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Abstract
The Swampland program relies heavily on the conjecture that there can only be a finite number of flux
vacua (FFV conjecture). Stipulating this FFV conjecture and applying it to some older work in flux vacua
construction, we show that within a patch of the landscape the FFV conjecture makes predictions on the
nonexistence of otherwise viable nonperturbative objects arising from brane recombination. Future gains
in the direct nonperturbative analysis could, therefore, not only test this prediction but also test portions of
the Swampland program itself. We also discuss implications of a weaker FFV conjecture on the counting of
flux vacua which predicts the positivity of the brane central charge if the EFT analysis is to be qualitatively
trusted.
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1. THE FINITE FLUX VACUA
CONJECTURE

Recently, there have been a variety of conjectures regarding the
structure of the Swampland, which can be thought of as the set
of effective field theories that cannot be realized as low-energy
limits of a consistent theory of quantum gravity [1] (see [2, 3]
for reviews). Some recent work has suggested that consistent
theories of quantum gravity can only lead to low-energy effec-
tive field theories with a finite number of fine-tuned parame-
ters [4]. In the context of 4D, N = 1 compactifications, a key
premise to these analyses is the claim that there are at most a
finite number of flux vacua (see, for example, [5, 6, 7]).

The claim of “finite flux vacua” is somewhat vague in the
literature, and it is worthwhile formulating a precise conjec-
ture and investigating the consequences of it. One might as
well start with the strongest version that does not appear to
be in conflict with any known result that is also often implied
at times in the flux vacua [6] and Swampland literature. The
“finite flux vacua conjecture” (FFV conjecture), we will call it,
states that given only an upper bound on the magnitude of
the vacuum energy, the number of 4D N = 1 vacua is finite.
There is good circumstantial evidence for the FFV conjecture. It
has gone through nontrivial checks in the context of particular
string compactifications, but it has not been rigorously justified
yet. Further nontrivial tests are needed.

In this letter, we focus on the question of how to further
stress test the FFV conjecture. We show below that a key test
is to determine whether particular nonperturbative stable ob-
jects exist in 4D N = 1 theories, whose existence would contra-
dict the FFV conjecture upon which the Swampland program
so heavily relies. At present, the computational technology to
carry out this test is not available, but one can show that the
FFV conjecture is in conflict with naive counting of flux vacua
using standard rules of flux vacua construction based on effec-
tive theory analysis. Nevertheless, the FFV conjecture, if cor-
rect, gives us a qualitative understanding of how flux vacua
behave when the effective theory analysis starts to break down,

which in principle can be tested when more reliable nonpertur-
bative analysis techniques are developed.

In Section 5, we point out that there is a weaker form of the
FFV conjecture implied in the literature. This weaker conjec-
ture also gives implications to the consideration of flux vacua.
One finds that the EFT analysis can be correct and valid qual-
itatively, including its prospects for forming nonperturbative
stable objects from brane recombination; however, to be consis-
tent in the limit of a large number of vacua, the central charge
must be positive, which adds a new rigorous and nontrivial
constraint on the EFT description as the brane charges increase.

2. NAIVE COMPATIBILITY WITH FFV
CONJECTURE

Analyzing the entire flux vacua landscape is of course im-
possible, but it is tractable to analyze a patch of the land-
scape restricted by a few criteria. For example, for the rest of
this discussion, our analysis will be entirely within what we
call the Marchesano-Shiu patch (MS-patch) of the string land-
scape [8, 9] which are vacua derived from type IIB string the-
ories compactified to 4D N = 1 on a Calabi-Yau orientifold of
T6/Z2 × Z2 that produces SM-like massless spectra (i.e., SM
states plus arbitrary additional hidden-sector states or vector-
like states1). The specificity of this construction in no way lim-
its our ability to devise a nontrivial test of the FFV conjec-
ture, since it is precisely within these MS-vacua that one can so
clearly see a well-articulated potential conflict. The finiteness
of flux vacua for the case of an orientifold of T6/Z2 × Z2 was
considered in [5, 6].

