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Abstract
Supersymmetry plays a main role in all current thinking about superstring theory. Indeed, many remark-
able properties of string theory have been explained using supersymmetry as a tool. So far, there has been
no unbroken supersymmetry observed in nature, and if nature is described by supersymmetry, it must be
broken. Supersymmetry may be broken spontaneously at any order of perturbation theory or dynamically
due to nonperturbative effects. To examine the methods of supersymmetry breaking, special attention is
given to discuss the normalization of the ground state of the supersymmetric harmonic oscillator. This
study explains that perturbation theory gives incorrect results for both the ground-state wave function
and the energy spectrum and it fails to give an explanation to the supersymmetry breaking.
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1. INTRODUCTION
Supersymmetry, often abbreviated SUSY, was first introduced
in 1971 by Gelfand and Likhtman, Raymond, and Neveu and
Schwartz, and later, it was rediscovered by other groups [1, 2].
Supersymmetric quantum mechanics was developed by Witten
in 1982 [3], as a toy model to test the breaking of supersymme-
try. In general, supersymmetry plays a main role in the mod-
ern understanding of theoretical physics, in particular, quan-
tum field theories, gravity theories, and string theories [4].

Supersymmetry is a symmetry that connects particles
of integer spins (bosons) and particles of half-integer spins
(fermions) [5]. In supersymmetry, it is possible to introduce op-
erators that change bosons which are commuting variables into
fermions which are anticommuting variables and vice versa [6].
Supersymmetric theories are theories which are invariant un-
der those transformations [7]. The supersymmetry algebra in-
volves commutators as well as anticommutators [8].

In this study, the main mathematical structure which in-
volves supersymmetric quantum mechanics is derived starting
with explaining the basic idea of supersymmetry and followed
by introducing the necessary framework to make a supersym-
metric theory. We derive the basic formulation of supersym-
metric quantum mechanics starting with introducing the con-
cepts of supercharges and superalgebra. We show that if there
is a supersymmetric state, it is the zero-energy ground-state. If
such a state exists, the supersymmetry is unbroken; otherwise,
it is broken. So far, there has been no unbroken supersymmetry
observed in nature, and if nature is described by supersymme-
try, it must be broken. In fact, supersymmetry may be broken
spontaneously at any order of perturbation theory or dynam-
ically due to nonperturbative effects. To examine the methods
of supersymmetry breaking, we study the normalization of the
ground state of the supersymmetric harmonic oscillator and
calculate the corrections to the ground-state energy using per-
turbation theory. We found out that no perturbation effect can
lead to supersymmetry breaking and it must be due to the non-
perturbative effects.

This work is structured as follows. After a brief intro-
duction, we study the problem of a harmonic oscillator with
fermionic as well as bosonic fields using the usual quantum
mechanical operators method. Then, we consider supersym-
metric classical mechanics and study generalized classical Pois-
son brackets to Dirac brackets and quantization rules in or-
der to introduce the superalgebra. Furthermore, the formal-
ism of supersymmetry in quantum mechanics is introduced.
Subsequently, we give a general background in the concepts
and methods of supersymmetric quantum mechanics. This fol-
lowed by providing a more specific study of the ground state
of the supersymmetric harmonic oscillator. Finally, we summa-
rize our arguments and to draw our conclusions.

2. HARMONIC OSCILLATOR
Supersymmetric theories necessarily include both bosons and
fermions, so a system that includes both bosonic and fermionic
degrees of freedom is considered here. The supersymmetry al-
gebra is a mathematical formalism for describing the relation
between bosons and fermions, and we will discuss this later in
Section 4. In quantum mechanics, bosons are integer spin parti-
cles which obey Bose-Einstein statistics, and the bosonic opera-
tors satisfy the usual commutation relations, while fermions are
half-integer spin particles characterized by Fermi-Dirac statis-
tics, obey the Pauli exclusion principle, and can be described
by Grassmann variables, which are anticommuting objects; for
review, see [9, 10, 11].

The simplest system that consists of a combination of
bosonic and fermionic fields is the one-dimensional harmonic
oscillator. There are many excellent reviews on this subject; we
refer the reader to them for more and complete expositions
[2, 12, 13, 14]. We begin by considering the Lagrangian formu-
lation for the bosonic and fermionic harmonic oscillator:

L =
1
2

(
q̇2 + iψαδαβψ̇β + F2

)
+ ω (iψ1ψ2 + qF) , (1)

where q(t) and F(t) are real bosonic fields, ψα(t) (with α ∈
{1, 2}) are real fermionic fields, ω is a real parameter, δαβ is the
Kronecker delta, and we used the Einstein summation conven-
tion.

It is straightforward, using the classical equation of motion
for F+ωq = 0, to eliminate F from Eq. (1) and obtain the equiv-
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alent Lagrangian:

L =
1
2

(
q̇2 + iψαδαβψ̇β −ω2q2

)
+ iωψ1ψ2 . (2)

Then, using the Legendre transformation from the variables
{q, q̇, ψ, ψ̇} to {q, p, ψ, π}, we obtain

H = q̇p + ψαδαβπβ − L =
1
2

(
p2 + ω2q2

)
− iωψ1ψ2 , (3)

where πα are the momenta conjugate to ψα.
Later in this study, we shall see that the general proper-

ties of supersymmetry have to be clear if the Hamiltonian is
built as a larger Hamiltonian consisting of two components,
one representing the bosonic field and the other representing
the fermionic field. Leaving this aside for the moment, to de-
rive the supersymmetric Hamiltonian, let us define the bosonic
valuable q̂ and the bosonic momentum p̂, respectively, as fol-
lows:

q̂ = qI2, p̂ = −ih̄I2
∂

∂q
. (4)

On the other hand, the fermionic variables ψ̂1 and ψ̂2 and the
fermionic momenta πα, respectively, have to be defined as

ψ̂1 =

√
h̄
2

σ1, ψ̂2 =

√
h̄
2

σ2,

πα =
∂L

∂ψ̇α
= − i

2
δαβψβ, α, β ∈ {1, 2} . (5)

Hence, using Eqs. (4, 5), we can rewrite the previous Hamilto-
nian (3) in the following form:

Ĥ =
1
2

(
−h̄2 d2

dq2 + ω2q2
)
I2 +

(
1
2

h̄ω

)
σ3 , (6)

where I2 is the 2× 2 identity matrix and σj are the Pauli matri-
ces; that is,

I2 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (7)

We want to obtain solutions of the time-independent Schrödinger
equation HΨ = EΨ; that is,

1
2

(
−h̄2 d2

dq2 + ω2q2
)
I2 +

(
1
2

h̄ω

)
σ3 = EΨ , (8)

with the wave function Ψ(x) constraint to satisfy appropriate
boundary conditions.

As we mentioned, the supersymmetric Hamiltonian can be
written as a summation of two terms representing the bosonic
and the fermionic components of the Hamiltonian

H = HB(p, q) + HF(ψ) . (9)

To this end, we define the lowering (annihilation) and raising
(creation) operators for bosons, â† and â, respectively, they are

â =

√
1

2h̄ω
(ωq̂ + i p̂) , â† =

√
1

2h̄ω
(ωq̂− i p̂) . (10)

Later, in Section 4, we will show that the bosonic operators, q̂
and p̂, satisfy the usual canonical quantum commutation con-
dition [q̂, p̂] = ih̄. Taking this fact into account, we can find

that the bosonic ladder operators â and â† satisfy the following
commutation relations:

[â, â†] = 1, [â, â] = [â†, â†] = 0 . (11)

However, on the other hand, the lowering (annihilation) and
raising (creation) operators for fermions, b̂† and b̂, respectively,
are defined as

b̂ =

√
1

2h̄
(
ψ̂1 − iψ̂2

)
, b̂† =

√
1

2h̄
(
ψ̂1 + iψ̂2

)
. (12)

Also, as will be shown in Section 4, the fermionic operators ψα

and ψβ satisfy the canonical quantum anticommutation con-
dition {ψα, ψβ} = h̄δαβ

1. Therefore, it can be seen that the
fermionic ladder operators b̂ and b̂† satisfy the following an-
ticommutation relations:

{b̂, b̂†} = 1, {b̂, b̂} = {b̂†, b̂†} = 0 . (13)

It is possible using Eq. (10) to write the bosonic position and
momentum variables in terms of the bosonic ladder operators
as follows:

â + â† =

√
2ω

h̄
q̂ ⇒ q̂ =

√
h̄

2ω
(â† + â),

â− â† =

√
2

h̄ω
i p̂ ⇒ p̂ = i

√
h̄ω

2
(â† − â) .

