
Letters in High Energy Physics LHEP-202, 2021

Domain Walls and M2-Branes Partition Functions: M-Theory and
ABJM Theory
M. Nouman Muteeb

Abdus Salam School of Mathematical Sciences, Lahore, Pakistan

Abstract
We study the BPS counting functions (free energies) of the M-string configurations. We consider separated
M5-branes along with M2-branes stretched between them, with M5-branes acting as domain walls inter-
polating different configurations of M2-branes. We find recursive structure in the free energies of these
configurations. The M-string degrees of freedom on the domain walls are interpreted in terms of a pair
of interacting supersymmetric WZW models. We also compute the elliptic genus of the M-string in a toy
model of the ABJM theory and compare it with the M-theory computation.
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1. DOMAIN WALLS IN M-THEORY:
AN INTRODUCTION

The study of classification and dynamics of the 6d Supersym-
metric CFTs (SCFTs) is one of the important problems that is
currently an active area of research. The maximally supersym-
metric 6d CFTs are called (2, 0) theories. The type IIB string the-
ory in the background of A-type gives rise to (2, 0) A-type the-
ory. In the M-theory formulation, the (2, 0) AN−1 theory is the
worldvolume theory of N parallel and coincident M5-branes.
Away from the conformal point, the CFT describes the dynam-
ics of the self-dual strings of small tensions. In the M-theory,
these strings are described by the one-dimensional intersec-
tions of M5-branes and M2-branes. The strings support (4, 0)
quiver gauge theory. One crucial result of [1, 2, 3, 4, 5] is that
the elliptic genus of this quiver gauge theory turns out to be
equal to the partition function of the bulk theory.

The superconformal group of the theory is Osp(2, 6|4).
Let’s denote the 11d space-time R1,10 by the coordinates
xi, i = 0, 1, ..., 10. The coincident M5-branes span the coordi-
nates {x0, x1, ..., x5}. In the nonconformal limit, the M5-branes
are separated along the x6 direction with positions denoted
by ai, i = 1, 2, ..., N. The M2-branes are suspended between
consecutive M5-branes and span the coordinates {x0, x1, x6}.
The M2-brane couples to a 2-from field B inside the M5-brane
worldvolume, and the boundary of the M2-brane is what is
called the M-string. If we denote by ΓI the 32 × 32 11d gamma
matrices, then the supersymmetries preserved by the M-string
are given by

Γ016ϵ = ϵ, Γ012345ϵ = ϵ, Γ01ϵ = ϵ, (1)

where ϵ is the 32-component spinor and ΓI1 I2...Ik = ΓI1 ΓI2 ...ΓIk .
It is interesting to compact x1 to a circle of radius R1 and

consider M-theory compactification on this circle. This gives
rise to N = 2∗ SYM in the transverse five dimensions. The
gauge coupling constant is given by g2

YM = 4π2R1. The mo-
mentum around the S1 defines a quantum number of the 5d
BPS particles k

R1
= − 1

8g2
YM

∫
d4xtr(F ∧ F) and with the corre-

sponding mass M = R1δij +
k

R1
, where δij denotes the sep-

aration between i-th and j-th M5-branes. Moreover, the mass

deformation also breaks the string worldsheet supersymmetry
(4, 4) to (4, 0).

A further compactification of the theory can be considered
along the compactified direction x0. This makes the world-
volume of the M5-branes to be R4 × T2. Twisting the theory
as one moves around the second S1 defines the so-called Ω-
background which makes it possible to apply the equivariant
localisation to compute the partition function. To engineer 5d
N = 1∗ SU(N) gauge theory, one has to compact M-theory on
the elliptic CY3-fold AN−1 × T2. The instantons in the 4d the-
ory are none other than the M-strings wrapped on the whole of
T2.

Recall that the symmetry U(1)ϵ1 × U(2)ϵ2 × U(1)m acts
on the two R4s defined by the coordinates R4

|| : z1 =

x2 + ix3, z2 = x4 + ix5 and R4
⊥ : z3 = x7 + ix8, z4 =

x9 + ix10 as follows: (z1, z2) → (qz1, t−1z2), (z3, z4) →
(
√

t
q eπi(2m)z3,

√
t
q eπi(−2m)z4) where q := e2πiϵ1 , t := e−2πiϵ2 .

The toric geometry, dual to the type IIB D5-NS5-(1,1) branes
web, underlying the M-string computation is given in Figure 2.
The diagonal edges correspond to the mass parameter m, the
horizontal direction is periodic with period τ, and Q is the fu-
gacity corresponding to the internal vertical lines.

The target space of the gauged linear sigma model on the
worldsheet of M-string is the singular space SymnR4/Sn de-
scribed as the configuration space of n points on R4 modded
by the permutation group Sn. The singularity is due to the coin-
cidence of multiple points, and resolving this singularity gives
rise to the Hilbert scheme of n points on C2. So instead of deal-
ing with the ill-defined sigma model on SymnR4/Sn, one can
work with a (4, 0) sigma model on the M = Hilbn(C2) [1]. The
matter content of the theory is given by the sections of different
bundles on the instanton moduli space. In the current situation,
we have tangent bundle TM and the complex tautological bun-
dle E. The bundle E corresponds to the contribution of funda-
mental hypermultiplet in the gauge theory instanton compu-
tation. In this theory, the left-handed fermions are the sections
of tangent bundle TM, whereas the right-handed fermions are
the sections of E ⊕ E∗. The combination E ⊕ E∗, corresponding
to the two hypermultiplets, signifies the fact that in the toric
geometry P1 of the second hypermultplet is flopped [1].

The M-string worldsheet theory defines the target space
Hilbn(C2).

