropy, it is known that when solving gravita-
tional field equations, the standard approach takes into account
the bulk effects and ignores the surface effects. But it is known
that when surface terms are evaluated at the horizon, they give
the entropy of such a horizon (see [11] and references therein).
This suggests that entropy should ideally include the body and
surface terms.

The characterization of heat and work is also less straight
forward; see [12]. It is known that heating, although heat is de-
fined, of a space-time that is endued with a certain microscopic de-
gree of freedom and which is capable of exhibiting thermal phenomena
will necessarily create microstructures. It is sensible to consider the
converse of this and, therefore, ask how microstructures affect
the macroproperties in space-time dynamics. It is this notion of
microstructures that motivates the formulation that we develop
in this article.

This article is organised as follows. Section 2 discusses the
thermodynamics of single-fluid approximation while Section
3 discusses the thermodynamics of multifluid approximation.
Section 4 discusses the special case of two-fluid approximation.
Section 5 gives the discussion and the conclusion.

2. IRREVERSIBLE THERMODYNAMICS
AND THE SINGLE-FLUID APPROXIMA-
TION

In order to understand the complicated nature of multifluid dy-
namics, it is useful to review the single-fluid approximation
in the context of general relativity and cosmology. Early the-
ories on single-fluid irreversible thermodynamics [13, 14, 15,
16, 17, 18, 19, 20, 21] were plagued by the pathology that they
predicted instantaneous propagation of viscous and thermal
effects, given the parabolic nature of the resultant differential
equations. This made such theories to be predictive only for
slowly varying systems. The pathology was traced, see [1], to
the nonperturbative [10] truncation procedure which led to the
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dropping of quadratic terms from the heat and viscous stresses
in the expression for the entropy 4-vector. The entropy, in this
case, includes both the material and 4-momentum fluxes. This
was clearly not suitable for fast varying systems and a new the-
ory was, therefore, required. This led to the development of the
theory that we will discuss next.

2.1. The Müller-Israel-Stewart (MIS) Theory
Also called Israel-Stewart theory, the MIS theory is a theory
for relativistic irreversible thermodynamics based on single-
fluid approximation. The state of the fluid is generally given by
three entities: the stress-energy-momentum tensor Tµν, the par-
ticle flux Nµ, and the entropy flux Sµ. The momentum tensor
and the particle flux obey their respective conservation laws,
Tµν

;ν = 0 and Nµ
;µ = 0, while the entropy vector obeys the

second law of thermodynamics Sµ
;µ > 0. The semicolon de-

notes the covariant derivative. If ua is a time-like vector and
hµβ is an orthogonal projection tensor, it follows that the en-
ergy density ρ = Tµνuµuν > 0. Tµν has a time-like unit vec-
tor uµ

|E (i.e., uµ

|E uµ|E
= −1). This is not the only time-like unit

vector that one can find for such a fluid. In fact, one can de-
fine other unit vectors; for example, uµ

|N = Nµ/
√
−Nµ Nµ or

even uµ

|S = Sµ/
√
−SµSµ. It follows that uµ

|N = uµ

|E for fluid at
equilibrium, which suggests that there exists a unique time-like
4-velocity vector which will be denoted by uµ. The full set of
relevant equations for the perfect fluid case, synonymous with
the thermodynamic equilibrium, take

Tµν = ρuµuν + phµν, (1)

Nµ = nuµ, (2)

Sµ = suµ, (3)

where p = Tµνhµν is the isotropic pressure, ρ is again the en-
ergy density, n is the number density, and s is the flux density.
An alternative formulation, in terms of divergence type func-
tions, is given in the appendix (Appendix A). In the present
formulation, the equation of state is given by p = p(ρ, s).

Deviation from equilibrium can then be characterised using

uµ

|N − uµ

|E = Vµ 6= 0, (4)

where the requirement that Vµ << 1 may be used to char-
acterise the close to equilibrium or quasi-equilibrium [22]. In this
case, one can define an orthogonal projection tensor hµβ =
gµβ + uµuβ. This is because of

uµ
|N uµ|N = VµVµ + Vµuµ|N + uµ

|NVµ + uµ
|E uµ|E

= −1,
(5)

when evaluated in the reference frame of a perfect fluid. Since

uµ

|N = uµ

|E + V
µ,

Vµ can be thought of a linear perturbation. VµVµ is a product
of first-order perturbation terms and therefore a higher-order
perturbation. Similarly, Vµuµ|N is a first order. These terms are
dropped when evaluated in the frame. As in the case of perfect
fluids, we do not have a unique 4-velocity vector for any arbi-
trary nonperfect fluid. A thermodynamic formulation for such
nonprefect fluid must necessarily incorporate anisotropic stress

and where appropriate heat exchange. These are characterised
using the quantities πµν, the anisotropic stress tensor, and qµ ,
the energy flux vector, respectively.