(14)

Similarly, using Eq. (12), we can write the fermionic variables
ψ1 and ψ2 in terms of the fermionic ladder operators as follows:

b̂† + b̂ =

√
2
h̄

ψ̂1 ⇒ ψ̂1 =

√
h̄
2
(b̂ + b̂†),

b̂† − b̂ = i

√
2
h̄

ψ̂2 ⇒ ψ̂2 = i

√
h̄
2
(b̂− b̂†) .

(15)

Actually, we derived Eqs. (14, 15) here; however, it will be used
later. At this stage, let us define the following two Hermitian
operators, the bosonic number operator N̂B, and the fermionic
number operator N̂F:

N̂B ≡ â† â =
1

2h̄ω

(
ω2q̂2 − h̄ω + p̂2

)
,

N̂F ≡ b̂† b̂ =
−i
h̄
(
ψ̂1ψ̂2

)
. (16)

Using Eq. (16), we can rewrite the Hamiltonian (6) in the oper-
ator formalism

Ĥ = h̄ω

(
N̂B +

1
2

)
+ h̄ω

(
N̂F −

1
2

)
. (17)

This means that the energy eigenstates can be labeled with the
eigenvalues of nB and nF.

The action of the ladder operators, â, â†, b̂, and b̂†, upon an
energy eigenstate |nB, nF〉 is listed as follows:

â|nB, nF〉 =
√

nB|nB − 1, nF〉, â†|nB, nF〉 =
√

nB + 1|nB + 1, nF〉,
b̂|nB, nF〉 =

√
nF|nB, nF − 1〉, b̂†|nB, nF〉 =

√
nF + 1|nB, nF + 1〉 .

(18)

1The derivation of the fermionic anticommutators is a bit subtle and will be
discussed in the next section.
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It is straightforward from Eq. (18) that the associated bosonic
number operator N̂B and fermionic number operator N̂F obey

N̂B|nB, nF〉 = nB|nB, nF〉, N̂F|nB, nF〉 = nF|nB, nF〉 . (19)

Under Eq. (19), the energy spectrum of the Hamiltonian
(17) is

En = h̄ω

(
nB +

1
2

)
+ h̄ω

(
nF −

1
2

)
. (20)

The form of Eq. (20) implies that the Hamiltonian H is symmet-
ric under the interchange of â and â† and antisymmetric under
the interchange of b̂ and b̂†.

The most important observation from Eq. (20) is that En re-
mains invariant under a simultaneous annihilation of one bo-
son (nB → nB− 1) and creation of one fermion (nF → nF + 1) or
vice versa. This is one of the simplest examples of a symmetry
called ”supersymmetry” (SUSY) and the corresponding energy
spectrum reads

En = h̄ω (nB + nF) . (21)

Moreover, we still have two more comments before ending
this section:

(i) Consider that the fermionic vacuum state |0〉 is defined
by

b̂|0〉 ≡ 0. (22)

Then, we define a fermionic one-particle state |1〉 by

|1〉 ≡ b̂†|0〉 . (23)

It is now easy to use the anticommutation relations (13)
to see that there are no other states, since operating on
|1〉 with b̂ or b̂† gives either the already known state |0〉
or nothing:

b̂|1〉 = b̂b̂†|0〉 = (1− b̂† b̂)|0〉 = |0〉 − b̂† b̂|0〉 = |0〉 − 0 = |0〉,

b̂†|1〉 = b̂† b̂†|0〉 = 0|0〉 = 0 . (24)

So, the subspace spanned by |0〉 and |1〉 is closed un-
der the action of b̂ and b̂†, and, therefore, it is closed
under the action of any product of these operators. We
can show this directly using the two facts that the op-
erator b̂b̂† can be expressed as the linear combination
1 − b̂† b̂ and b̂2 = b̂†2

= 0. So, any product of three or
more b̂, b̂† can be shortened by using either b̂2 = 0, or
b̂†2

= 0. For example, b̂† b̂b̂† = b̂† − b̂b̂†2
= b̂† and b̂b̂† b̂ =

b̂− b̂† b̂2 = b̂. So, it seems to be clear that all products of
b̂ and b̂† can always be reduced to linear combinations
of the following four operators 1, b̂, b̂†, and b̂† b̂. Based
on this argument, there are only two possible fermionic
eigenstates and hence two possible eigenvalues of the
fermionic number operator; they are nF = {0, 1}.

(ii) The ground eigenstate has a vanishing energy eigen-
value (when nB = nF = 0). In this case, the ground eigen-
state is not degenerate and we say that supersymmetry
is unbroken. This zero-energy eigenvalue arises because
of the cancellation between the bosonic and fermionic
contributions to the supersymmetric ground-state en-
ergy since the ground-state energy for the bosonic and
fermionic oscillators has the values 1

2 h̄ω and − 1
2 h̄ω, re-

spectively.

3. THE CONSTRAINED HAMILTONIAN
FORMALISM

Before discussing the supersymmetry algebra in the next sec-
tion, we have to discuss the constrained Hamiltonian formal-
ism in this section. This formalism is needed to get the cor-
rect fermionic anticommutators due to the complication of con-
straints. Good discussions of the constrained Hamiltonian sys-
tems are presented in [15, 16, 17, 18, 19, 20]. For instance, let us
recall the Hamiltonian (3)

H =
1
2

(
p2 + ω2q2

)
− iωψ1ψ2 . (25)

A constrained Hamiltonian is one in which the momenta and
positions are related by some constraints. In general, M con-
straints between the canonical variables can be written as

φm(q, p, ψ, π) = 0, m = 1, . . . , M. (26)

These are called primary constraints. Secondary constraints are
additional constraints relating momenta and positions which
can arise from the requirement that the primary constraints are
time-independent; i.e., φ̇m = 0. Fortunately, we do not have to
deal with such constraints in this case. In principle, there can
also be tertiary constraints arising from the equation of motion
of the secondary constraints and so on.

The Hamiltonian (25) is an example of constrained Hamil-
tonians. In the previous section, we defined the fermionic mo-
menta πα in Eq. (5) using the fermionic equation of motion fol-
lowed from the usual Euler-Lagrange equations with the La-
grangian (2) which is equivalent to this Hamiltonian. In fact,
this definition gives us the relation between the fermionic mo-
menta πα and the canonical coordinates ψα:

πα =
∂L

∂ψ̇α
= − i

2
δαβψβ, α, β ∈ {1, 2} . (27)

In light of this equation, we have the primary constraint

φα = πα +
i
2

δαβψβ = 0 . (28)

Such constraints mean that the way we write the Hamiltonian
is ambiguous since we can exchange position and momentum
variables which change the equations of motion one gets. For
example, using Eq. (27), one can rewrite the Hamiltonian (25)
in terms of the fermionic momenta as follows:

H =
1
2

(
p2 + ω2q2

)
+ 4iωπ1π2 . (29)

In the next subsection, the general properties of Poisson brack-
ets and its relation with the Hamiltonian formalism in classi-
cal mechanics are briefly discussed. Later in the same subsec-
tion, the problem caused by the constrained Hamiltonians is
described. Next, Subsection 3.2 shows how to deal with this
problem using the constraints.

3.1. Poisson Brackets and First-Class Constraints
The Poisson bracket of two arbitrary functions F(q̂, p̂, ψ̂, π̂) and
G(q̂, p̂, ψ̂, π̂) is defined as

{F, G}P =

(
∂F
∂qi

∂G
∂pi −

∂F
∂pi

∂G
∂qi

)
(−)εF

(
∂F

∂ψα

∂G
∂πα
− ∂F

∂πα

∂G
∂ψα

)
, (30)
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where εF is 0 if F is Grassmann even and 1 if F is Grass-
mann odd2. Actually, in our argument here, only the case of the
odd Grassmann variables is considered. In general, the Poisson
brackets have the following properties:

(i) A constraint F is said to be a first-class constraint if its
Poisson bracket with all the other constraints vanishes:

{φA, F}P = 0 , (31)

where A runs over all the constraints. If a constraint is
not a first class, it is a second class.

(ii) A Poisson bracket of two functions F and G is antisym-
metric:

{F, G}P = −{G, F}P . (32)

(iii) For any three functions A, B, and C, the Poisson bracket
is linear in both entries:

{A, B + C}P = {A, B}P + {A, C}P . (33)

(iv) A Poisson bracket for any three functions satisfies the
Leibniz rule:

{A, BC}P = {A, B}PC + (−1)εAεB B{A, C}P, (34)

where εF is the Grassmann parity of F which is 0 if F is
Grassmann even and 1 if F is Grassmann odd.