The coupling of the left moving fermions and right mov-
ing fermions to different bundles correspond to the different
boundary conditions around the 1-cycles of T2 when comput-
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11d M-theory space-time
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5 × × × × × ×
M2 × × ×
M-string × ×
ϵ1 × × × × × ×
ϵ2 × × × × × ×
m × × × ×

FIGURE 1: M-theory vacuum.
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FIGURE 2: Horizontally compactified toric web with corre-
sponding fugacities Qτ = e2πiτ , Qm = e2πim, and Q.

ing the elliptic genus. The (2, 2) sigma model contains bosons
ϕi and the fermions ψi

−, ψī
−, ψi

+ψī
+. Locally, the bosons describe

a map Φ : world − sheet → M. If we denote by K the bundle
of (1, 0)-forms and by K̄ the bundle of (0, 1) forms, then the
fermions are defined by the following pullback maps:

ψi
− = K

1
2 ⊗ Φ∗TM, ψī

− = K
1
2 ⊗ Φ∗T̄M,

ψi
+ = K̄

1
2 ⊗ Φ∗TM, ψī

+ = K̄
1
2 ⊗ Φ∗T̄M.

(2)

If right moving fermions ηa are also included, the supersym-
metry gets broken to (2, 0), and we define

ηa = K̄
1
2 ⊗ Φ∗(E ⊕ E∗). (3)

In mathematical terms, the elliptic genus is defined by the
index of the following formal combination of vector bundles
VQτ ,y [1, 4]:

VQτ ,Qm =
∞⊗

k=0

∧−QmQk−1
τ

(E ⊕ E∗)⊗
∞⊗

k=1

∧−Q−1
m Qk

τ
(E ⊕ E∗)∗

⊗
∞⊗

k=1

SQk
τ
T∗
M ⊗

∞⊗
k=1

SQk
τ
TM,

(4)

where ∧xW = ∑k≥0(∧kW)xk and SxW = ∑k≥0(SkW)xk are
formal power series. They define the exterior powers and the
symmetric powers of a bundle W as coefficients. The partition
function Z of the M-string configuration is the generating func-
tion of the elliptic genus χ(M, VQτ ,y):

Z = ∑
k≥0

Qkχ(M, VQτ ,y, k)

= ∑
k≥0

Qk
∫
M

ch((E ⊕ E∗)Qτ ,y)Td(TM)

= ∑
k≥0

(QmQ)k
∫
M

e∑d
i=1

1
2 (xi−x̃i)

d

∏
i=1

θ1(τ;−m + x̃i
2πi )

θ1(τ; xi
2πi )

,

(5)

where M = Hilbn[C2], x̃i and xi denote the formal roots of the
Chern polynomial of the bundles E⊕ E∗ and TM, respectively,
ch(V) is the Chern character of the bundle V, Td(T) is the Todd
class of the tangent bundle, and in the second equality of the
last expression, we have used the identity

ch(VQτ ,Qm )Td(TM)

=
∞

∏
k=1

∏i=1r (1 − Qk−1
τ Qme−x̃i )(1 − Qk

τQ−1
m ex̃i )

∏d
j=1 x−1

j (1 − Qk−1
τ e−xj )(1 − Qk

τexj )

(6)

along with the following definition of Dedekind theta function
θ1(τ):

θ1(τ; z) = −ie
iπτ

4 eiπz
∞

∏
k=1

(1 − e2πikτ)(1 − e2πikτe2πiz)

× (1 − e2πi(k−1)τe−2πiz),

θ1(τ + 1; z) = θ1(τ; z), θ1(−
1
τ

;
z
τ
) = −i(iτ)

1
2 e

iπz2
τ θ1(τ; z).

(7)

Recall that V = E ⊕ E∗ is a bundle on Hilbk[C2]. If an ideal
I denotes a point of Hilbk[C2], then the fiber of the bundle V
over I was found to be [1]

V|I = Ext1(O, I)⊗ L− 1
2 ⊕ Ext1(I,O)⊗ L− 1

2 , (8)

where L is the canonical line bundle on C2. It has been shown
that the appearance of the Ext-groups is related [6] to the count-
ing of open string states between the D-branes wrapped on
the holomorphic submanifolds. By determining the equivari-
ant weights of the bundle V, the M-string partition function is
determined. Intuitively, each M5-brane with M2-branes ending
on the left and right gives rise to a factor Ext1(I, J)⊗ L− 1

2 in the
bundle, where I denotes a point of Hilbn[C2] corresponding to
the M2-brane on the left and J denotes a point of Hilbm[C2] cor-
responding to the M2-brane on the right.

For general moduli space Mk1,...,kN−1
= Hilbk1 [C2] ×

Hilbk2 [C2] × ... × HilbkN−1 [C2], the fiber of the corresponding
bundle V over (I1, ..., IN−1) ∈ Mk1,...,kN−1

is given by

V|(I1,...,IN−1)
=
(
⊕N−1

a=0 Ext1(Ia, Ia+1)⊗ L− 1
2
)
. (9)

The fixed points are in one-to-one correspondence with the set
of partitions (ν1, ..., νN−1), and the equivariant weights of V
over the fixed point are

{Qmq−i+ 1
2 tj− 1

2 |(i, j) ∈ ν1} ∪ {Qmqi− 1
2 t−j+ 1

2 |(i, j) ∈ νN−1}(
∪N−2

a=1 {Qmqνt
a,j−i+ 1

2 tνa+1,i−j+ 1
2 |(i, j) ∈ νa}

∪ {Qmq−νt
a+1,j+i− 1

2 t−νa,i+j− 1
2 |(i, j) ∈ νa+1}

)
.

(10)

Using these weights at the fixed points, the partition function
turns out to be
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ZN(τ, m, t f1
, t f2 , ..., t fN , ϵ1, ϵ2)

= ∑
k1,k2,...,kN−1

(
N−1

∏
a=1

(−Q fa )
|νa |) ∑

|ν1|=k1,...,|νN−1|=kN−1

×
N−1

∏
a=1

∏
(i,j)∈νa

θ1(τ; za
i,j)θ1(τ; va

i,j)

θ1(τ; wa
i,j)θ1(τ; ua

i,j)
,

(11)

where

za
i,j = −m + ϵ1(−νt

a−1,j + i − 1
2
)− ϵ2(−νa,i + j − 1

2
),

va
i,j = −m + ϵ1(ν

t
a+1,j − i +

1
2
)− ϵ2(νa,i − j +

1
2
),

wa
i,j = ϵ1(ν

t
a,j − i)− ϵ2(νa,i − j + 1),

ua
i,j = ϵ1(−νt

a,j + i − 1)− ϵ2(−νa,i + j),

ν0 = 0, νN = 0,

(12)

and Q fa := Qa = e2πit fa , a = 1, ..., N − 1, are the fugacities in
terms of the coulomb branch parameters t fa that determine the
distance between consecutive M5-branes. From the expression
(11), we can isolate the following part:

Zk1,k2,...,kN−1
= ∑

|ν1|=k1,...,|νN−1|=kN−1

N−1

∏
a=1

∏
(i,j)∈νa

θ1(τ; za
i,j)θ1(τ; va

i,j)

θ1(τ; wa
i,j)θ1(τ; ua

i,j)
,

(13)

which can be interpreted [7] as the partition function of the fol-
lowing configuration of the wrapped M2-branes: k1 M2-branes
between the 1st and 2nd M5-branes, k2 M2-branes between the
2nd and 3rd M5-branes, and so on up to kN−1 M2-branes be-
tween the (N − 2)-th and (N − 1)-th M5-branes.

After stripping off the gauge theory U(1) part NPLogZ1
from the free energy

ΩN(τ, m, t fa , ϵ1, ϵ2) = PLogZN(τ, m, t fa , ϵ1, ϵ2)

= NPLogZ1 + PLogZ̃N ,
(14)

one can expand the remaining free energy Ω̃(τ, m, t fa , ϵ1, ϵ2) :=
PLogZ̃N in terms of the fugacities Q fa as follows:

Ω̃(τ, m, t fa , ϵ1, ϵ2) := PLogZ̃N

= ∑
ki=1

Qk1
f1

...QkN−1
fN−1

Fk1,k2,...,kN−1
(τ, m, ϵ1, ϵ2),

(15)

where the multi-index function Fk1,k2,...,kN−1
(τ, m, ϵ1, ϵ2) counts

the degeneracies of the M-strings bound states.

Presentation of the Article
After briefly introducing the M-strings and the correspond-
ing elliptic genus of its worksheet theory in Section 2, we dis-
cuss recursive structure in the expressions for free energies
corresponding to various configurations of the M2-M5 branes.
A general configuration consists of an array of multiple M2-
branes sandwiched between M5-branes. The M2-brane vacua
are labeled by the tuple of integer partitions that correspond

to the Young diagrams transforming in different representa-
tions. We discuss M2-M5 brane configurations in which the M2-
branes are labeled by antisymmetric representations and sym-
metric representations. For these representations, the free ener-
gies enjoy a partial recursive structure. For mixed1 representa-
tions, the recursive structure is lost except for the configuration
shown in Section 3. In Section 3, it is discussed that the open
topological string wave function for the configuration M2-M5-
M2 of branes can be described in terms of two WZW models
coupled together. In Section 4, we compute the elliptic genus
for the M-strings that arise in the ABJM model. We compare
it to the M-string elliptic genus as computed in the M-theory
framework.

2. RECURSIVE STRUCTURE IN THE
M-STRING PARTITION FUNCTION

For the M-string configuration in which a single M2-brane
is stretched between consecutive M5-branes, the free energies
show interesting recursive structure [4]. For more complicated
configurations, the recursive structure is not apparent in the ex-
pression for free energies, and the correct objects to decompose
are the components Zν1ν2...νn . In doing the following computa-
tions, we will often use the following symmetry of the elliptic
genera indices {µ1, ..., µn, ∅1, ∅2, ..., ∅m}:

Zpermutation{ µ1,...,µn ,∅1,∅2,...,∅m} = Zµ1,...,µn ,∅1,∅2,...,∅m , (16)

where ∅i = ∅j for all i, j, m can be less than, equal to, or greater
than n and permutation denotes any possible permutation of the
given indices.

For the configuration of partitions {α, α, α, ..., α},

Zαα..α = all possible ways of factorizing + ZαW(k−1)
α , (17)

where Wα can be thought of as a universal factor correspond-
ing to removing a single M5-brane. The meaning of the phrase
“all possible ways of factorizing” is the following: we will see ex-
plicitly in the next section that there is a recursive structure in
the expansion coefficients Zν1ν2...νn of the elliptic genera; for ex-
ample,

Z222 − 2Z22∅Z2∅∅ + Z3
2∅∅ = Z2∅∅W2(τ, m, ϵ1, ϵ2), (18)

where the explicit expressions for the factors Z222, Z22∅, Z2∅∅,
and W2(τ, m, ϵ1, ϵ2) are given in the next section. We can also
write the last expression as

Z222 = 2Z22∅Z2∅∅ − Z3
2∅∅ + Z2∅∅W2(τ, m, ϵ1, ϵ2)

= all possible ways of factorizing
+ Z2∅∅W2(τ, m, ϵ1, ϵ2).

(19)

In general, if there are k partitions α1, ..., αk of the same size,
then it is the case that

Zα1α2...αk = all possible ways of factorizing
+ ZβWα1α2 Wα2α3 ....Wαk−2αk−1 Wαk−1αk ,

(20)

1Configurations of M5-M2 branes in which an M2-brane may carry a symmet-
ric or an antisymmetric representation.
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where β is the result of fusing [8] the partitions (α1, α2, ..., αk).
The universal factors Wαβ can be thought of as the effect of re-
moving an M5-brane which fuses partitions α and β. It should
be possible (see Section 3) to obtain Wαβ from the M2-brane per-
spective as some kind of partition function associated with the
domain wall represented by the M5-brane between the vacua
labeled by α and β. This should also be possible to do using the
ABJM theory.

The free energy F = ln(Z) constructed from the parti-
tion function contains information about both the single par-
ticle and multiparticle BPS states. The plethystic summation is
used to project out the multiparticle states. Hence, the function
Fk1k2,...,kn counts single particle BPS states and can be expanded
as

Fk1,...,kN−1
(τ, m, ϵ1, ϵ2)

= coefficient of Qk1
f1

...QkN−1
fN−1

in ∑
l≥1

µ(l)
l

log(ZN(lτ, lm, lt fa , lϵ1, lϵ2)).