An appropriate starting point in the formulation of a the-
ory of irreversible thermodynamics is to allow key parameters
such as entropy and energy-momentum tensor to be functions
of a broader number of properties, over above the standard vol-
ume and internal energy. To formalise such extension, let these
properties be given by the generic scalar f , vector f µ, and ten-
sor f µν, in which case s = s( f , f µ, f µν). These tensors of ranks 0,
1, and 2 can be explicitly defined to have the physical meaning
as discussed in [22, 7, 23]. We note here that the tensors denote
both bulk and surface terms. This is important as it will allow
our description to include surface entropy. It follows that

ds =
∂s
∂ f

d f +
∂s

∂ f µ d f µ +
∂s

∂ f µν d f µν. (6)

In general, the Gibbs relation is often expressed in terms of ten-
sors of rank 0 and rank 1. Equation (6) introduces the depen-
dency on a rank 2 tensor. This generalized expression is clearly
an extension of the Gibbs relation. We note that we could have
more than one of these intrinsic properties characterized by a
scalar, a vector, or a tensor. For example, the internal energy
and volume are both scalars while heat is a vector. The coeffi-
cients in Equation (6) can then be treated in the usual manner
with the case of ∂s/∂E = 1/T, where T = T( f , f µ, f µν) is a
nonlinear temperature. It suffices to say that it is easy to re-
cover the standard Gibbs relation by restricting Equation (6) to
scalars. For the standard set of properties, it can be shown that

Sµ = suµ +
1
T

qµ −Qµ, (7)

where Q denotes a collection of second-order terms and takes
the form

Qµ =
uµ

2T

[
β0Π2 + β1qµqµ + β2πµνπµν

]
− 1

T
(α0Πqµ − α1πµνqν +F ),

(8)

where F is a function of energy density, isotropic pressure, en-
ergy flux, and the symmetric shear tensor. For a detailed dis-
cussion of this term, the coefficients β0, β1, β2, α0, and α1, and
those embedded in F , the reader is referred to [1, 2] and for a
pedagogical presentation to [22]. It follows that stress-energy
momentum tensor for such nonperfect fluid takes the form

Tµν = ρuµuν + phµν + 2q(µuν) + πµν (9)

and is the Müller-Israel-Stewart theory [3, 1, 2]. The particles
flux also has a contribution from possible particle drift, Nµ =
nuµ + nµ, where nµ is the particle drift in the frame defined by
uµ. Two special frames in which the fluid dynamics has a phys-
ical meaning, but not the only ones, are the Landau-Li f tshitz
(energy) frame defined by uµ = uµ

|E ⇒ qµ = 0 and the Eckart

(particle) frame defined by uµ = uµ

|N ⇒ nµ = 0. These are
related via Equation (4). The existence of different frames, in
single-fluid approximation, implies the existence of different
projection tensors whose generic form is hµν = gµν + uµuν.
The frames of reference increase when one moves from single-
fluid and multifluid approximation. Each constituent fluid will
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have a unique energy frame and a particle frame. We would
now like to broaden this discussion by considering multiple
fluids, where the above generalizations do not readily apply.
We expect that there exist some limiting conditions that should
allow us to recover the standard MIS theory. The reader will
remember that our standard concepts of heat and work are of-
ten frame-dependent. This means that the choice of a frame will
determine our notion of these two concepts. It has been demon-
strated [12] that even the concept of volume may be frame-
dependent leading to disparities in the estimation of funda-
mental quantities. This lack of clarity becomes even more pro-
nounced when one considers more than one fluid, but as we
will show, one can develop global parameters that are linked to
the local frame and which allow for ease of physical interpreta-
tion. This is pursued in the next section.