(v) A Poisson bracket for any three functions obeys the Ja-
cobi identity:

{A, {B, C}P}P + {B, {C, A}P}P + {C, {A, B}P}P = 0 .
(35)

(vi) The time rate of change of any arbitrary function
F(qi, pi, ψα, πα), which has no explicit time dependence,
is given by its Poisson bracket with the Hamiltonian

Ḟ = {F, H}P . (36)

In the Hamiltonian formalism of classical mechanics, the
Hamilton equations of motion have equivalent expressions in
terms of the Poisson bracket. Using the last property (vi) of the
Poisson brackets, one can easily see that

q̇i =
∂H
∂pi = {qi, H}P, ṗi = − ∂H

∂qi
= {qi, H}P,

ψ̇α = − ∂H
∂πα

= {ψα, H}P, π̇α = − ∂H
∂ψα

= {πα, H}P . (37)

However, the problem with the constrained system is that the
equations of motion derived using Eq. (37) are not always con-
sistent with those followed from the Lagrangian formalism.
For example, if we consider the Hamiltonian (25), the equation
of motion for ψα followed from the expected Poisson bracket
equation has to be

ψ̇α = {ψα, H}P = − ∂H
∂πα

= 0 . (38)

2Grassmann-even variables refer to bosons, while Grassmann-odd variables
refer to fermions.

Unfortunately, this equation is inconsistent with the equation of
motion followed from the Lagrangian formalism. Even worst,
the equation of motion for πα followed from the expected Pois-
son bracket equation is also inconsistent with the equation de-
rived from the Lagrangian formalism. For example, using the
Poisson bracket, we have

π̇1 = {π1, H}P = − ∂H
ψ1

= iωψ2 . (39)

But if we use Eq. (27) to find an expression to the equation of
motion for ψ̇1 and then substitute into Eq. (39), that gives us

ψ̇1 = 2iπ̇1 = −2ωψ2 . (40)

This equation is different from the Lagrangian equations of
motion and inconsistent with (38) (unless everything is trivial
which is also not great). Moreover, using the Poisson bracket
with the Hamiltonian (29), we can find the following set of
equations of motion for the fermionic positions and momenta:

ψ̇1 = {ψ1, H}P = − ∂H
∂π1 = −4iωπ2 = −2ωψ1,

ψ̇2 = {ψ2, H}P = − ∂H
∂π2 = −4iωπ1 = −2ωψ2,

π̇α = {πα, H}P = − ∂H
∂ψα

= 0 . (41)

The above equations are also slightly different from the La-
grangian equations of motion and inconsistent with the equa-
tions followed from the Hamiltonian (25).

In brief, there is an inconsistency between the equations of
motion derived from the Hamiltonian formalism and the equa-
tions derived from the Lagrangian formalism. The reason for
this inconsistency is that we have a constrained Hamiltonian.
This problem is solved in the next subsection by imposing the
constraints onto the Hamiltonian.

3.2. The Constraints and the Equations of Motion
In the Lagrangian formalism, one can impose the constraints
from the beginning by introducing Lagrange multipliers which
enforce the constraints. So, Hamilton’s equations of motion, in
the presence of constraints, can be derived from the extended
action principle:

S =
∫ (

q̇i pi + ψ̇απα −H− φAλA

)
dt , (42)

where φA are our constraints, λA are Lagrange multipliers, and
A runs over the constraints. Using the extended action prin-
ciple, we can write out the following two expressions of the
extended Lagrangian and the extended Hamiltonian, respec-
tively:

L = q̇i pi + ψ̇απα −H− φAλA , (43)

H = q̇i pi + ψ̇απα − φAλA − L . (44)

Indeed, if the Lagrangian is independent of one coordinate, say
qi, then, we call this coordinate an ignorable coordinate. How-
ever, we still need to solve the Lagrangian for this coordinate
to find the corresponding equation of motion. Since the mo-
mentum corresponding to this coordinate, may still enter the
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Lagrangian and affect the evolution of other coordinates, there-
fore, using the Euler-Lagrange equation, we have

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0 . (45)

In general, we define the generalized momentum as pi =
∂L/∂q̇i. Now, if there is no explicit dependence of the La-
grangian L on generalized coordinate qi, then ∂L/∂qi = 0.
Thus, Euler-Lagrange equation becomes d/dt(∂L/∂q̇i) = 0 ⇒
dpi/dt = 0. Hence, a momentum pi is conserved when the La-
grangian L is independent of a coordinate qi. This means that
if the Lagrangian is independent of a certain coordinate qi, it
must be also independent of its corresponding momentum pi.

Furthermore, by extremizing the Hamiltonian (44), we ob-
tain the following generalized Hamilton’s equations of motion:

q̇i =
∂H
∂pi +

∂φA

∂pi λA = {qi, H + φAλA}P ,

ṗi = − ∂H
∂qi
− ∂φA

∂qi
λA = {pi, H + φAλA}P ,

ψ̇α = − ∂H
∂πα
− ∂φA

∂πα
λA = {ψα, H + φAλA}P ,

π̇α = − ∂H
∂ψα
− ∂φA

∂ψα
λA = {πα, H + φAλA}P ,

φA = 0 . (46)

For example, using the Poisson brackets, we can show that
Eqs. in (46) imply that for any arbitrary function F =
F(qi, pi, ψα, πα), we can write Ḟ = {F, H + φAλA}P:

Ḟ =
∂F
∂qi

∂qi
∂t

+
∂F
∂pi

∂pi

∂t
+

∂F
∂ψα

∂ψα

∂t
+

∂F
∂πα

∂πα

∂t

=
∂F
∂qi

q̇i +
∂F
∂pi ṗi +

∂F
∂ψα

ψ̇α +
∂F

∂πα
π̇α

=
∂F
∂qi

( ∂H
∂pi +

∂φA

∂pi λA

)
+

∂F
∂pi

(
− ∂H

∂qi −
∂φA

∂qi λA

)
+

∂F
∂ψα

(
− ∂H

∂πα
− ∂φA

∂πα
λA

)
+

∂F
∂πα

(
− ∂H

∂ψα
− ∂φA

∂ψα
λA

)
=
( ∂F

∂qi

∂(H + φAλA)

∂pi − ∂F
∂pi

∂(H + φAλA)

∂qi

)
−
( ∂F

∂ψα

∂(H + φAλA)

∂πα
+

∂(H + φAλA)

∂ψα

∂F
∂πα

)
≡ {F, H + φAλA}P . (47)

At this stage, we need to confirm that Eqs. in (46) give us the
correct equations of motion using the constrained Hamiltonian
(25). Since α, β ∈ {1, 2} in the primary constraint (28), then, we
have the two constraints

φ1 = π1 +
i
2

ψ1, φ2 = π2 +
i
2

ψ2. (48)

By using Eqs. in (46) and taking into count the Hamiltonian
(29), and the constraints (48), we find that

ψ̇1 = − ∂H
∂π1 −

∂φ1

π1 λ1 = −λ1,

ψ̇2 = − ∂H
∂π2 −

∂φ2

π2 λ2 = −λ2 . (49)

On the other hand, using Eqs. in (46) and considering the
Hamiltonian (25) and the constraints (48), we find that

π̇1 = − ∂H
∂ψ1
− ∂φ1

ψ1
λ1 = iωψ2 −

i
2

λ1,

π̇2 = − ∂H
∂ψ2
− ∂φ2

ψ2
λ2 = −iωψ1 −

i
2

λ2 . (50)

Furthermore, using Eq. (27), we get

π1 = − i
2

ψ1 ⇒ π̇1 = − i
2

ψ̇1,

π2 = − i
2

ψ2 ⇒ π̇2 = − i
2

ψ̇2 . (51)

Eqs. (49, 50, and 51) imply the following set of equations of
motion for the fermionic coordinates ψα:

ψ̇1 = −ωψ2, ψ̇2 = ωψ1 . (52)

Fortunately, these equations are the same equations of motion
followed from the Lagrangian formalism.