In this section, we first review the standard argument for
why there are a finite number of flux vacua predicted using
standard flux vacua construction techniques within the MS-
patch. We show that intuitive results from an application of the
rules of the construction will be in concert with the FFV con-
jecture. Having gone through the standard argument, we will
then point out a subtlety [10] which will impact the FFV con-
jecture.

1Note that although the MS-patch was formulated for the purpose of produc-
ing the Standard Model in the low-energy limit, the presence of an SM-like spec-
trum is not necessary for the purpose of studying the FFV conjecture.
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The argument begins with a realization that a string com-
pactification on an orientifold of T6/Z2 × Z2 will yield a 4D
N = 1 theory with negative RR-charges associated with the
background provided by the orientifold planes. In a consistent
compactification, the space-filling charges must be cancelled,
and the cancelation of RR-tadpoles associated with the nega-
tive charges requires the addition of positive charges, which
can be supplied from additional D-branes (which preserve the
same supersymmetry as the background) or from RR fluxes
that wrap the compactified dimensions. But the number of flux
vacua scales with the RR flux since the amount of flux that is
turned on is related to the number of solutions for the super-
symmetric equations of motion of the complex structure mod-
uli [11]. The Kähler moduli are then fixed by a variety of non-
perturbative contributions to the superpotential.

As mentioned above, the claim for the finiteness of the
number of flux vacua originates from the fact that the contribu-
tion to space-filling D-brane charges from the orientifold planes
is negative and finite. If the only other space-filling charges
arise from fluxes, then the amount of flux would also be fi-
nite, leading to a finite number of solutions for the complex
structure moduli. D-branes can also contribute space-filling
charges, but this can only alleviate the problem if the charges
are negative. Anti-D-branes would contribute negative charge,
but would also explicitly break supersymmetry. Magnetized D-
branes can contribute some negative charges but necessarily
also contribute positive charges. It has thus been shown that
the required cancelation between positive and negative contri-
butions to the space-filling charges cannot arise from a set of
branes that all preserve the same supersymmetry as the orien-
tifold background at any point in the Kähler moduli space (see,
for example, [5, 6]). Thus, one is necessarily limited to a finite
amount of flux that cancels the finite negative D-brane charges
from the orientifold planes and with finite flux comes a finite
number of vacua.

3. NAIVE INCOMPATIBILITY WITH FFV
CONJECTURE

There is a shaky premise used in the last section that enabled
the proof of the compatibility of the FFV conjecture with the
counting of flux vacua within the MS-patch. Namely, we as-
sumed that all D-branes introduced directly preserve the same
supersymmetry. As pointed out in [10], it may not be necessary
for all D-branes to preserve the same supersymmetry at one
point in moduli space in order for the theory to have a super-
symmetric vacuum. Instead, the branes can deform via the con-
densation of open strings, leading to a supersymmetric min-
imum. In that case, brane recombination can result in super-
symmetric solutions in which a much more negative D-brane
charge from brane bound states is canceled by a much larger RR
flux, yielding many more flux vacua [10]. In fact, naive applica-
tion of the rules of engagement suggests an unlimited amount
of negative D-brane charge, canceled by the equally unlimited
RR-flux, resulting in an unlimited number of flux vacua within
the MS-patch. If true, this would be in unambiguous conflict
with the FFV conjecture which says there must be a finite num-
ber of flux vacua not only within the MS-patch but summing
over all patches of the landscape.

Let us discuss in more detail the origin and characteris-
tics of these putative bound states from brane recombination.

One can infer the possibility of a supersymmetry preserving
bound state of branes by considering the low-energy effective
field theory describing the light states. At a point in Kähler
moduli space where a brane preserves the same N = 1 SUSY
as the background, the light open strings are described by a
supersymmetric gauge theory with no nonvanishing Fayet-
Iliopoulos (FI) terms. If one moves slightly away from this
point in moduli space, then generically, the brane will no longer
preserve the same supersymmetry as the background; this is
reflected in the low-energy effective field theory by the turn-
ing on of an FI-term, yielding a D-term potential of the general
form [12, 13]

VD =
1

2g2

(
∑ qi|φi|2 + ξ

)2
, (1)

where the scalars φi represent chiral open strings stretching be-
tween branes at their intersection points. If none of these scalars
have nonvanishing vacuum expectation values, then this D-
term will be nonvanishing. But if there exist charged scalars
with appropriate charges, then they will be tachyonic and con-
dense, allowing the D-terms to relax again to zero [13]. The
condensation of these scalars amounts to the process of brane
recombination, in which the branes deform near their intersec-
tion points to form supersymmetric bound states.