3. IRREVERSIBLE THERMODYNAMICS
AND THE MULTIFLUID APPROXIMA-
TION

To make the approximation procedure that we will develop
more explicit, it is helpful to borrow the language of fluid dy-
namics. In this regard, we need to discuss the scales in which
fundamental changes take place when fluids mix and how
these relate to the modelling techniques used. We adopt the
language in [24]. It is known that when different fluids come
into contact during their flows, the resultant mixture is inhomo-
geneous. However, the dynamical act of mixing is a transport
process involving temperature, species, and phases that lead to
a reduction of inhomogeneity. In an ordinary fluid, the mixing
may generate other effects such as reaction or even changes in
fluid properties. Mixing is often categorised as macro, meso, and
micro. While macromixing is governed by the largest scale of
the fluid motion, micromixing is governed by the opposite end
of the scale, the smallest scale of the fluid motion and even the
molecular motion. In conventional macroscale mixing, the small-
est scale of fluid motion is the size of turbulent eddies, also called the
Kolmogorov scale. A scale of mixing that lies between macro and
micro is referred to as mesomixing. A theory of extended irre-
versible thermodynamics for single-fluid approximation based
on the mesoscale was presented in [25]. Taking some of these
properties as analogues of cosmological fluids, we may want
to identify a scale reminiscent to the Kolmogorov scale, which
we will refer to as the cosmological Kolmogorov scale which
would be a cut-off for approximating relativistic fluid proper-
ties. In this regard, we will not attempt to investigate relativistic
turbulence but instead develop a formalism for two interacting
fluids. Assume that the two fluids are denoted by X and Y. The
dynamical variables are the stress-energy tensors denoted by
Tµν

|X and Tµν

|Y , the particle fluxes denoted by Nµ

|X and Nµ

|Y , and

the entropy fluxes denoted by Sµ

|X and Sµ

|Y . To understand the
conservation properties in a multifluid environment, it is im-
portant to distinguish between species interactions with dissi-
pative properties (i) without entrainment and (ii) with entrain-
ment. In the first case, individual species obey own conserva-
tion laws and cumulative conservation; i.e., if f µν

X and f µν
Y are

tensor properties for the two species, then ∇µ( f µν
X + f µν

Y ) = 0
which may be taken to imply∇µ f µν

X = 0 = ∇µ f µν
Y . The case in-

volving entrainment is more nuanced and ∇µ( f µν
X + f µν

Y ) 6= 0.
In fact, ∇µ( f µν

X + f µν
Y + f µν

XY) = 0, where the last terms en-

code reaction and other nonstandard interaction properties. We
must consider the interaction components (Nµ

|XY
, Tµν

|XY
, and Sµ

|XY
)

in the multifluid formulation. Hence,

∇µ ∑
i

Nµν

|i = 0 = ∇µ ∑
i

Tµν

|i ,

∇µ ∑
i

Sµ

|i > 0,
(10)

where i = X, Y or XY. The XY incorporates entrainment,
where the interaction allows for it [26, 7]. It is instructive to
note that two observers moving with the 4-velocities uµ

|X (=

Nµ

|X /
√
−Nµ

|X Nµ|X ) and uµ

|Y (= Nµ

|Y /
√
−Nµ

|Y Nµ|Y ) will have

different rest-frames and different projections on their respec-
tive frames. These may be denoted by hµν

|X = gµν

|X + uµ

|X uν
|X and

hµν

|Y = gµν

|Y + uµ

|Y uν
|Y , with the special case gµν

|X ≡ gµν

|Y (this is rem-
iniscent of the energy and the particle frames occupying space
with the same geometry). Although we have presented these
as projections onto hypersurfaces, they need not be so. Projec-
tion tensors could be surface-forming, such as the familiar case
in general relativity which allows the curvature to be decom-
posed into equations that include the Gauss-Codazzi equations
or the Gauss-Weingarten relations linking embedded geometry
connections to the hypersurface geometry connections. None
surface-forming projections also exist and allow for the defi-
nition of fluid properties such as shear and vorticity and the
familiar Raychaudhuri equations [27, 28]. An alternative way
to look at this is to consider one of the fluids, for example,
that with the 4-velocity uµ

|X . The condition uµ

|X uµ |X = −1 sug-
gests the existence of the projection tensor Uab|X = −uµ |X uν |X
that obeys the condition Uµ

γ|XUγ
ν|X = Uµ

ν|X . Uµ
ν|X projects

onto the tangent space of this fluid world-line. We demand
that energy and the particle frame of the unified approach sat-
isfy |ûµ − ûµ

E| << 1. Let us now define a resultant 4-velocity
ûµ = f (uµ

|X , uµ

|Y ) and the corresponding projection tensor

ĥµ
ν = ĝµ

ν + ûµûν, (11)

which projects onto the rest-frame of the fluid mixture such that
ĥν

µûν = 0. We will assume that this observer, ûµ, is not acceler-
ated in contrast to that considered in [7]. These velocity fields
are chosen in such a way that they satisfy the concavity require-
ment [3]. Once the ûµ is chosen, the observer moving with this
velocity will record the energy density ρ̂ and the particle flux
N̂α = f (Nµ

|X , Nµ
|Y), where f denotes ’ f unction o f ’.