(21)

2.1. Recursive Structure for the Configuration of Fully Anti-
symmetric Young Diagrams

Below, we give examples for a few configurations of the M5-M2
brane system. These examples show that there is no recursive
structure for the full expressions of the free energies. Only a
part of the expression of the free energy shows the recursive
structure. This part is what is alluded to before as

Zα1α2...αk + all possible ways of factorizing. (22)

• F2∅∅, F22∅, F222

F2∅∅(τ, m, ϵ1, ϵ2) = −1
2

Z1∅∅(τ, m, ϵ1, ϵ2)
2

+

[
Z2∅∅(τ, m, ϵ1, ϵ2)

]
−
(

Z1∅∅(2τ, 2m, 2ϵ1, 2ϵ2)

)
F22∅(τ, m, ϵ1, ϵ2) = −

[
Z2

2∅∅(τ, m, ϵ1, ϵ2)− Z22∅(τ, m, ϵ1, ϵ2)

]
−
(

F11∅(2τ, 2m, 2ϵ1, 2ϵ2)

)
+ other terms,

(23)

and finally,

F222(τ, m, ϵ1, ϵ2)

=

[
Z3

2∅∅(τ, m, ϵ1, ϵ2)− 2Z22∅(τ, m, ϵ1, ϵ2)Z2∅∅(τ, m, ϵ1, ϵ2)

+ Z222(τ, m, ϵ1, ϵ2)

]
−
(

F111(2τ, 2m, 2ϵ1, 2ϵ2)

)
+ other terms.

(24)

We now show that the terms in the square brackets form a re-
cursive structure. First, we consider instanton number ki = 2
and the following Young diagrams:

ν1 = {1, 1}, ν2 = {1, 1}, ..., and so on. (25)

Using the notation θ1(x ± y) := θ1(x + y)θ1(x − y), we find

Z22∅(τ, m, ϵ1, ϵ2)− Z2
2∅∅(τ, m, ϵ1, ϵ2)

= Z2∅∅(τ, m, ϵ1, ϵ2)W2(τ, m, ϵ1, ϵ2),
(26)

where

W2(τ, m, ϵ1, ϵ2)

:=
1

θ1(ϵ1 − ϵ2)θ1(−2ϵ2)θ1(ϵ1)θ1(−ϵ2)

×
[
θ1

(
− m ± ϵ1

2
∓ 3ϵ2

2

)
θ1(−m ± ϵ−)

− θ1(−m ± ϵ+)θ1

(
− m ± ϵ1

2
± 3ϵ2

2

)]
(27)

to the next order

Z222(τ, m, ϵ1, ϵ2) + Z3
2∅∅(τ, m, ϵ1, ϵ2)

− 2Z22∅(τ, m, ϵ1, ϵ2)Z2∅∅(τ, m, ϵ1, ϵ2)

= Z2∅∅(τ, m, ϵ1, ϵ2)W2(τ, m, ϵ1, ϵ2)
2.

(28)

• F3∅∅, F33∅, F333

F3∅∅(τ, m, ϵ1, ϵ2) =

[
Z3∅∅(τ, m, ϵ1, ϵ2)

]
− Z1∅∅(τ, m, ϵ1, ϵ2)Z2∅∅(τ, m, ϵ1, ϵ2)

− 1
3

Z1∅∅(τ, m, ϵ1, ϵ2)
3,

F33∅(τ, m, ϵ1, ϵ2) =

[
Z33∅(τ, m, ϵ1, ϵ2)− Z3∅∅(τ, m, ϵ1, ϵ2)

2
]

+ other terms,

F333(τ, m, ϵ1, ϵ2) =

[
Z333(τ, m, ϵ1, ϵ2)− 2Z33∅(τ, m, ϵ1, ϵ2)

Z3∅∅(τ, m, ϵ1, ϵ2) + Z3∅∅(τ, m, ϵ1, ϵ2)
3
]

+ other terms.
(29)

Now, we consider the terms in square brackets for instanton
number ki = 3 and the following Young diagrams:

ν1 = {1, 1, 1}, ν2 = {1, 1, 1}, ..., and so on, (30)

Z33∅(τ, m, ϵ1, ϵ2)− Z3∅∅(τ, m, ϵ1, ϵ2)
2

= Z3∅∅(τ, m, ϵ1, ϵ2)W3(τ, m, ϵ1, ϵ2),
(31)

where

W3(τ, m, ϵ1, ϵ2)

=
1

θ1(ϵ1 − ϵ2)θ1(−2ϵ2)θ1(ϵ1)θ1(−ϵ2)θ1(−3ϵ2)θ1(ϵ1 − 2ϵ2)

×
[
θ1(−m ± ϵ1

2
∓ 5ϵ2

2
)θ1(−m ± ϵ1

2
∓ 3ϵ2

2
)θ1(−m ± ϵ−)

− θ1(−m ± ϵ1
2

± 5ϵ2
2

)θ1(−m ± ϵ1
2

± 3ϵ2
2

)θ1(−m ± ϵ+)
]

(32)

to the next order

Z333(τ, m, ϵ1, ϵ2)− 2Z33∅(τ, m, ϵ1, ϵ2)Z3∅∅(τ, m, ϵ1, ϵ2)

+ Z3∅∅(τ, m, ϵ1, ϵ2)
3

= Z3∅∅(τ, m, ϵ1, ϵ2)W3(τ, m, ϵ1, ϵ2)
2.

(33)

4



Letters in High Energy Physics LHEP-202, 2021

2.2. Observation
We observe that Wi(τ, m, ϵ1, ϵ2), i = 1, ..., N, follow a pattern

W1(τ, m, ϵ1, ϵ2) =
θ1(−m ± ϵ+)− θ1(−m ± ϵ−)

θ1(ϵ1)θ1(−ϵ2)

W2(τ, m, ϵ1, ϵ2)

=
θ1(−m ± ϵ+)θ1(−m ± ϵ+ ± ϵ2)− θ1(−m ± ϵ−)θ1(−m ± ϵ− ∓ ϵ2)

θ1(ϵ1)θ1(ϵ1 − ϵ2)θ1(−ϵ2)θ1(−2ϵ2)

W3(τ, m, ϵ1, ϵ2)

=
θ1(−m ± ϵ+)θ1(−m ± ϵ+ ± ϵ2)θ1(−m ± ϵ+ ± 2ϵ2)

θ1(ϵ1)θ1(ϵ1 − ϵ2)θ1(ϵ1 − 2ϵ2)θ1(−ϵ2)θ1(−2ϵ2)θ1(−3ϵ2)

− θ1(−m ± ϵ−)θ1(−m ± ϵ− ∓ ϵ2)θ1(−m ± ϵ− ∓ 2ϵ2)

θ1(ϵ1)θ1(ϵ1 − ϵ2)θ1(ϵ1 − 2ϵ2)θ1(−ϵ2)θ1(−2ϵ2)θ1(−3ϵ2)
.