The question of whether or not a set of branes will recom-
bine to form a SUSY bound state revolves around the signs of
the FI-terms and the signs of the charged fields. For any field
with charge q under a U(1) gauge group, the FI-term ξ will
give a contribution to the squared mass of qξ; this contribution
is tachyonic if q and ξ have opposite sign. If there are enough
tachyons for all of the D-terms to relax to zero, then there is no
obstruction to the formation of a SUSY bound state.

Indeed, if there are N stacks of D-branes, all with small
FI-terms, then one would generically expect the presence of
O(N2) chiral scalars arising from strings stretching between
these branes at their points of intersection. Given that the
charges are determined by the signs of the topological inter-
section numbers of the branes, one would generically expect to
find enough scalars with the correct charge sign assignments
for all N of the D-terms to relax to zero.

To illustrate these points in some more detail, we show an
explicit construction that naively gives an infinite number of
flux vacua within the MS-patch, and then discuss how the anal-
ysis is likely to break down at large fluxes, where one could
then suppose that a more complete analysis brings the sys-
tem into an agreement with the FFV conjecture. Again, the MS-
patch considers the case of type IIB string theory compactified
on an orientifold of T6/Z2×Z2 yielding SM-like vacua. We fol-
low the notation of [18] and utilize the method of identification
of large-flux vacua present in [19].

This orientifold generates 64 O3-planes and 12 O7-planes
and preserves N = 1 supersymmetry. There are 3 Kähler mod-
uli and 51 complex structure moduli (48 of which lie at fixed
points of elements of the orbifold group). We will consider
brane stacks with wrapping numbers (ni, mi) given by [10]

Nq = 2:
(
−(x− 1)2, 1

) (
−(x− 1)2, 1

) (
−(x− 1)2, 1

)
,

Nr = 2: (1,−1) (1, x) (1, x),
Ns = 2: (1, x) (1, x) (1,−1),

Nt = 2: (1, x) (1,−1) (1, x), (2)
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where Ni are the number of branes in each stack, x is an integer,
and (ni, mi) are co-prime integers, with mi being the number of
times the brane wraps the ith torus, and ni being the quantized
magnetic flux through the ith torus. The total D-brane charges
of these stacks are [10]{

QD3,
−→
Q D7i

}
=
{

2[−(x− 1)6 + 3], 2, 2, 2
}

, (3)

where QD7i is the charge of D7-branes wrapping every torus
except the ith. The total D-brane charges required from all of
the branes and the fluxes in order to satisfy the tadpole con-
straints are {

QD3,
−→
Q D7i

}
= {16, 16, 16, 16} , (4)

implying that one can add to the above brane stacks D7-branes,
D3-branes, and an amount of flux (which contributes D3-brane
charge) that grows with x in order to satisfy all tadpole con-
straints. It only remains to be seen if these magnetized branes
can form a supersymmetric bound state.

We list the multiplicities of the chiral open strings:

(x2 − 2x)(x3 − 2x2 + x + 1)2

→ (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1),

2x(x− 1)2

→ (0,−1, 0,−1), (0,−1,−1,−0), (0, 0,−1,−1),

(x2 − 2x + 2)(x3 − 2x2 + x− 1)2

→ (−1,−1, 0, 0), (−1, 0,−1, 0), (−1, 0, 0,−1),

2x2 − 4x + 2

→ (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2),

4(x− 1)6 − 2(3(x− 1)4 − 1)

→ (2, 0, 0, 0), (5)

where the expressions on the left are multiplicities, and the
numbers on the right are the charges (Qq, Qr, Qs, Qt). For x
reasonably large, all of these multiplicities are positive (a neg-
ative multiplicity would count the number of charge conjugate
fields).