It follows that the total stress-energy momentum tensor is
given by

Tµν = ∑
i

Tµν
|i, (12)

where again i = X, Y, XY. These can be decomposed into the
energy density, pressure (isotropic and anisotropic) terms, and
the heat term in the standard way and takes the following form:

Tµν

|i = ρ̂|iû
µ

|iû
ν
|i + p̂|i ĥ

µ,ν
|i + 2û(µ

|i q̂ν)
|i + π̂

µν

|i , (13)

where the heat flux vector is given by q̂µ|i = −ĥµν|iûγ|iT
νγ
|i

while the anisotropic stress-energy tensor is given by π̂µν|i =

Tγδ
|i (ĥγ〈µ ĥν〉δ)|i . The total entropy also takes the form

Sµ = ∑
i

Sµ
|i + Ssur f , (14)
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where again the individual contribution can be expressed in
terms of heat vector, temperature, and rest frame defined en-
tropy as will be shown in Equation (31). Ssur f represents the
entropy enveloping the volume occupied by the two fluids. The
generic nature of the formalism presented in this section con-
ceals its significance. We will remedy this situation, in the next
section, by providing a fully worked out example.

4. THE FUNDAMENTAL PROBLEM
OF THE TWO-FLUID APPROXIMATION:
AN ILLUSTRATION

Let us begin this section by briefly outlining what is meant by
neighbouring word lines, in the context of single-fluid approxi-
mation in cosmology. This preamble is necessitated by the need
for clarity in discussing the differences between the single-fluid
approximation and the multifluid approximation treatment that
will be later developed. Let Xµ be a vector whose components
are given in a comoving coordinate by Xµ = δxµ(X0 = 0),
which at all times joins the two world lines given by xµ and
xµ + δxµ. The reader is referred to Figure 1 for a schematic
representation of this set-up. Since this is a comoving sys-
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FIGURE 1: Comoving observers and a connecting vector.

tem, there is one fundamental 4-velocity vector. The connector
Xµ = (∂xµ/∂xν)δxν does not lie in the rest frame defined by
the 4-velocity. However, it is possible to define the time deriva-
tive and a relative position vector using the velocity vector and
a projection tensor that is projected onto the rest frame of such
a velocity; i.e.,

Ẋµ = uµ
;νXν, (15)

Xµ
⊥ = hµ

νXν. (16)

It follows that there exists a corresponding relative velocity
vector Vα = Vα

βXβ
⊥, where Vα

β = hα
γhδ

βuγ
;δ. This indicates

that the relative velocity vector of the neighbouring comov-
ing particles is linked to the relative position vector through
a linear transformation as given by the spatial gradient of the
4-velocity vector. The relative vector can then be covariantly
split into an expansion parameter and a vorticity parameter as
is done, for example, in the 3+1 covariant formulation of Ein-
stein field equations [29, 30, 31, 32]. We emphasise that this pre-
sentation is for a comoving velocity and hence single-fluid ap-
proximation. What if the two neighbouring observers are not
comoving? Could we formulate projection tensors related to

the two velocities and what could we learn from this? It is
clear that time parameters would be different (). = wµ∇̃µ()

and ()
′
= vµ∇µ(), assuming two different velocity vectors

wµ(≡ uµ

|X) and vµ(≡ uµ

|Y). The two spacial derivatives are co-
variant (along the surfaces as described by the metrics gµν |w
and gµν |v , respectively). One could theorise about possible pro-
jection tensors hµν|w = f (gµν |w , wµ, wν), hµν|v = f (gµν |v , vµ, vν),
and the intriguing case hµν|wv = f (gµν |w,v

, wµ, vν) (the reader
is referred to the notes [33] for a detailed discussion on pro-
jection tensors). The projectors hµν|w and hµν|v are the famil-
iar tensors found in the literature. hµν|wv is new and demands
further investigation. The fundamental problem in this case is
how the two velocities couple to give rise to an effective veloc-
ity. There are many different possible configurations that could
yield such effective velocity, for example, the configuration of
noninteracting fluids considered in [34] where anisotropy was
studied. In this article, we will present an alternative configu-
ration, as an illustration.