For now, let us use the Poisson bracket, the Hamiltonian
(25), and the constraints (48), to check that

φ̇1 = {φ1, H + φ1λ1}P

=

(
∂φ1

∂qi

∂(H + φ1λ1)

∂pi − ∂φ1

∂pi
∂(H + φ1λ1)

∂qi

)

= −
(

∂φ1

∂ψα

∂(H + φ1λ1)

∂πα
+

∂φ1

∂πα

∂(H + φ1λ1)

∂ψα

)

= 0 + 0−
( i

2

)
(λ1)− (1)

(
− iωψ2 +

i
2

λ1

)
= i (−λ1 + ωψ2) = 0 . (53)

The reason that the last step is zero comes from Eqs. (49, 52)
since we have λ1 = −ψ̇1 = ωψ2. Similarly, φ̇2 can be calculated
using the Poisson bracket as follows:

φ̇2 = {φ2, H + φ2λ2}P

=

(
∂φ2

∂qi

∂(H + φ2λ2)

∂pi − ∂φ2

∂pi
∂(H + φ2λ2)

∂qi

)
= −

(
∂φ2

∂ψα

∂(H + φ2λ2)

∂πα
+

∂φ2

∂πα

∂(H + φ2λ2)

∂ψα

)
= 0 + 0−

( i
2

)
(λ2)− (2)

(
iωψ1 +

i
2

λ2

)
= i (−λ2 −ωψ1) = 0 . (54)

Also, the last step is zero because from Eqs. (49, 52), we have
λ2 = −ψ̇2 = −ωψ1. Subsequently, Eqs. (53, 54) are zero if we
impose the equations of motion (52). In other words, we can say
that the constraints are consistent with the equations of motion.

3.3. Dirac Brackets and Second Class Constraints
A Constraint F is said to be a second class constraint if it has
nonzero Poisson brackets, and, therefore, it requires special
treatment. Given a set of second class constraints, we can de-
fine a matrix

{φA, φB}P = CAB , (55)
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where we define the inverse of CAB, as CAB, such that

CABCBC = δA
C . (56)

The Dirac bracket provides a modification to the Poisson brack-
ets to ensure that the second class constants vanish:

{φA, F}D = 0 . (57)

The Dirac bracket of two arbitrary functions F(q, p) and G(q, p)
is defined as

{F, G}D = {F, G}P − {F, φA}PCAB{φB, G}P . (58)

Dirac bracket has the same properties of Poisson bracket,
which we have listed in Subsection 3.1. In addition, we have to
notice the following.

(i) If φ̇A = 0, then, the Dirac bracket of any constraint with
the extended Hamiltonian is equivalent to its Poisson
bracket:

{F, H + φAλA}D = {F, H + φAλA}P . (59)

(ii) In some cases, we can return to the original Hamilto-
nian (25) and forget about the constraints and the mo-
menta πβ at the cost of replacing the Poisson brackets
with Dirac brackets. For example, if we consider the case
φ̇A = 0, then, we have

Ḟ = {F, H + φAλA}D = {F, H}D + {F, φA}DλA = {F, H}D ,
(60)

where we used Eq. (57); {φA, F}D = 0.

(iii) If {φA, p}P = 0, then, using Eq. (58), we can find that

{q, p}D = {q, p}P − {q, φA}PCAB{φB, p}

= {q, p}P =
∂q
∂q

∂p
∂p
− ∂q

∂p
∂p
∂q

= 1 . (61)

We are now in a position to calculate {ψα, ψβ}D for the
Hamiltonian (25) with the constraints (28). That {ψα, ψβ}D in-
volves a primary constraint φβ followed from the following re-
lation which is obtained from the Lagrangian formalism:

φβ = πβ +
i
2

δαβψα . (62)

Using the definition of Dirac bracket, we get

{ψα, ψβ}D = {ψα, ψβ}P − {ψα, φα}PCαβ{φβ, ψβ}P . (63)

Then, since the variables ψα and ψβ are independent, their Pois-
son bracket vanishes; i.e.,

{ψα, ψβ}P = {ψβ, ψα}P = 0 . (64)

Furthermore, using Eq. (47), we find that

{ψα, φα}P =

(
∂ψα

∂qi

∂φα

∂pi −
∂ψα

∂pi
∂φα

∂qi

)
−
(

∂ψα

∂ψα

∂φα

∂πα
+

∂ψα

∂πα

∂φα

∂ψα

)
= −1 . (65)

Similarly, using Eq. (62), we find that

{ψβ, φβ}P =

(
∂ψβ

∂qi

∂φβ

∂pi −
∂ψβ

∂pi
∂φβ

∂qi

)
−
(

∂ψβ

∂ψβ

∂φβ

∂πβ
+

∂ψβ

∂πβ

∂φβ

∂ψβ

)
= −1 . (66)

In addition, using the constraints, definitions (47, 62), we can
define a matrix

Cαβ = {φα, φβ}P

=

(
∂φα

∂qi

∂φβ

∂pi −
∂φα

∂pi
∂φβ

∂qi

)
−
(

∂φα

∂ψα

∂φβ

∂πα +
∂φα

∂πα
∂φβ

∂ψα

)
−
(

∂φα

∂ψβ

∂φβ

∂πβ +
∂φα

∂πβ

∂φβ

∂ψβ

)
= −iδαβ . (67)

Moreover, from the definition (3.3), we have

Cαβ = −Cαβ = iδαβ . (68)

As a result of substituting Eqs. (64, 65, 66, and 68) into Eq. (63),
the Dirac bracket of the two variables ψα and ψβ gives us

{ψα, ψβ}D = iδαβ . (69)

3.4. Dirac Bracket and the Equations of Motion
In this subsection, we show that the Dirac brackets give the cor-
rect equations of motion for the Hamiltonian (27) using the ex-
pression

ψ̇α = {ψα, H}D , (70)

We check that

ψ̇1 = {ψ1, H}D = {ψ1,−iωψ1ψ2}D = −iω{ψ1, ψ1ψ2}D

= −iω ({ψ1, ψ1}Dψ2 + ψ1{ψ1, ψ2}D) = −iω
(
−iδαβψ2 + 0

)
= −ωδαβψ2 = −ωψ2 , (71)

and similarly

ψ̇2 = {ψ2, H}D = {ψ2,−iωψ1ψ2}D = −iω{ψ2, ψ1ψ2}D

= −iω ({ψ2, ψ1}Dψ2 + ψ1{ψ2, ψ2}D) = −iω
(

0 + ψ1(−iδαβ)
)

= −ωψ1δαβ = ωδαβψ1 = ωψ1 . (72)

These equations are the same equations of motion which we
have obtained in Subsection 3.2 using the constrained Hamil-
ton’s equations of motion (46).

3.5. The Dirac Bracket Superalgebra
In this subsection, we investigate the supersymmetry of our
Hamiltonian (25). For this purpose, we need to introduce some
operators Qi known as supercharges, which basically can be
obtained from Nöether’s theorem arising from a symmetry of
the Lagrangian which exchanges bosons and fermions. In the
next section, we will look at the action of the supercharge oper-
ators. For instance, the supercharge operators in the case of the
system under discussion here, can be written as follows:

Qα = pψα + ωqεαβδβγψγ ⇒
Q1 = pψ1 + ωqψ2

Q2 = pψ2 −ωqψ1 ,
(73)
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where again we suppose that {α, β} can only take the values
{1, 2}, and εαβ is the two index Levi-Civita symbol which de-
fined as

εαβ =


+1 if (α, β) is (1, 2),
−1 if (α, β) is (2, 1),
0 if α = β .

(74)

The system to be supersymmetric, the supercharges (73) to-
gether with the Hamiltonian (27), and the constraints (25) must
satisfy the classical Dirac bracket superalgebra defined by

{Qα, Qβ}D = −2iδαβH,

{Qα, H}D = 0 . (75)

Now, we need to check that our system satisfies Eq. (75). To
do that, suppose that {α, β} have the values {1, 2}. Then, using
the definition of the Poisson and Dirac brackets, we find that,

{Q1, Q1}D = −i
(

p2 + ω2q2
)

, {Q1, Q2}D = ω
(

ψ2
1 + ψ2

2

)
,

{Q2, Q1}D = −ω
(

ψ2
1 + ψ2

2

)
, {Q2, Q2}D = −i

(
p2 + ω2q2

)
.

(76)

If we make substitution using Eq. (76), we find

{Qα, Qβ}D = {Q1, Q1}D + {Q1, Q2}D + {Q2, Q1}D + {Q2, Q2}D

= −i(p2 + ω2q2) + ω(ψ2
1 + ψ2

2)−ω(ψ2
1 + ψ2

2)− i(p2 + ω2q2)

= −2i(p2 + ω2q2) ≡ −2iδαβH . (77)

Furthermore, using the following relations

{Q1, H}P = ωpψ2 −ω2qψ1, {Q2 , H}D = −ωpψ2 + ω2qψ1 ,

{φ1, H}P = iωψ2, {φ2, H}P = iωψ2 , (78)

we find

{Qα, H}D = {Q1, H}D + {Q2, H}D

= {Q1, H}P − {Q1, φA}PCAB{φB, H}P

+{Q2, H}P − {Q2, φA}PCAB{φB, H}P

= {Q1, H}P − {Q1, φ1}PC11{φ1, H}P − {Q1, φ2}PC22{φ2, H}P

+{Q2, H}P − {Q2, φ1}PC11{φ1, H}P − {Q2, φ2}PC22{φ2, H}P

= ωPψ2 −ω2qψ1 −ωPψ2 + ω2qψ1

−ωPψ1 −ω2qψ2 + ω2qψ2 + ωPψ1

= 0 . (79)

It is clear from Eqs. (77, 79) that the supercharges (73) together
with the Hamiltonian (27) and the constraints (28) satisfy the
two conditions (75) of the classical Dirac bracket superalgebra.