(34)

The above simple observation leads to the following general-
ization:

WN(τ, m, ϵ1, ϵ2) =
N

∏
k=1

[
θ1(−m ± ϵ+ ± (k − 1)ϵ2)

θ1(−kϵ2)θ1(ϵ1 − (k − 1)ϵ2)

]

−
N

∏
k=1

[
θ1(−m ± ϵ− ∓ (k − 1)ϵ2)

θ1(−kϵ2)θ1(ϵ1 − (k − 1)ϵ2)

]
.

(35)

It is curious to note that WN(τ, m, ϵ1, ϵ2) can be written in
terms of W1(τ, m, ϵ1, ϵ2). We can rewrite W1(τ, m, ϵ1, ϵ2) as

W1(τ, m, ϵ1, ϵ2) =
θ1(−m ± ϵ+)− θ1(−m ± ϵ−)

θ1(ϵ1)θ1(−ϵ2)

:= W+
1 (τ,−m ± ϵ+, ϵ1, ϵ2)

− W−
1 (τ,−m ± ϵ−, ϵ1, ϵ2).

(36)

Then, WN(τ, m, ϵ1, ϵ2) can be rewritten in terms of W+
1 (τ,−m±

ϵ+, ϵ1, ϵ2)—and W−
1 (τ,−m ± ϵ−, ϵ1, ϵ2)—as

WN(τ, m, ϵ1, ϵ2)

=
N

∏
k=1

[
W+

1

(
τ,−m ± ϵ+ ± (k − 1)ϵ2,−kϵ2, ϵ1 − (k − 1)ϵ2

)]

−
N

∏
k=1

[
W−

1

(
τ,−m ± ϵ− ∓ (k − 1)ϵ2,−kϵ2, ϵ1 − (k − 1)ϵ2

)]
.

(37)

Note that under the modular transformation (τ, m, ϵ1, ϵ2) →
(− 1

τ , m
τ , ϵ1

τ , ϵ2
τ ), WN(τ, m, ϵ1, ϵ2) transforms as

WN

(
− 1

τ
,

m
τ

,
ϵ1
τ

,
ϵ2
τ

)
=

N

∏
k=1

e
πi
τ (2m2+2(ϵ++(k−1)ϵ2)2−kϵ2

2)
[

θ1(−m ± ϵ+ ± (k − 1)ϵ2)

θ1(−kϵ2)θ1(ϵ1 − (k − 1)ϵ2)

]

−
N

∏
k=1

e
πi
τ (2m2+2(ϵ−−(k−1)ϵ2)2−kϵ2

2)
[

θ1(−m ± ϵ− ∓ (k − 1)ϵ2)

θ1(−kϵ2)θ1(ϵ1− (k − 1)ϵ2)

]
.

(38)

This shows that it is not a modular covariant. However, in the
NS limit ϵ2 → 0, it becomes modular covariant. For finite N,
in the NS limit ϵ1 → 0, WN(τ, m, ϵ2) reduces to the following

expression:

WN(τ, m, ϵ2)
NS

= − ι

η(τ)3θ1(−ϵ2)∏N
k=2 θ1(−kϵ2)θ1(−(k − 1)ϵ2)

×
( N

∑
l=1

θ′1

(
− m +

2l − 1
2

ϵ2

)
θ1

(
− m − 2l − 1

2
ϵ2

)

×
N

∏
k=1,k ̸=l

θ1

(
− m ± 2k − 1

2
ϵ2

)

−
N

∑
l=1

θ′1

(
− m − 2l − 1

2
ϵ2

)
θ1

(
− m +

2l − 1
2

ϵ2

)

×
N

∏
k=1,k ̸=l

θ1

(
− m ± 2k − 1

2
ϵ2

))
.

(39)

Multiwrapping Contribution
If n > 1 denotes the number of wrappings, there are two
choices.

(a) n Contains Repeated Prime Factors
In this case, there will be no contributions to the free energy
from multiwrappings.

(b) n Is Equal to the Product of k Distinct Prime Factors
For this case, the generalized expression for WN(τ, m, ϵ1, ϵ2) is
given as

Wn,N(τ, m, ϵ1, ϵ2)
multi−wrappings

≡
N

∏
k=1

[
θ1(nτ,−nm ± nϵ+ ± n(k − 1)ϵ2)

θ1(nτ,−nkϵ2)θ1(nτ, nϵ1 − n(k − 1)ϵ2)

]

−
N

∏
k=1

[
θ1(nτ,−nm ± nϵ− ∓ n(k − 1)ϵ2)

θ1(nτ,−nkϵ2)θ1(nτ, nϵ1 − n(k − 1)ϵ2)

]
= WN(nτ, nm, nϵ1, nϵ2).

(40)

This result confirms the fact that the correct objects to decom-
pose for multiple M2-brane configurations are the components
Zν1ν2...νn and not the free energies or BPS degeneracies F’s.