Let wµ and vµ be two 4-velocity unit vectors (wµwµ = −1 =
vµvµ) that give rise to a complex 4-velocity uµ defined by

uµ = wµ + ivµ (17)

and whose conjugate is

uµ = wµ − ivµ, (18)

where i =
√
−1. This can be found by requiring the existence of

Cauchy-Riemann-like equations for the 4-dimensional objects,
from which a complex potential Φ(w, v) [41] may be defined.
A complementary scalar potential function was used in formu-
lating the dissipative relativistic fluid theory of the divergence
type; the reader is referred to the appendix (Appendix A) for a
summary. In our case, we need uµ to be analytic with respect to
a covariant derivative at a given event [42]. It is then clear from
Equations (17) and (18) that

uµuµ = wµwµ + vµvµ = −2, (19)

from which we can define the fundamental relation

uµ

√
2

uµ√
2
= −1. (20)

We see in this section that two unit vectors in a complex con-
figuration generates a unit vector û = u/

√
2. We can now in-

vestigate the implication of having such a complex 4-velocity
vector. Some work on this kind of modelling has been done, for
example, in [35, 36, 37].

4.1. Effective Velocity for More Fluid Species
An important question to address before we continue is how
one constructs the effective 4-velocity given more velocity
fields. For example, let w, v, ξ, and ζ be 4-velocities in a complex
configuration. Three of these give rise to an effective 4-velocity
as follows:

uµ = wµ + i(vµ + iξµ) = (wµ − ξµ) + ivµ.

The case of four components is given by

uµ = wµ + i[vµ + i(ξµ + iζ)] = (wµ − ξµ) + i(vµ + ζ).

The extension to a greater number of velocity fields in this for-
malism should be straight forward. We will restrict our discus-
sion to the case of two fluid species.
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4.2. A projection Tensor
We begin by constructing a projection tensor onto an emergent
surface using the 4-velocity ûµ (where we define ûµ = uµ/

√
2).

Such a projection tensor will take the generic form

ĥµ
ν = ĝµ

ν + ûµûν (21)

and is defined to obey the orthogonality condition ĥµ
νûµ = 0.

The associated projected tensor hµ
ν = gµ

ν + wµwν is projected
onto the rest frame only if there is no vorticity. For example, the
projection tensor used in Friedmann-Walker models with per-
fect fluids matter is characterised by local isotropy [28]. But the
tensor ĥµ

ν is not the same as hµ
ν and is not projected onto the

hyper-surfaces defined by either wµ or vµ but rather to one de-
fined by ûµ. It is easy to show that if wµ ≡ vµ, then

uνuν = vνvν(1 + i)(1− i) = 2vνvν = −2, (22)

recovering the result in Equation (19). We now have a projec-
tion tensor ĥ = ĥ(gµν |µν

, ŵµ, v̂ν) which can be resolved into the
fundamental velocities wµ and vν.

ĥµν = gµν + ûµûν = gµν +
1
2

uµuν

= gµν +
1
2
[(wµwν − vµvν) + i(vµwν + vνwµ)]

=
1
2
[gµν + (wµwν − vµvν) + gµν + i(vµwν + vνwµ)]

=
1
2
[gµν + (wµwν − vµvν) + i(−igµν + vµwν + vνwµ)]

= ĥµν(R) + iĥµν(C),
(23)

where R denotes the real part, while C denotes the complex
part.

The presentation above looks deceptively familiar but the
projection tensor separates velocities that do not have same ve-
locity pointing in different directions as is standard in the liter-
ature. This distinction should always be kept. We can now ask
the question, how does this affect the energy momentum tensor
in the case of the general relativistic multifluid? We will restrict
our discussions to the case of two relativistic fluids. Here, we
employ nonstandard decomposition as will be explained.
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FIGURE 2: Two original separate velocity vectors, projection tensors,
and energy momentum tensors and the resultant.