4. THE SUPERSYMMETRY ALGEBRA
The material in this section is elaborated in detail in [21, 22, 23,
24, 25, 26]. The supersymmetry algebra encodes a symmetry
describing a relation between bosons and fermions. In general,
the supersymmetry is constructed by introducing supersym-
metric transformations which are generated by the supercharge
Qi operators, where the role of the supercharges Qi is to convert
a fermionic degree of freedom into a bosonic degree of freedom
and vice versa; i.e.,

Q|fermionic〉 = |bosonic〉, Q|bosonic〉 = |fermionic〉 .
(80)

So far, we have restricted ourselves to study classical sys-
tems. In Subsection 3.5, we have investigated the supersym-
metry of the classical harmonic oscillator. Now, we are going
to quantize the theory to study the supersymmetry of quan-
tum systems. In a quantum mechanical supersymmetric sys-
tem, the supercharges Qi together with the Hamiltonian H form
a so-called superalgebra. The recipe for quantizing the Hamil-
tonian in a situation where we have second class constraints is
to replace the Dirac brackets with either commutator brackets
for bosonic variables or anticommutator brackets for fermionic
variables multiplied with the factor ih̄, so we have

{q, p}D = 1 ⇒ [q̂, p̂] = ih̄,

{ψα, ψβ}D = −iδαβ ⇒ {ψ̂α, ψ̂β} = h̄δαβ .
(81)

Taking this into account, we can see that the superalgebra for
N-dimensional quantum system is characterized by

[Q̂i, Ĥ] = 0, i = 1 · · ·N,

{Q̂i, Q̂j} = h̄δijĤ, i, j = 1 . . . N . (82)

This will be elaborated further in the next section using the ex-
ample of the supersymmetrical harmonic oscillator. One more
notation before ending this section is that the supercharges Qi
are Hermitian, i.e. Q†

i = Qi, and this implies that

{Q̂i, Q̂j} = {Q̂†
i , Q̂†

j } . (83)

5. SUPERSYMMETRIC HARMONIC OSCIL-
LATOR

Now, we turn back to the quantum harmonic oscillator prob-
lem as a simple example to show the supersymmetric prop-
erty of a quantum mechanical system. Using Eq. (16), the har-
monic oscillator Hamiltonian (17) can be written in terms of the
bosonic and fermionic laddering operators as follows:

Ĥ = h̄ω(â† â + b̂† b̂) . (84)

Moreover, the supercharge operators Q̂1 and Q̂2 can also be
written in terms of the bosonic and fermionic laddering opera-
tors as follows:

Q̂1 = pψ1 + ωqψ2

=

(
i

√
h̄ω

2
(â† − â)

)(√
h̄
2
(b̂ + b̂†)

)

+ ω

(√
h̄

2ω
(â)† + â)

)(
i

√
h̄
2
(b̂− b̂†)

)
= ih̄
√

ω(â† b̂− âb̂†) , (85)

and similarly,

Q̂2 = pψ2 −ωqψ1

=

(
i

√
h̄ω

2
(â† − â)

)(
i

√
h̄
2
(b̂− b̂†)

)

−ω

(√
h̄

2ω
(â)† + â)

)(√
h̄
2
(b̂ + b̂†)

)
= −h̄

√
ω(â† b̂ + âb̂†) . (86)
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Using Eqs. (85, 86), one may define non-Hermitian opera-
tors Q̂ and Q̂† as

Q̂ =
1
2
(Q̂1 − iQ̂2)

=
1
2

(
ih̄
√

ω(â† b̂− âb̂†) + ih̄
√

ω(â† b̂ + âb̂†)
)

= ih̄
√

ω(â† b̂) , (87)

and similarly,

Q̂† =
1
2
(Q̂1 + iQ̂2)

=
1
2

(
ih̄
√

ω(â† b̂− âb̂†)− ih̄
√

ω(â† b̂ + âb̂†)
)

= −ih̄
√

ω(âb̂†) . (88)

We can directly use Eq. (84, 87, 88) to check that the supercharge
operators Q̂ and Q̂† with the Hamiltonian H satisfy the quan-
tum superalgebra:

{Q̂, Q̂} = {Q̂†, Q̂†} = 0,

{Q̂, Q̂†} = {Q̂†, Q̂} = H,

[H, Q̂] = [H, Q̂†] = 0 .
(89)

Now, it is easy using Eqs. (87, 88) to see the action of the
operators Q̂, Q̂† on the energy eigenstates:

Q̂|nB, nF〉 ∼ |nB − 1, nF + 1〉,
Q̂†|nB, nF〉 ∼ |nB + 1, nF − 1〉 . (90)

Remember that there are only two possible fermionic states
nF = {0, 1}, so the effect of the operators Q̂ and Q̂† can be
written as follows:

Q̂|nB, 0〉 ∼ |nB − 1, 1〉,
Q̂†|nB, 1〉 ∼ |nB + 1, 0〉 . (91)

Also, from Eq. (89), the operators Q̂ and Q̂† commute with the
Hamiltonian H; for that reason, we can see that

H(Q̂|nB, nF〉) = Q̂(H|nB, nF〉) = (EB + EF)(Q̂|nB, nF〉) , (92)

and this means that the whole energy of the system remains
unchanged by the action of the supercharge operators.

In short, the supercharge operator Q̂ acts to change one bo-
son to one fermion leaving the total energy of the system in-
variant. Conversely, Q̂† changes a fermion into a boson leaving
the energy unchanged. This is illustrated in Figure 1.

6. SUPERSYMMETRIC QUANTUM MECHAN-
ICS

In this section, we study the general formalism of one-
dimensional supersymmetric quantum mechanics. The ideas in
this section were discussed in [3, 27, 28, 29, 30, 31]. We begin by
considering a Hamiltonian of the form

Ĥ =
1
2

(
p̂2 + V(x̂)

)
I2 +

1
2

h̄B(x̂)σ3 , (93)

E(1)0

E(1)1

E(1)2

E(1)3

E(2)0

E(2)1

E(2)2

E

E=0

nF=0 nF=1

Q

Q†

FIGURE 1: A schematic view showing the energy levels for
a supersymmetric system consisting of only two possible
fermionic states nF = {0, 1}. The supercharge operators Q and
Q† exchange bosons and fermions without affecting the energy
due to the degeneracy of the energy levels of the two supersym-
metric partners except for the ground state of the first partner.

where V(x̂) is the potential, and B is a magnetic field. If those
potential and magnetic fields can be written in terms of some
function W(x), as

V(x) =
(

dW(x)
dx

)2
≡ W′2, B(x) =

(
d2W(x)

dx2

)
≡ W′′ ,

(94)
the Hamiltonian is supersymmetric and we shall refer to the
function W(x) as a superpotential. Using Eq. (94), we can
rewrite the Hamiltonian (93) as

Ĥ =
1
2

(
p̂2 + W′2

)
I2 +

1
2

h̄σ3W′′ . (95)

At this stage, we define the following two Hermitian super-
charge operators:

Q̂1 =
1
2
(
σ1 p̂ + σ2W′(x̂)

)
,

Q̂2 =
1
2
(
σ2 p̂− σ1W′(x̂)

)
. (96)

The Hamiltonian (95) together with the supercharges (96) con-
stitutes a superalgebra. It is a simple matter of algebra to verify
the conditions for the superalgebra given by Eq. (82). It may be
useful before verifying these conditions to check the following
commutation relation:

[ p̂, f (x)] g = [−ih̄
∂

∂x
, f (x)] g = −ih̄

(
∂

∂x
( f g) + f

∂

∂x
(g)
)

= −ih̄
(

f · ∂g
∂x

+
∂ f
∂x
· g− f · ∂g

∂x

)
= −ih̄ f ′(x) g .