2.3. Mixed Partitions
• F12∅∅∅∅, F1212∅∅, F121212

Z1212∅∅(τ, m, ϵ1, ϵ2)− Z2
12∅∅∅∅(τ, m, ϵ1, ϵ2)

= Z12∅∅∅∅(τ, m, ϵ1, ϵ2)W12(τ, m, ϵ1, ϵ2),
(41)
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where

W12(τ, m, ϵ1, ϵ2)

=
1

D12∅∅∅∅(τ, m, ϵ1, ϵ2)

× θ1

(
1
2
(−2m + ϵ1 − 3ϵ2)

)
θ1

(
−m − ϵ1

2
− ϵ2

2

)
× θ1

(
1
2
(−2m − ϵ1 + ϵ2)

)
θ1

(
1
2
(−2m + ϵ1 + ϵ2)

)
×
[

θ1

(
1
2
(−2m + ϵ1 − ϵ2)

)
θ1

(
−m − ϵ1

2
+

3ϵ2
2

)
− θ1

(
−m − ϵ1

2
− ϵ2

2

)
θ1

(
1
2
(−2m + ϵ1 + 3ϵ2)

) ]
.

(42)

• Zν1ν2ν3 for ν1 = {1, 1, 1}, ν2 = {3}, ν3 = {2, 1}
A nontrivial example of mixed Young diagrams case is Zν1ν2ν3 ,
where ν1 is the fully symmetric Young diagram, ν2 is the fully
antisymmetric Young diagram, and ν3 = {2, 1}. Note that
|ν1| = |ν2| = |ν3| = 3. In this case, we get

Zν1ν2ν3 (τ, m, ϵ1, ϵ2)− Zν1 (τ, m, ϵ1, ϵ2)Zν2ν3 (τ, m, ϵ1, ϵ2)

− Zν1ν2 (τ, m, ϵ1, ϵ2)Zν3 (τ, m, ϵ1, ϵ2)

+ Zν1 (τ, m, ϵ1, ϵ2)Zν2 (τ, m, ϵ1, ϵ2)Zν2 (τ, m, ϵ1, ϵ2)

=
1

θ1(−2ϵ1)θ1(−ϵ1)2θ1(ϵ1)2θ1(3ϵ1)θ1(ϵ1 − 2ϵ2)2θ1(−ϵ2 + 2ϵ1)2θ1(−3ϵ2)

× 1
θ1(−ϵ2)2θ1(ϵ2)2θ1(2ϵ2)θ1(ϵ2 − ϵ1)2

× θ1

(
1
2
(ϵ1 − 3ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 − ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 + ϵ2 − 2m)

)3

θ1

(
1
2
(3ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(−ϵ1 + 3ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 + 3ϵ2 − 2m)

)
[

θ1

(
1
2
(5ϵ1 − 3ϵ2 − 2m)

)
θ1

(
1
2
(−ϵ1 − ϵ2 − 2m)

)
θ1

(
1
2
(−ϵ1 + ϵ2 − 2m)

)2

− θ1

(
1
2
(3ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(5ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(−ϵ1 + 5ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 + 3ϵ2 − 2m)

)]
[

θ1

(
1
2
(ϵ1 − ϵ2 − 2m)

)
θ1

(
1
2
(−3ϵ1 − ϵ2 − 2m)

)2

θ1

(
1
2
(−ϵ1 − ϵ2 − 2m)

)2

θ1

(
1
2
(−5ϵ1 + 5ϵ2 − 2m)

)
− θ1

(
1
2
(3ϵ1 − ϵ2 − 2m)

)
θ1

(
1
2
(5ϵ1 − ϵ2 − 2m)

)
θ1

(
1
2
(−3ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(5ϵ1 − ϵ2 − 2m)

)
θ1

(
1
2
(−3ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(−ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 + 5ϵ2 − 2m)

)]
.

(43)

• Zν1ν2ν3 for ν1 = {2, 1, 1}, ν2 = {3, 1}, ν3 = {2, 2}
A second nontrivial example of mixed Young diagrams corre-
sponds to ν1 = {2, 1, 1}, ν2 = {3, 1}, and ν3 = {2, 2}. Note that

|ν1| = |ν2| = |ν3| = 4 in this case. We get

Zν1ν2ν3 (τ, m, ϵ1, ϵ2)− Zν1 (τ, m, ϵ1, ϵ2)Zν2ν3 (τ, m, ϵ1, ϵ2)

− Zν1ν2 (τ, m, ϵ1, ϵ2)Zν3 (τ, m, ϵ1, ϵ2)

+ Zν1 (τ, m, ϵ1, ϵ2)Zν2 (τ, m, ϵ1, ϵ2)Zν2 (τ, m, ϵ1, ϵ2)

=
1

θ1(−ϵ1)2θ1(ϵ1)4θ1(2ϵ1)θ1(ϵ1−3ϵ2)θ1(ϵ1−2ϵ2)θ1(2ϵ1−2ϵ2)2θ1(ϵ1−ϵ2)3

× 1
θ1(2ϵ1 − ϵ2)θ1(3ϵ1 − ϵ2)θ1(−2ϵ2)2θ1(−ϵ2)4)θ1(ϵ2)2

θ1(
1
2
(ϵ1 − ϵ2 − 2m))θ1

(
1
2
(ϵ1 + ϵ2 − 2m)

)3

θ1

(
1
2
(3ϵ1 + ϵ2 − 2m)

)2

θ1

(
1
2
(ϵ1 + 3ϵ2 − 2m)

)2

θ1

(
1
2
(3ϵ1 + 3ϵ2 − 2m)

)
[

θ1

(
1
2
(3ϵ1 − 3ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 − ϵ2 − 2m)

)2

θ1

(
1
2
(−ϵ1 − ϵ2 − 2m)

)2

θ1

(
1
2
(−3ϵ1 + ϵ2 − 2m)

)2

θ1

(
1
2
(−5ϵ1 + 5ϵ2 − 2m)

)
− θ1

(
1
2
(5ϵ1 − ϵ2 − 2m)

)
θ1

(
1
2
(−ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 + ϵ2 − 2m)

)

θ1

(
1
2
(3ϵ1 + ϵ2 − 2m)

)3

θ1

(
1
2
(ϵ1 + 3ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 + 5ϵ2 − 2m)

)]
[

θ1

(
1
2
(5ϵ1 − 3ϵ2 − 2m)

)
θ1

(
1
2
(ϵ1 − ϵ2 − 2m)

)2

θ1

(
1
2
(−ϵ1 + ϵ2 − 2m)

)2

θ1

(
1
2
(−3ϵ1 + 3ϵ2 − 2m)

)
θ1

(
1
2
(−ϵ1 + 3ϵ2 − 2m)

)
− θ1

(
1
2
(3ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(5ϵ1 + ϵ2 − 2m)

)
θ1

(
1
2
(−ϵ1 + 5ϵ2 − 2m)

)

θ1

(
1
2
(ϵ1 + 3ϵ2 − 2m)

)3

θ1

(
1
2
(3ϵ1 + 3ϵ2 − 2m)

)]
.