The substructure of the projection tensor induced by the
different 4-velocities affects the fundamental equations for the

multifluid system, which in turn affects the momentum, en-
ergy, and mass equations. In order to grasp the consequences of
such substructuring, we first consider heat conduction. Rather
than following the standard bottom-up approach where the
equation representing the bulk behaviour is derived from sub-
constituents states, we adopt a top-down approach. In this case,
we decompose the equations for the bulk into the constituent
parts. Let’s begin with the heat vector whose divergence con-
tributes to the energy balance equation.

4.3. The Heat Flux Vector
Using the projector tensor ĥµν, we can define a heat vector with
respect to the velocity ûγ. We find

q̂µ = −ĥµνûγTνγ ≡ −ĥµν

(
uγ√

2

)
Tνγ,

= − 1√
2
(ĥµν(R) + iĥµν(C)) (wγ + ivγ) Tνγ,

= − 1√
2

[
(ĥµν(R)wγ − ĥµν(C)vγ)

]
Tνγ

− 1√
2

i
[
(ĥµν(C)wγ + ĥµν(R)vγ)

]
Tνγ.

(24)

This shows that the heat vector is composed of real and
complex parts. It follows that heat vector’s contribution to the
stress momentum tensor is given by

q̂(µûν) = −ĥ(µγûδTγδûν) = −
1√
2
(ĥ(µνûδ)Tνδ(wν) + ivν)),

(25)
where each term with a hat, f̂ , can be decomposed into real and
complex parts, respectively. Equations (25) and (26), together,
yield

q̂(µûν) = ĥ(µγûδTγδûν)

=
1
2

[
(ĥµν(R)wδwν) − ĥµν(C)vδwν))

]
Tνδ

− 1
2

[
(ĥµν(C)wδvν) + ĥµν(R)vδvν))

]
Tνδ

+
1
2

i
[
(ĥµν(R)wδvν − ĥµν(C)wνvδ)

]
Tνδ

+
1
2

i
[
(ĥµν(C)wδwν) + ĥµν(R)vδwν))

]
Tνδ.

(26)

4.4. Energy Density and Pressure Terms
The energy density is constituted as follows:

ρ̂ = ûµûνTµν ≡ 1
2
(wµwν − vµvν)Tµν +

i
2
(wµvν + wµvν)Tµν.

(27)
Likewise, the isotropic pressure term is given by

p̂ =
1
3

ĥµνTµν =
1
3
(ĥµν(R) + iĥµν(C))T

µν. (28)

The anisotropic pressure is given by

π̂µν = Tγδ(ĥγ〈µ(R) ĥν〉δ(R) − ĥγ〈µ(C) ĥν〉δ(C))

+ iTγδ[(ĥγ〈µ(R) ĥν〉δ(C)) + (ĥγ〈µ(C) ĥν〉δ(R))],
(29)

where the real and complex parts are clearly manifest.
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4.5. The Energy Momentum Tensor
The total stress-energy momentum tensor takes the form

Tµν = ρ̂ûµûν + p̂ĥµν + 2û(µ q̂ν) + π̂µν, (30)

which structurally resembles the standard single-fluid form but
hides the real and complex constituents. An observer living in
the real plane, with no knowledge of the existence of the com-
plex plane, will measure a total energy density that does not
match what they expect, i.e., (wawb − vavb)Tab/2 as seen in
Equation (27) instead of wawbTab given by the own 4-velocity
wa. This disparity between the expected and the observed mea-
sures may help account for some of the disparities between pre-
dictions from single-fluid approximation and what is observed
in cosmology. In general, this form of flow is anisotropic and
may provide a test-ground for the cosmological principle. In
our case, we have considered the limit in which the system is
isotropic.

The illustrative velocity of ûc is but one example of how
two fluids could be coupled. It belongs to a family of couplings
that are expressed as ûC = f (wC, vC, ...) where ′..′ expresses the
fact that there may be more velocity fields. We know that other
configurations [34, 38, 39] have been used to study anisotropic
models where the energy-stress tensor is primarily mattered
tensors. In this article, we consider such couplings in the con-
text of thermodynamics.