(97)

Removing g gives us the commutator of the momentum p̂ with
an arbitrary function of the position coordinate x:

[ p̂, f (x)] = −ih̄ f ′(x). (98)
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Using this relation, we find the following:

[ p̂, W′2] = p̂W′2 −W′2 p̂ = −2ih̄W′W′′,

[W′, p̂2] = W′ p̂2 − p̂2W′ = ih̄{W′′, p̂},
{ p̂, W′′} = p̂W′′ + W′′ p̂ . (99)

Now, we can use the outcome of Eq. (99) to check the outcome
of the commutator of the supercharge Q̂1 with the Hamiltonian
Ĥ:

[Q̂1, Ĥ] = Q̂1Ĥ−HQ̂1

= 1
4 (σ1 p̂ + σ2W′) ·

((
p̂2 + W′2

)
I2 + h̄W′′σ3

)
− 1

4

((
p̂2 + W′2

)
I2 + h̄W′′σ3

)
· (σ1 p̂ + σ2W′)

= 1
4

(
σ1 p̂3 + σ1 p̂W′2 + σ1σ3h̄ p̂W′′ + σ2W′ p̂2 + σ2W′W′2 + σ2σ3h̄W′W′′

)
− 1

4

(
σ1 p̂3 + σ2 p̂2W′ + σ1W′2 p̂ + σ2W′2W′ + σ3σ1h̄W′′ p̂ + σ3σ2h̄W′′W′

)
= 1

4

(
σ1[ p̂, W′2]− σ2ih̄{ p̂, W′′}+ σ2[W′, p̂] + 2σ1ih̄W′W′′

)
= 0 . (100)

Similarly, one can confirm that

[Q̂2, Ĥ] = Q̂2Ĥ− ĤQ̂2 = 0. (101)

Furthermore, we can find that

{Q̂1, Q̂1} = Q̂1Q̂1 + Q̂1Q̂1 = 2Q̂2
1

=
1
2
(
σ1 p̂ + σ2W′

)2

=
1
2

(
σ2

1 p̂2 + σ2
2 W′2 + σ1σ2 p̂W′ + σ2σ1W′ p̂

)
=

1
2

(
( p̂2 + W′2)I2 + iσ3( p̂W′ −W′ p̂)

)
=

1
2

(
( p̂2 + W′2)I2 + h̄σ3W′′

)
≡ H , (102)

and similarly, we have

{Q̂†
2, Q̂2} = Ĥ . (103)

Note that, to do the previous calculations, we used the Pauli
matrices properties: σ2

1 = σ2
2 = σ2

3 = I2 and σ1σ2 = −σ2σ1 =
iσ3. It is clear from Eqs. (100,101, 102, and 139) that the Hamilto-
nian (95) together with the supercharges (96) satisfies the con-
ditions for the superalgebra given by Eq. (82).

Indeed, if we define the quantities Q and Q† as

Q̂ = Q̂1 − iQ̂2

=
1
2
(
σ1 p̂ + σ2W′

)
− 1

2
i
(
σ2 p̂− σ1W′

)
=

1
2
(
(σ1 − iσ2) p̂ + (σ2 + iσ1)W′

)
=

1
2
(σ1 − iσ2)

(
p̂ + iW′

)
= σ−

(
p̂ + iW′

)
, (104)

and
Q̂† = Q̂1 + iQ̂2 = σ+

(
p̂− iW′

)
, (105)

where σ− and σ+, respectively, are defined as

σ− =
1
2
(σ1 − iσ2) =

(
0 0
1 0

)
,

σ+ =
1
2
(σ1 + iσ2) =

(
0 1
0 0

)
, (106)

it is straightforward to check that the Hamiltonian Ĥ can be
expressed as

Ĥ = {Q̂, Q̂†} , (107)

and it commutes with both the operators Q̂ and Q̂†:

[Q̂, Ĥ] = 0 & [Q̂†, Ĥ] = 0 . (108)

Furthermore, one also finds

{Q̂, Q̂} = 0 & {Q̂†, Q̂†} = 0 . (109)

As we have seen in the case of the supersymmetric Har-
monic oscillator, a supersymmetric system with two indepen-
dent supercharges, with the possible exception of the energy of
the ground eigenstate, all the energy levels are split into two
eigenstates with either nF = 0 or nF = 1. For a spinor quan-
tum mechanical system, this implies that the excited energy
eigenstates come in degenerate spin-up/spin-down pairs |En, ↑
〉/|En, ↓〉. These degenerate spin-up/spin-down pairs are re-
lated to the acts of the supercharge operators Q̂ and Q̂†, where
the supercharge operators Q̂ convert the degenerate spin-up
state to the degenerate spin-down state without making any
change in the energy eigenvalue of the states:

Q̂|En, ↑〉 ∼
(

0 0
1 0

)(
↑
0

)
=

(
0
↓

)
, (110)

while the supercharge operators Q̂† convert the degenerate
spin-down state to the degenerate spin-up state without mak-
ing any change in the energy eigenvalue of the states:

Q̂†|En, ↓〉 ∼
(

0 1
0 0

)(
0
↓

)
=

(
↑
0

)
. (111)

To sum up, the supersymmetric transformations occur due
to the supercharge operators Q̂ and Q̂†. In this case, it causes
transforms between the energy eigenstates spin-up/spin-down
which have the same energy eigenvalues.

7. SUPERSYMMETRIC GROUND STATE
So far, we have investigated all the required information to
describe a supersymmetric quantum mechanical system. In
this section, we study the supersymmetric quantum mechan-
ical ground state. The argument in this section follows from
[32, 33, 34, 35, 36]. Let us now write the expression of the super-
symmetric Hamiltonian (95) as the summation of two separate
terms: a Hamiltonian Ĥ+ and a Hamiltonian Ĥ−; then, we have

Ĥ± =
1
2

(
p̂2 + W′2

)
± 1

2
h̄W′′ . (112)

In the eigenbasis of σ3, the supersymmetric Hamiltonian is di-
agonal:

Ĥ ≡
(

Ĥ+ 0
0 Ĥ−

)
=

(
A†A 0

0 AA†

)
, (113)

and the supercharge operators Q̂ and Q̂† can be written as

Q̂ =

(
0 0
A 0

)
, Q̂† =

(
0 A†

0 0

)
, (114)

where

A = p̂ + iW′, A† = p̂− iW′ . (115)

9



Letters in High Energy Physics LHEP-160, 2020

According to Eq. (107), we can write the supersymmetric
Hamiltonian Ĥ in terms of the supercharges operators Q̂ and
Q̂† as follows:

Ĥ = Q̂Q̂† + Q̂†Q̂ = 2Q̂2 = 2Q̂†2
. (116)

In the last step, we used the fact that the supercharges are Her-
mitian operators. We see from Eq. (116) that the Hamiltonian
Ĥ can be written in terms of the squares of the supercharge
operators. For this reason, the energy of any eigenstate of this
Hamiltonian must be positive or zero. Let us now consider that
|Ψ0〉 is the ground state of the supersymmetric Hamiltonian Ĥ.
Based on Eq. (116), it can be seen that the ground state can have
a zero energy only if it satisfies the following two conditions:

E0 = 〈Ψ0|Ĥ|Ψ0〉 = 〈Ψ0|Q̂2|Ψ0〉 = 0 =⇒ Q̂|Ψ0〉 = 0,

E0 = 〈Ψ0|Ĥ|Ψ0〉 = 〈Ψ0|Q̂†2 |Ψ0〉 = 0 =⇒ Q̂†|Ψ0〉 = 0. (117)

Therefore, if there exists a state which is annihilated by each of
the supercharge operators Q̂ and Q̂† which means that it is in-
variant under the supersymmetry transformations, such a state
is automatically the zero-energy ground state. However, on the
other hand, any state that is not invariant under the supersym-
metry transformations has a positive energy. Thus, if there is a
supersymmetric state, it is the zero-energy ground state and it
is said that the supersymmetry is unbroken.

Moreover, since the supersymmetry algebra (108) implies
that the supercharge operators Q̂ and Q̂† commute with the su-
persymmetric Hamiltonian Ĥ, so all the eigenstates of Ĥ are
doubly degenerate. For that reason, it will be convenient to
write the supersymmetric ground state of the system in terms
of two components, ψ±0 , as follows:

Ψ0 =

(
ψ+

0
ψ−0

)
. (118)

One can now solve eigenvalue problem Q̂|ψ0〉 = 0 to find the
zero-energy ground-state wave function. If we make substitu-
tion using Eqs. (114, 118), we get

Q̂|ψ0〉 =
(

0 0
A 0

)(
ψ+

0
ψ−0

)
= 0 , (119)

and then, if we make substitution using Eq. (115), our problem
reduces to solve the first-order differential equation:

A|ψ+
0 〉 =

(
p̂ + iW′

)
|ψ+

0 〉 = 0 =⇒ −ih̄
∂ψ+

0
∂x

+ iW′ψ+
0 = 0 .