The FI-terms, in leading order, are given by

ξa ∼
3

∑
i=1

tan−1(ma
iAi, ni) mod 2π, (6)

where Ai are the real Kähler moduli which determine the vol-
ume of the tori, and α = tan−1(y, x) for sin α = y/

√
x2 + y2,

and cos α = x/
√

x2 + y2 (see, for example, [20]). But this is the
leading order calculation and can only be trusted when the FI-
terms are small.

The D-term potential is given by

VDa =
1

2g2

(
∑ qi|φi|2 + ξa

)2
. (7)

We see that we can cancel the D-term potential no matter what
the FI-terms are. This realization comes by recognizing that
there are scalars which have negative charge under two U(1)s
(for any choice of the two groups); by turning them on, we can
be sure to add an arbitrarily large negative contribution to each
FI-term which then can counter the ξa values no matter how
large they might be. In other words, for each D-term, we can be

sure that the sum of the FI-term and the contribution from these
scalar is nonpositive. But there are also scalars with charge +2
under each group. We can tune them independently to give a
positive contribution inside the square which cancels each D-
term.

We still need to worry if a nonzero F-term will arise from
turning on these scalars. But one simple way of addressing this
is to note that the only gauge-invariant superpotential terms
which we can write involve at least three of the scalars; such
a term can only introduce a nonvanishing F-term if at least all
but one of the scalars get a vev. But the three scalars will live
at three different intersections of the brane stacks, and the co-
efficient of the superpotential term will be exponentially sup-
pressed by the volume of the triangle formed by these inter-
section points (in string units). As long as we make sure that
the scalars which we turn on are far separated in the compact
dimensions, the F-terms will be exponentially suppressed.

Note that these solutions would be valid, supersymmetric
solutions in the effective field theory, and the flux can increase
to arbitrarily high values with x which then indicates an ar-
bitrarily large number of flux vacua, inconsistent with the FFV
conjecture. One might worry that the exponentially suppressed
Yukawa couplings might lead to solutions for which N = 1
supersymmetry was instead broken at an exponentially sup-
pressed scale, but again, we would be led to an arbitrarily large
number of such solutions, in conflict with the FFV conjecture.

4. NONPERTURBATIVE PREDICTIONS
FROM FFV CONJECTURE

So far, we have reviewed the standard argument that the con-
struction of flux vacua within the MS-patch is consistent with
the FFV conjecture, and then, we reviewed above a finding
from [10] that if supersymmetric brane recombination is al-
lowed, and there appears to be no obvious obstruction against
doing that, there can be an infinite number of flux vacua within
the MS-patch which is incompatible with the FFV conjecture.
In this section, we analyze this second claim more critically to
determine if all the dynamics that we have identified as needed
to make the ever-growing large flux are justified.

In fact, there is a significant subtlety that we have thus far
ignored that comes to the core of the issue of whether these
nonperturbative objects of brane recombination are allowed.
We have assumed that all of the light degrees of freedom may
be determined by simply counting the topological intersection
numbers of the undeformed branes and their orientifold im-
ages, which determine the lightest degrees of freedom living at
the intersections of the branes. This is guaranteed to be true
if the undeformed branes are supersymmetric, or nearly so,
which amounts to saying that the FI-terms must be small in
string units. However, for the type of brane stacks that are re-
quired here—those that yield large negative D3-brane charge—
there need not be any place in moduli space where all of the
FI-terms are small.

As one moves far away from the point in moduli space
where a single brane preserves the same supersymmetry as the
background, and the FI-term becomes of the same order as the
string scale, then the original effective field theory description
is no longer valid. The effective field theory can break down in
several ways, including the fact that the original light degrees
of freedom could become heavy, while new degrees of freedom
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become light. Indeed, the Swampland Distance Conjecture [21]
is essentially the claim that this will be the case. Thus, the form
of the D-term potential may be significantly corrected from that
given in equation 7, as one moves a significant distance in mod-
uli space.