(44)

This is in line with the statement given in (20) that if there
are k partitions α1, ..., αk of the same size, i.e., |α1| = ... = |νk| =
n, then it is the case that

Zα1α2...αk = all possible ways of factorizing
+ ZβWα1α2 Wα2α3 ....Wαk−2αk−1 Wαk−1αk ,

(45)

where β is the result of fusing [8] the partitions (α1, α2, ..., αk).

General Configuration
In the general configuration, we consider r + 1 M5-branes with
ki, i = 1, ..., r, M2-branes between the i-th and (i + 1)-th M5-
branes. The Young diagrams labeling the M2-branes are in anti-
symmetric representations. The corresponding components of
the elliptic genus Zk1k2...kr (τ, m, ϵ1, ϵ2) have the following recur-
sive pattern:

Zk1k2 ...kr k1k2 ...kr k1k2 ...kr (τ, m, ϵ1, ϵ2)− 2Zk1k2 ...kr k1k2 ...kr ∅∅...∅(τ, m, ϵ1, ϵ2)

Zk1k2 ...kr ∅∅...∅∅∅...∅(τ, m, ϵ1, ϵ2) + Z3
k1k2 ...kr ∅∅...∅∅∅...∅(τ, m, ϵ1, ϵ2)

=

{[ k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

6
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kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k1 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))]
×
[ k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr + l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k1 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))]
×
[ k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr + l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
− l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))]}

− 2

{[ k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k1 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))
k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr + l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
− l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))]
[ k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
− l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))]}
(46)

+

{
k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
− l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))}3

=

{
k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
− l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))}
{(

kr

∏
l=1

θ1

(
− m +

ϵ1

2
−ϵ2

(
k1− l+

1
2

))
θ1

(
− m− ϵ1

2
− ϵ2

(
− kr−1 +l − 1

2

))

×
k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr + l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...
kr−1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
kr − l +

1
2

))

θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−2 + l − 1

2

)))2

− 2

[
k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k1 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))
k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr + l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
− l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))]

+

(
k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
− l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

)))2}

= Zk1k2 ...kr ∅∅...∅∅...∅

{
k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

7
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kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
− l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))
−

k1

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k2 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
l − 1

2

))
k2

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
k3 − l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− k1 + l − 1

2

))
...

kr

∏
l=1

θ1

(
− m +

ϵ1

2
− ϵ2

(
− l +

1
2

))
θ1

(
− m − ϵ1

2
− ϵ2

(
− kr−1 + l − 1

2

))}2

= Zk1k2 ...kr ∅∅...∅∅...∅(τ, m, ϵ1, ϵ2)W2
k1k2 ...kr

(τ, m, ϵ1, ϵ2).

(47)

2.4. Fully Symmetric Configuration of the Young Diagrams
The symmetric configuration of the Young diagram is the com-
plex conjugate of the antisymmetric configuration, and this
amounts to replacing ϵ1 with ϵ2 and vice versa. The results ob-
tained in the previous section remain valid in this situation if
we make the replacement

ϵ2 ↔ ϵ1 (48)

WN(τ, m, ϵ1, ϵ2) =
N

∏
k=1

[
θ1(−m ± ϵ+ ± (k − 1)ϵ1)

θ1(−kϵ1)θ1(ϵ2 − (k − 1)ϵ1)

]

−
N

∏
k=1

[
θ1(−m ± ϵ− ∓ (k − 1)ϵ1)

θ1(−kϵ1)θ1(ϵ2 − (k − 1)ϵ1)

]
.

(49)

For finite N, in the NS limit ϵ2 → 0, we get

WN(τ, m, ϵ2)
NS

= − ι

η(τ)3θ1(−ϵ1)∏N
k=2 θ1(−kϵ1)θ1(−(k − 1)ϵ1)

×
( N

∑
l=1

θ′1

(
− m +

2l − 1
2

ϵ1

)
θ1

(
− m − 2l − 1

2
ϵ1

)
N

∏
k=1,k ̸=l

θ1

(
− m ± 2k − 1

2
ϵ1

)

−
N

∑
l=1

θ′1

(
− m − 2l − 1

2
ϵ1

)
θ1

(
− m +

2l − 1
2

ϵ1

)
N

∏
k=1,k ̸=l

θ1

(
− m ± 2k − 1

2
ϵ1

))
.

(50)

2.5. Remark: Some Comments on the Algebra of Holomorphic
Curves and the Recursive Structure

Gopakumar and Vafa reformulated [9, 10] the topological string
amplitudes focussing on the target space perspective. The 5d
N = 1∗ supersymmetric gauge theory, for a given M-theory
CY3-fold compactification, has BPS particles. These BPS par-
ticles correspond to the M2-branes wrapped on holomorphic
curves in the CY3-fold. The quantum numbers of the BPS par-
ticles are given by the curve class Σ ∈ H2(CY3, Z) and the
spin content of the 5d little group of the massive particles
(jR, jL) = SU(2)R × SU(2)L. The particle content with charge
Σ and spins (jR, jL) is invariant for a noncompact CY3-fold and

is denoted by N(jR ,jL)
Σ . The moduli space furnished by the D2-

branes wrapped on Σ is topologically nontrivial, and the num-

ber of its cohomology classes is equal to N(jR ,jL)
Σ . The explicit

form of the topological string partition function is given by

Z(ω, ϵ) = ∏
Σ∈H2(CY3)

∏
jL

×
jL

∏
k=−jL

∞

∏
m=0

(1 − q2k+m+1QΣ)(−1)2jL+1(m+1)N(jR ,jL )
Σ ,

(51)

where QΣ = e−TΣ , q = e−iϵ, and ω is the Kähler form on the
CY3-fold. It was shown in [9] that for jL = 0 the partition func-
tion Z(ω, ϵ) counts the states in a Hilbert space. It is interesting

to note that, for a given particle content N(jR ,jL)
Σ , the above par-

tition function Z(ω, ϵ) can be written as an index as [11]

Z = TrH(−1)2(jL+jR)q2j3
L e−TΣ , (52)

where H is the quantized Hilbert subspace containing holo-
morphic modes of the BPS fields and TΣ is the Hamiltonian
of the theory. In other words, the topological string partition
function can be interpreted as counting the holomorphic (com-
ponents of the) BPS states in the quantized Hilbert space.