(120)
It is simple and straightforward to solve the previous differen-
tial equation as follows:

dψ+
0

ψ+
0

=
W′

h̄
dx =⇒ ln ψ+

0 =
W′

h̄
+ ln A . (121)

Thus,
ψ+

0 = Ae
W
h̄ , (122)

and similarly,
ψ+

0 = Be−
W
h̄ . (123)

Now, the general form of the ground-state wave function may
be expressed as

Ψ0 =

(
Ae

W
h̄

Be−
W
h̄ .

)
. (124)

In fact, it has no physical meaning to find the ground-
state wave function ψ0 if there are no normalizable solutions
of such form. So, we need now to normalize the ground-state
wave function (124) by determining the values of the two con-
stants A and B. The ground-state wave function ψ0(x) to be
normalizable must vanish at the positive and the negative infi-
nite x-values. In order to satisfy this condition, we have to set
|W(x)| → ∞ as |x| → ∞. Then, we have the following three
possible cases for the supersymmetric ground-state wave func-
tion:

1. The first case is when W(x) → +∞ as x → ±∞. In
this case, the superpotential W(x) is an even function
and it is positive at the boundaries. Figure 2 describes
the behavior of the potential V(x) in this case. Since
W(x) is positive, we cannot normalize the wave function

ψ+
0 = Ae

W(x)
h̄ , but we can choose A = 0. However, we

can normalize the wave function ϕ−0 = Be−
W(x)

h̄ to find
the value of the constant B. The complete ground-state
wave function, in this case, may be expressed in the gen-
eral form

Ψ0 =

(
0

Be−
W(x)

h̄

)
. (125)

x

V(x)

FIGURE 2: The even superpotential W(x) is an even function,
where W(x)→ +∞ as x → ±∞.

2. The second case is when W(x) → −∞ as x → ±∞.
In this case, the superpotential W(x) is an even func-
tion and it is negative at the boundaries. The behavior
of the potential V(x) in this case is described in Figure
3. Since W(x) is negative, we can normalize the wave

function Ψa
0 = Ae

W(x)
h̄ and find the value of the con-

stant A; however, we cannot normalize the wave func-
tion Ψb

0 = Be−
W(x)

h̄ , but we can choose B = 0. The com-
plete ground-state wave function, in this case, shall be
expressed in the general form

Ψ0 =

(
Ae

W(x)
h̄

0

)
. (126)

3. The other two cases correspond to W(x) → {+∞,−∞}
as x → {+∞,−∞}, and W(x) → {−∞,+∞} as x →
{+∞,−∞}. In those two cases, the superpotential W(x)
is an odd function and it is positive at one of the bound-
aries and negative at the other boundary. The behavior of
the potential V(x) in this case is described in Figure 4. In
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x

V(x)

FIGURE 3: The superpotentialW(x) is an even function, where
W(x)→ −∞ as x → ±∞.

those two cases, both the two constants A and B vanish
and we cannot normalize the wave function. Therefore,
we have

Ψ0 = 0. (127)

Thus, since those two forms of the zero-energy ground-
state wave function cannot be normalized, this means
that they do not exist.

x

V(x)

(a) W(x)→ −∞ as x → −∞, and W(x)→ ∞ as x → ∞.

x

V(x)

(b) W(x)→ ∞ as x → −∞, and W(x)→ −∞ as x → ∞.

FIGURE 4: The superpotentialW(x) is an odd function.

In short, the zero-energy ground-state wave function can be
normalized when the superpotential W(x) has an even num-
ber of zeros. In this case, there exists a zero-energy ground
state which is the true vacuum state and the supersymmetry
is unbroken. However on the other hand, if the superpoten-
tial W(x) has an odd number of zeros, the zero-energy ground-
state wave function cannot be normalized. Then, we immedi-
ately realize that there is no zero-energy ground state in such
case and the supersymmetry is spontaneously broken.

8. CORRECTIONS TO THE GROUND-STATE
ENERGY

In this section, we consider the example of the supersymme-
try harmonic oscillator which has a unique zero-energy ground
state. Then, we use the conventional perturbation theory to ex-
amine whether it has nonvanishing corrections to the energy
of the ground state, and accordingly, it can be responsible for
the spontaneous breaking of the supersymmetry. To this end,
in the next two subsections, based on [37, 38, 39, 40, 41], we are
going to compute both the first and the second corrections to
the ground-state energy of the supersymmetric harmonic os-
cillator. For instance, let us recall the general form of the super-
symmetric quantum mechanics Hamiltonian, which is given by
Eq. (95):

Ĥ =
1
2
( p̂2 + W′2)I2 +

1
2

h̄W′′σ3. (128)

Consider now that the superpotential W(x) is defined as

W(q) =
1
2

ωq̂2 + gq̂3 ⇒ W′ = ωq̂ + 3gq̂2

W′′ = ω + 6gq̂ ,
(129)

where g is a perturbation. If g = 0, the previous Hamiltonian re-
duces to the supersymmetric harmonic oscillator Hamiltonian:

Ĥ0 =
1
2
( p̂2 + ω2q2)I2 +

1
2

h̄ωσ3 . (130)

We have already solved this Hamiltonian and found that it has
a unique zero-energy ground state,

E(0)
0 = 0 , (131)

and we verify that this state is invariant under supersymmetry.
Based on our argument in the previous section and after nor-
malization, the unbroken supersymmetric ground-state wave
function can be written as follows:

Ψ(0)
0 =

(
0

( ω
πh̄ )

1
4 e−

ωq2

2h̄

)
. (132)

Now, when g is small, the Hamiltonian (128) can be written
as

Ĥ = Ĥ0 + Ĥ′ , (133)

where Ĥ0 is the Hamiltonian of the unperturbed system and Ĥ′

a perturbation:

Ĥ′ = (
9
2

g2q̂4 + 3ωgq̂3)I2 + 3h̄gq̂σ3 . (134)

Moreover, if we consider the matrix representation, the pertur-
bative Hamiltonian Ĥ acting on the ground-state wave function

Ψ(0)
0 yields

Ĥ′Ψ(0)
0 =

( 9
2 g2q̂4 + 3ωgq̂3 + 3h̄gq̂ 0

0 9
2 g2q̂4 + 3ωgq̂3 − 3h̄gq̂

)( 0

( ω
πh̄ )

1
4 e−

ωq2

2h̄

)
= 0.

(135)
In view of this last equation, it is clear that for this combination

the impact of the Hamiltonian Ĥ′ on the wave function Ψ(0)
0 is

only due to the component:

Ĥ′ = 9
2

g2q̂4 + 3ωgq̂3 − 3h̄gq̂ . (136)
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As a result, we see that it is enough to consider the Hamiltonian
Ĥ′ to compute the first and second corrections to the ground-
state energy.

Furthermore, we have to mention here that, for the super-
symmetric harmonic oscillator, except for the ground state, all
the energy levels are degenerate to two energy states. However,
because we are just interested in computing the correction to
the ground-state energy, which is not degenerate, we can use
the nondegenerate perturbation theory.

In addition, it is useful to remember from quantum me-
chanics that the wave function of degree n can be obtained by
the following recursion formula:

q̂ψn =

√
(n + 1)h̄

2ω
ψn+1 +

√
nh̄
2ω

ψn−1 . (137)

As well, it is important to recall the following relation:

〈ψn|ψm〉 = δnm . (138)

We are ready now to move forward to the next two subsections
and compute the first and the second corrections to the energy
of the ground state.

8.1. The First-Order Correction
We know from the previous argument that the ground state of
the supersymmetric Hamiltonian is nondegenerate. Therefore,
we can use the time-independent nondegenerate perturbation
theory to compute the first-order correction to the ground-state
energy of the supersymmetric harmonic oscillator as follows:

E(1)
0 = 〈ψ(0)

0 |Ĥ
′|ψ(0)

0 〉

= 〈ψ(0)
0 |

9
2

g2q̂4 + 3ωgq̂3 − 3h̄gq̂|ψ(0)
0 〉

= 9
2 g2〈ψ(0)

0 |q̂4|ψ(0)
0 〉+ 3ωg〈ψ(0)

0 |q̂3|ψ(0)
0 〉 − 3h̄g〈ψ(0)

0 |q̂|ψ
(0)
0 〉 .
(139)

The terms q̂3ψ0 and q̂ψ0 are linearly independent of ψ0 so that
both the second and the third terms of Eq. (139) are zero. How-
ever,

q̂4ψ0 =
3h̄4

2ω4 ψ4 +
7h̄4

4ω4 ψ2 +
9h̄4

16ω4 ψ0 , (140)

and then, substituting it into Eq. (139) gives us,

E(1)
0 =

9
2

g2〈ψ(0)
0 |q̂

4|ψ(0)
0 〉 =

9
2

g2 × 3
4

h̄2

ω2 〈ψ
(0)
0 |ψ

(0)
0 〉

=
27
8

h̄2

ω2 g2 ' O(g2) . (141)

In the view of the last equation, the first-order correction to the
ground-state energy reduces to zero.