Despite the detailed calculations necessarily breaking
down with large flux, the larger qualitative question that re-
mains is whether these putative supersymmetric bound states
do in fact exist. To address this question, one would need a
formalism for describing the stable objects (and their degrees
of freedom) as one moves arbitrarily far in moduli space. Al-
though Π-stability is a step in this direction for the N = 2
case [22], there is no such framework available yet for the case
of N = 1.

Our view, instead, is that the FFV conjecture corresponds
to a claim that such supersymmetric bound states should not ex-
ist. Note that this does not amount to merely the claim that for
a suitably large excursion of the moduli the FI-terms receive
large, uncomputable corrections. Although this would be ex-
pected, it would not resolve the problem; as we have shown,
generically, we would expect enough scalars to become tachy-
onic and allow the D-terms to relax to zero for any choice of
the FI-terms. The problem is that the low-energy theory itself
may be different, and we would have no way of counting the
degrees of freedom to determine if there exist enough tachyons
to relax the potential to zero. Indeed, we would not necessarily
know how many D-terms there are, as the rank of the gauge
group may also change if one moves a large distance in moduli
space. The claim here is that FFV conjecture insists that these
tachyons are eliminated and the number of flux vacua remains
large but finite. Other recent work has also proposed nontrivial
constraints on supersymmetric nonperturbative objects in the-
ories which do not belong to the Swampland [23].

5. WEAK FFV CONJECTURE AND
EFT ANALYSIS

We have discussed at length a rather strong version of an FFV
conjecture, but there are weaker versions of the conjecture that
could be compatible with the EFT analysis as long as an addi-
tional constraint on the central charge is imposed. We can de-
fine the weak FFV conjecture to be one that states that given
an upper bound on the vacuum energy, an upper bound on the
compactification volume, and a lower bound on the KK mass
scale, the number of 4D vacua is finite. This weaker version was
all that was needed to agree to some flux vacua analyses in the
literature (e.g., see [7]).

Let us suppose that the specific T6/Z2 × Z2 set-up that we
discussed above is required to adhere only to this weak FFV
but not the stronger version. What might be the consequences?
To answer this, we must recognize that as the charges increase
dramatically to achieve an increasing number of flux vacua, the
brane central charge

Z = QD3 + QD71A2A3 + QD72A3A1 + QD73A1A2, (8)

is prone to go negative rapidly for fixed compactification vol-
ume since QD3 → −x6 → −∞ while the QD7i stay fixed.
With no requirement on the central charge Z, the number of
flux vacua increases in violation of even the weak FFV conjec-
ture, unless we posit that the EFT analysis breaks down as we

did in the stronger FFV conjecture above. For the EFT analy-
sis to still be valid—to still qualitatively describe the degrees
of freedom and predict finite vacua—one must impose a pos-
itivity constraint on the central charge Z > 0. In this case, the
central charge can only be positive when Ai are large. For ex-
ample, for the case of Ai = A, one requires A > x3 to enable
Z > 0 required for self-consistency. Thus, it is clear that the
recombination of a set of many branes, with a net D3-brane
charge which is arbitrarily negative, forces us to an arbitrarily
large volume (decompactification limit), which at some point
becomes incompatible with any finite parameters applied to
the weak FFV. Although the decompactification limit cannot
be analyzed in the language of the low-energy effective field
theory once some limit is crossed, the qualitative compatibility
with the weak FFV has been shown within the EFT framework
since for any fixed compactification volume there are indeed
only a finite number of flux vacua allowed by the straightfor-
ward implementation of the EFT analysis presented above.

But it is worth noting that the conjecture for a finite num-
ber of fine-tunings seems to derive only from the strong FFV
conjecture, not the weak FFV conjecture. As the compactifica-
tion volume becomes increasingly large, the KK scale becomes
smaller and smaller, but for any finite compactification volume,
one is left with a 4D theory in deep IR. If only the weak FFV
conjecture holds, then one would find that 4D N = 1 theories
could have an arbitrarily large number of fine-tuned parame-
ters, realized in theories with increasingly small (though finite)
KK scales. Sufficiently deep in the IR, one could obtain as many
fine-tuned parameters as one desired. In particular, if only the
weak FFV holds, then given any putative limit on the number
of fine-tuned parameters of the low-energy theory, there exists
a scale such that, in the 4D effective field theory defined below
this scale, the number of fine-tuned parameters exceeds the pu-
tative limit. We thus see a connection between the strength of
the FFV conjecture and the precise formulation of the conjec-
tured limit on the number of fine-tuned parameters.