4.6. The Entropy Vector
There are two formal definitions of entropy: the thermody-
namic and the statistical. We take the thermodynamic view-
point. In this regard, the classical thermodynamics theory con-
siders a system that is composed of constituents, but whose
state is found by taking the averages of thermodynamic proper-
ties of such constituent, in effect, looking at the cumulative be-
haviour. Although the initial development of the concept only
considered such averages for a system that was in equilibrium
via statistical mechanics, the latter development extends the
theory by incorporating aspects that allowed for the nonequi-
librium thermodynamics via the kinetic theory. It is the latter
version that is of interest to us. Standard treatment of statisti-
cal thermodynamics, see [40], is based on postulates that are
given in terms of the behaviour of simple systems. These are
systems microscopically homogeneous, isotropic, and devoid
of electric charge, chemical reactions, electrical force fields, or
surface effects. In order to account for multifluids, where some
of these properties cannot be neglected, it is imperative that we
go beyond the simple system postulates. To this end, we fol-
low [1, 2, 3] who, by incorporating the quadratic terms in the
heat flux and viscous stresses in the expression for the entropy
4-vector, obtain a generalised theory able to describe transient
nonequilibrium thermodynamics satisfying the causality con-
dition. It is straightforward to show that the entropy current
for this flow takes the following form:

Sµ

|i = ŝûµ

|i + ŝµ|i

≡ ŝûµ

|i + q̂µ

|i
1
T
−
(

β̂0Π2 + β̂1q̂ν|i q̂
ν
|i + β̂2π̂γδ|iπ̂

γδ|i
) ûµ

|i
2T

+
(

α̂0Πq̂µ

|i + α̂1π̂µν|i q̂
ν
|i

) 1
T

.

(31)

Here too, any term with a hat, f̂ , can be expanded in terms of
a real part and an imaginary part. ŝ is the entropy density, and

ŝµ is the entropy flux with respect to ûµ|i such that ŝµ|iû
µ

|i = 0.
Π is the bulk viscosity. Here, we have considered the limit in
which the temperature is universal [7, 23]. The coefficients β̂0,
β̂1, β̂2, α̂0, and α̂1 are the generalized case of the counterparts
appearing in the MIS theory.

5. DISCUSSION AND CONCLUSION
We have developed a generic expression for stress-energy-
momentum tensor and entropy taking into account a multi-
fluid configuration. The formulation extends the MIS theory
by incorporating more than one fluid species. Our starting
point is the construction of the effective 4-velocity ûµ that is
the resultant of the various fluid species velocities and which
is defined by the Cauchy-Riemann equations for 4 dimensions
[41]. The standard approach in modelling nonconducting fluid
species uses the velocity of the centre of mass or gravity as the
representative velocity and the whole fluid is then treated as a
single fluid. In contrast, we use a complex formulation which
allows us to retain and monitor the unique or peculiar contri-
butions from individual species. This allows for the treatment
of bulk behaviour [11] and that incorporates fluid interactions
that may or may not be expressed by Equation (12). This is par-
ticularly important for the treatment of well-behaved heat con-
duction in relativistic fluids that includes dissipation [44, 26].

So what is the utility of this formulation? It is thought
that the recently discovered late time acceleration of the uni-
verse could be explained by invoking dark energy whose den-
sity is usually added into the Friedman equation by hand,
without a hint of its source. We think that this can be reme-
died. In the illustration, we have considered a formulation that
brings two fluids together whose effective 4-velocity can be ex-
pressed as a complex vector. This plays two roles: (i) it ensures
that the fluids remain distinct and (ii) it allows for two fluids
to have an impact on the other. From an observer’s point of
view, the one living in the real part will not have any knowl-
edge of the existence of the complex dynamics but will no-
tice that the total energy density is not what they expect, i.e.,
ρ|X = wµwνTµν, but one that is modulated by some mysterious
addition (wµwν − vµvν)Tµν/2 ≡ ρ|X + ρ|Y . The negative sign
here is an artefact of the complex analysis not necessarily bear-
ing direct physical significance. The observer in the imaginary
hypersurface will, similarly, notice the difference in their en-
ergy density. To see the impact of this, consider recent observa-
tions that strongly suggest the existence of cosmic acceleration.
It follows that the cumulative effect of all the species in the real
frame, for two or more fluid models, could help explain ä > 0
leading to Friedmann acceleration equation

ä
a
= −1

6 ∑
i
(ρi + 3pi), (32)

where 8πG = 1 = c2.
This hints at a twin-universe theory and by extension a mul-

tiverse theory. Since there are numerous ways of formulating
an effective 4-velocity, it is clear that our formulation belongs
to such a family and demands further investigation.
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Appendix A. A GENERIC APPROACH: THE
DISSIPATIVE RELATIVISTIC
FLUID THEORIES OF DIVER-
GENCE TYPE