8.2. The Second-Order Correction
From the nondegenerate time-independent perturbation the-
ory, the second-order correction to the energy is given by

E(0)
2 = ∑

m 6=n

|〈ψ(0)
n |Ĥ′|ψ

(0)
m 〉|2

E(0)
m − E(0)

n

. (142)

Since the perturbation contains only terms of q, q3, and q4, the
numerator of Eq. (142) is zero for all m values except m = 1, 3, 4.

Therefore, the second-order correction to ground-state energy
of the supersymmetric harmonic oscillator is computed as fol-
lows:

E(0)
2 =

|〈ψ(0)
0 |

9
2 g2q̂4 + 3ωgq̂3 − 3h̄gq̂|ψ(0)

1 〉|
2

E(0)
0 − E(0)

1

+
|〈ψ(0)

0 |
9
2 g2q̂4 + 3ωgq̂3 − 3h̄gq̂|ψ(0)

2 〉|2

E(0)
0 −E

(0)
2

+
|〈ψ(0)

0 |
9
2 g2q̂4 + 3ωgq̂3 − 3h̄gq̂|ψ(0)

3 〉|2

E(0)
0 − E(0)

3

+
|〈ψ(0)

0 |
9
2 g2q̂4 + 3ωgq̂3 − 3h̄gq̂|ψ0

4〉|
2

E(0)
0 − E(0)

4

. (143)

We can simplify the previous equation by calculating the nu-
merator of each term using the recurrence relation for the har-
monic oscillator energy eigenfunction given by Eq. (137). We
get

q̂ψ1 =

√
h̄
ω

ψ2 +

√
h̄

2ω
ψ0,

q̂3ψ1 =

√
3h̄3

ω3 ψ4 + 3

√
h̄3

ω3 ψ2 +

√
9h̄3

8ω3 ψ0,

q̂3ψ3 =
√

15h̄3

ω3 ψ6 +
√

72h̄3

ω3 ψ4 +
√

243h̄3

8ω3 ψ2 +
√

3h̄3

4ω3 ψ0,

q̂4ψ2 =

√
45h̄4

2ω4 ψ6 +
√

147h̄4

ω4 ψ4 + 12.5
√

h̄4

ω4 ψ2 +
√

9h̄4

2ω4 ψ0,

q̂4ψ4 =
√

105h̄4

ω4 ψ8 +
√

945h̄4

4ω4 ψ6 +
√

2725h̄4

16ω4 ψ4 +
√

81h̄4

2ω4 ψ2 +
√

3h̄4

2ω4 ψ0 .

(144)

In Eq. (144), we only list the terms which contain ψ0. The other
terms do not affect our calculations, since all of them give us
zero. Using Eq. (144) to calculate Eq. (143), we get

E(0)
2 = − g2

h̄ω

(
3ω× 9h̄3

ω3 − 3h̄×
√

h̄
2ω

)2

− 81g4

8h̄ω

√ 9h̄4

2ω4

2

− g2

3h̄ω

3ω×

√
3h̄3

4ω3

2

− g4

4h̄ω

9
2
×

√
3h̄4

2ω4

2

= −9
8

h̄2

ω2 g2 − 729
16

h̄3

ω5 g4 − 9
4

h̄2

ω2 g2 − 243
32

h̄3

ω5 g4

= −27
8

h̄2

ω2 g2 − 1701
32

h̄3

ω5 g4 . (145)

Finally, with regard to Eqs. (141 and 145), we realize that up
to the second order the energy corrections to the ground-state
energy vanish. This is concluded as

O(g) = 0,

O(g2) =
27
8

h̄2

ω2 −
27
8

h̄2

ω2 = 0 . (146)

It is worth noting that the second term in Eq. (145) should be
canceled when we extend the calculation to the fourth-order
perturbation corrections. Showing this would make the calcu-
lations here more complicated and confusing. However, the re-
sult can be expanded to any finite order in perturbation theory.
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Hence, there are no corrections to the energy of the ground state
and the supersymmetry remains unbroken at any finite order of
perturbation theory.

9. PROPERTIES OF SUSY QUANTUM ME-
CHANICS

x

W(x)

FIGURE 5: The superpotential of the harmonic oscillator
ground state.

A supersymmetric quantum mechanics system is said to
have unbroken supersymmetry if it has a zero-energy ground
state, which is E0 = 0, while if the system has a positive
ground-state energy, E0 > 0, it is said to have a broken super-
symmetry [1]. For example, in Section 5, we have studied the
Hamiltonian of the supersymmetric harmonic oscillator and
showed that it obeys the superalgebra. Then, we calculated the
ground-state energy for that system and found evidence that it
vanishes, E0 = 0, and consequently, this supersymmetric har-
monic oscillator has an unbroken supersymmetry.

In the previous section, we applied a small perturbation g
to the supersymmetric harmonic oscillator and calculated the
effect on the ground-state energy. We found out that the per-
turbation does not affect the energy of the ground state at the
second order in perturbation theory, but this result can be ex-
panded to any finite order. This means that the supersymmetry
breaking does not occur because of perturbation, and it must
be due to the nonperturbative effects.

Again, let us consider the same potential Eq. (129), which
we have used before in Section 8:

W(q) =
1
2

ωq̂2 + gq̂3 . (147)

As we discussed in Section 7, the wave function of the ground
state should have three zeros, Ψ0 → +∞ as x → +∞, and
Ψ0 → −∞ as x → −∞. Figure 5, shows an arbitrary diagram
presenting how the wave function of the ground state should
look like, and Eq. (148) gives us the nonnormalized form of the
ground-state wave function:

Ψ0 =

(
Ae−

W
h̄

Be−
W
h̄

)
. (148)

Acutely, Eq. (148) could not be normalized, and the only way
to solve the Schrödinger equation for the ground state is taking

Ψ0 = 0. This means that the wave function of the ground state
is not excited, even if the perturbation theory told us that it is
excited and has no energy correction.

Thus, the perturbation technique gives us incorrect results
for both the wave function and the energy spectrum and fails
to give an explanation to the supersymmetry breaking.

10. CONCLUSIONS
In this study, we studied the basic aspects of supersymmetric
quantum mechanics. We started with introducing the algebra
of Grassmann variables and then looked into quantum me-
chanics of the supersymmetric harmonic oscillator, which in-
cludes fermionic as well as bosonic fields. Afterward, we in-
vestigated the algebraic structure of supersymmetric quantum
mechanics. We started by investigating the superalgebra us-
ing Dirac brackets. Then, we introduced the concept of the su-
percharge operators Q̂ and Q̂†. In general, the supersymmetry
is constructed by introducing supersymmetric transformations
which are generated by the supercharge operators, where the
role of the supercharges is to change the bosonic state into the
fermionic state and vice versa, while the Lagrangian remains
invariant. Moreover, we have presented the basic properties of
supersymmetric quantum mechanics.

Furthermore, we illustrated, for a supersymmetric quan-
tum mechanical system, that the energy spectrum is degenerate
except for the ground state, which must have a zero eigenvalue
in order for the system to have an unbroken supersymmetry.
Also, we have explained that if there is a supersymmetric state,
it is the zero-energy ground state. If such a zero-energy ground
state exists, it is said that the supersymmetry is unbroken. So
far, there has been no unbroken supersymmetry observed in
nature, and if nature is described by supersymmetry, of course,
it must be broken.

In fact, supersymmetry may be broken spontaneously at
any order of perturbation theory or dynamically due to non-
perturbative effects. To examine this statement, we studied the
normalization of the ground state of the supersymmetric har-
monic oscillator. Then, we used perturbation theory to calcu-
late the corrections to the ground-state energy. We found out
that the perturbation does not affect the energy of the ground
state at second order in perturbation theory, but this result can
be expanded to any finite order. This means that the supersym-
metry breaking is not seen in perturbation theory, and it must
be due to the nonperturbative effects.
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