A Few Subtle Issues
Thus far, we have ignored a few additional subtle issues on the
grounds that they largely do not affect our main point. We now
discuss a few of these points here, to emphasize that these is-
sues illustrate our main point, which is that the FFV conjecture
requires consistency conditions for nonperturbative states that
are not obvious from the point of view of the low-energy effec-
tive field theory.

First, it is worth noting that the D-term potential does not
have true FI-terms, since they depend on the Kähler moduli
(see also [14]). But this does not affect our argument. Though in
principle one should fix all moduli simultaneously, we consider
here for simplicity the scenario in which the Kähler moduli are
stabilized at a higher scale (see, for example, [15, 16, 17]). But
this assumption is not critical to our point. Although consis-
tency with the FFV conjecture would be maintained if there was
an obstruction to the effective FI-terms obtaining the appropri-
ate signs when the open-string moduli solved the D-term equa-
tions, this would only confirm our point, which is that the FFV
conjecture requires a consistency condition for nonperturbative
states which is nontrivial from the effective field theory point
of view.

As a second point, we have utilized the fact that the Yukawa
couplings can be exponentially suppressed. But these cou-
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plings could still become large in the IR, through effects akin
to dimensional transmutation. But nothing requires this from
the effective field theory point of view; a requirement that such
couplings run to a large value and generate a nonvanishing F-
term would be another example of a consistency condition for
nonperturbative states which is nonobvious from the EFT point
of view, but which is required for the FFV conjecture.

We have suggested a criterion that might allow consistency
with the weak FFV conjecture, namely, that the central charge
for bound states preserving the same supersymmetry as the
background be positive. Although the lowest-order expression
for the central charge would indeed require an increasingly
large volume in order for states with increasingly negative D-
brane charge to still have positive central charge, this expres-
sion will get large corrections at a small volume. These correc-
tions, in general, may involve more than the volume moduli,
including Wilson line moduli, for example. As such, the crite-
rion we suggested may indeed fail to rescue the weak FFV, as
these problematic states might have a positive central charge
at a small volume. In this case, some corrected version of this
criterion would be required. Our goal was not to present defini-
tively the criterion that must be satisfied for a nonperturbative
state to preserve the same supersymmetry as the background,
as this criterion is not known. Rather, our point was to suggest
the type of criterion that could provide consistency with the
weak FFV.

We do not intend to suggest that our discussion of these is-
sues is exhaustive. There are many issues related to the count-
ing of flux vacua that we have not addressed. For example,
though it is often believed that the number of Calabi-Yau three-
folds is finite, this has not been proven. Moreover, we have con-
sidered a particular choice of orientifold projection, yielding
orientifold planes with particular charges, but there are others.
We have addressed a particular construction of flux vacua, and
have suggested criteria that could provide consistency with the
weak FFV. It is not obvious how this type of criterion should be
generalized in order to understand string vacua which do not
arise from this type of construction. For example, there are a
variety of stringy vacua for which the low-energy analysis of
this type is inapplicable. If these vacua are also consistent with
forms of the FFV conjecture, it is not clear how they would
be connected to the central charge criteria we have discussed
here. Nevertheless, the patch of the landscape that we have dis-
cussed presents unique opportunities to test landscape ideas
through nonperturbative analysis, which is why we focused on
it.

6. SUMMARY
In summary, we have seen in this analysis a possibly interesting
interplay between a detailed formulation of the conjecture(s) of
a finite number of 4D N = 1 flux vacua and the structure of
nonperturbative supersymmetric objects in string theory. This
leads to the possibility that a better understanding of the via-
bility and stability of supersymmetric brane bound states could
lead to concrete tests of some Swampland conjectures.
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