Let the label X denote a relativistic dissipative fluid moving
with a 4-velocity wc [26, 43]. We have decided to keep the index
X as a reminder that we have a single fluid that is identified by
this label. Let the fluid satisfy the following properties:

a) The dynamical variables are the individual particle-
number current vectors, Nµ

X , and the total stress-energy
momentum tensor Tµν

X .
b) The conservation laws in addition to the dynamical

equations are

∇µ Nµ
X = 0, (A.1)

∇µTνµ
X = 0, (A.2)

∇µ Aµνδ
X − Iνδ

X = 0, (A.3)

where the covariant derivative based on a space-time ge-
ometry endows with the metric tensor gµν. It is known
[33] that covariant derivatives on space-time and the co-
variant derivatives defined in the geometry of a space-
like hyper-surface in space-time are linked through the
projection of a space-like connection. A and I are the al-
gebraic forms of symmetric and the trace-free Nν

X and
Tνµ.

c) There exists a combined entropy current sν
X that satisfies

∇νsν
X = σ, (A.4)

where σ is some algebraic form of Nν
X and Tνµ

X . Re-
versible or thermodynamic equilibrium state is given
when σ = 0, while the irreversible state is when σ > 0.

Theories that satisfy these conditions are called divergence the-
ories.

hµν

|X = gµν

|X + uµ

|Xuν
|X . (A.5)

It is important to note that the resultant velocity uν
|X is a generic

vector function whose form is dependent on the velocities of
the two fluid species; an example was considered in the previ-
ous section.

The reader will note that the presentation above extends
those of [5] to include two coupled particle types. Indeed, this
can be generalised to include more particle species. In the two-
species case, the general theory obeying the three properties
above may be shown to be generated by the scalar potential χX
and a tensor Iνµ

X

Nµ
X =

∂2χX
∂ξ∂ξµ

, (A.6)

Tµν
X =

∂2χX
∂ξµ∂ξν

, (A.7)

Aνµγ
X =

∂2χX
∂ξµ∂ξνγ

(A.8)

with the entropy current given by

Sν =

(
∂χX
∂ξν
− ξNν

X

)
− ξµTνµ

X − ξµγ Aνµγ
X , (A.9)

σ = −ξνµ Iνµ. (A.10)

Equation (A.10) is the result of taking the divergence of equa-
tion (A.9) given the three properties (Appendix A). It is straight
forward to show that this is a general theory satisfying these
properties. The velocity fields are chosen in such a way that
the entropy density satisfies the concavity requirement [3]. The
selection is nontrivial in general relativity since the definition
of entropy density is frame-dependent, which in itself is not
unique. In order to make progress, we assume that privileged
frames, satisfying the above requirements, exist [4]. In this re-
gard, the stress-energy momentum tensor may be written in the
form

Tµν
X =

(
ρXuµuν + pXhµν + 2u(µ

X qν)
X + π

µν
X

)
, (A.11)

Nµ
X = nXuµ

X + nµ
X , (A.12)

such that nν
XuXν = 0. The description is generic but can eas-

ily be adapted to recover some of the known theories. For ex-
ample, Eckart’s theory is easily recovered when one restricts
the above formulation to the first-order approximation and the
MIS theory in the previous section for the second-order ap-
proximation (see [5]). These formulations are useful for mod-
elling causally well-behaved heat conduction in relativistic flu-
ids [44, 26] in the context of single-fluid approximation. The
approach above is based on defining a scalar type generating
function that gives rise to the fundamental vector and tensor
dynamical variables. These parameters are locally defined and
allow for the notion of a thermodynamic equilibrium. The tech-
nique is not dissimilar to the decomposition of cosmological
perturbations into local scalar type, local vector type, and local
tensor type [48]. This is in contrast to the standard Helmholtz’s
theorem used to define nonlocal scalars and vectors [45, 46, 47].
The challenge with nonlocal variables is that one needs to spec-
ify boundary conditions in order to define such variables. Al-
though it is often difficult to map theories derived from locally
defined variables to those not based on nonlocal variables, it is
possible to find a set that allows for such links. For example,
it is possible to reconstruct a nonlocal theory, using divergence
derivatives of a scalar variable, into a corresponding local the-
ory as demonstrated in [48]. In this regard, the scalar variable,
or better still a function, becomes a generator of the specified
field theory.
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