Moreover, as shown in Section 2 in the computation of the
M-strings partition function, one has to use fixed point theo-
rems. For that purpose, it is necessary to determine the equiv-
ariant weights of certain vector bundles on the M-string moduli
space. In the description of the vector bundles, the Ext-groups
make an appearance. These groups appear [12] in the counting
problem of open string states between the D-branes wrapped
on the holomorphic submanifolds.

It was shown in [5] that the free energies F11,12,...,1N (τ, m, ϵ1,
ϵ2) for a configuration of finitely separated N + 1 M5-branes
with a single M2-brane stretched between consecutive M5-
branes are reducible and recursive such that

F11,12,...,1N (τ, m, ϵ1, ϵ2)

= W(τ, m, ϵ1, ϵ2)
N−1F11,0,...,0(τ, m, ϵ1, ϵ2).

(53)

This shows that the factor of W(τ, m, ϵ1, ϵ2) appears every
time a single M5-brane is removed from the configuration
—M2-M5-M2—. This recursive structure, as shown in [13],
indicates that the degrees of freedom corresponding to the
F11,12,...,1N (τ, m, ϵ1, ϵ2) can be obtained from F11,0,...,0(τ, m, ϵ1, ϵ2)
up to the universal factor W(τ, m, ϵ1, ϵ2). A similar interpre-
tation is expected from the generalized WN(τ, m, ϵ1, ϵ2) com-
puted in Section 2.

The M-string configuration when lifted to the higher di-
mensional F-theory corresponds [14] to an elliptic CY3-fold
in which a D3-brane wraps a P1 whose normal bundle is
O(−2). The configuration of multiple parallel M5-branes with
M2-branes stretching between them corresponds to D3-branes
wrapping a chain of P1s with O(−2) normal bundles. The el-
liptic CY3-fold is a resolved AN−1 fibration over the T2. In this
setup, the M5-branes correspond to a holomorphic (−2) curve.
In the case under consideration, the holomorphic cycles corre-
spond to the positive roots of the gauge group SU(N) of the
5d,N = 1∗ gauge theory. Recalling that [15] for two holo-
morphic curves C1 and C2, one can compute (C1 + C2)

2 =
C1.C1 + C2.C2 + 2C1.C2 when their self-intersections and C1.C2
are known. For the special case of C1.C1 = −2 and C2.C2 = −2

8
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and C1 intersecting C2 at a single point, i.e. C1.C2 = 1, we get
(C1 + C2)

2 = −2 − 2 + 2(1) = −2. Generalizing this to a chain
of (−2) curves C1, C2, ..., CN in which i-th curve intersects only
(i − 1)-th and (i + 1)-th curves, i.e. Ci.Ci = −2, i = 1, ..., N, and
Ci.Ci−1 = 1, Ci.Ci+1 = 1 with all other intersections equal to
zero, it is easy to see that

(C1 + C2 + ... + CN)2 = −2. (54)

It is interesting to speculate that this property of the (−2)
curves mimics the result (53) with the universal factor
W(τ, m, ϵ1, ϵ2) playing the role of the identity element.

As shown in the previous sections, for multiple M2-branes
between consecutive M5-branes, instead of the free energies, it
is the elliptic genera that carry the recursive structure. It will be
interesting to elaborate on this phenomenon in the framework
of F-theory.

3. DOMAIN WALL DEGREES OF
FREEDOM: COUPLED SUPERSYMMET-
RIC WZW MODELS

We begin this section by reviewing the supergroup WZW mod-
els. The supergroup WZW model [16, 17] is described by the
maps f : Σ → (super group)SG from a two-dimensional Eu-
clidean Riemann surface Σ to the supergroup SG, and its dy-
namics is given by the action

S[ f ] = − k
8π

∫
Σ

d2x( f−1∂α f , f−1∂α f )

− ik
24π

d3xϵµνλ( f−1∂µ f , [ f−1∂νλ, f−1∂λ f ]),
(55)

where M is a three-manifold with Σ as its boundary and k ∈ Z

is the level. The symmetry group SG(z)× SG(z̄) that generates
the left and right actions is defined by

f (z, z̄) → Λ(z) f (z, z̄)Λ̄−1(z̄), (56)

where Λ(z) and Λ(z̄) denote the arbitrary SG-valued functions
of the complex variables z and z̄. Note that equation (55) is in-
variant under the transformation given by (56). The conserved
currents for this symmetry are given by

J(z) = Ja(z)Ta = −k∂z f . f−1 (57)

with the generators of the Lie superalgebra sg denoted by Ta.
The OPE of the generators Ja is given by

Ja(z)Jb(w) ∼ k(Ta, Tb)

(z − w)2 +
[Ta, Tb]c Jc(w)

z − w
. (58)

As a consequence of the OPE, we have the following commuta-
tion relations which define the affine Lie superalgebra ŝg [17]:

[Ja
n, Jn

m] = [Ta, Tb]c Jc
n+m + m(Ta, Tb)δn+mk. (59)

On the boundary of an M2-brane, the description by the ABJM
model gives rise to the WZW model. The content of the ABJM
model can be described in terms of type IIB brane configura-
tions. To this end, see Figure 3, note that the T-duality operation
on D3-branes wrapped on a circle gives rise to D2-branes in

type IIB space-time
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
D5 × × × × × ×
D3+ × × × +
D3− × × × −

FIGURE 3: Type IIB picture

11d M-theory space-time
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M5 × × × × × ×
M5′ × × × × × ×
M2 × × ×

FIGURE 4: The dual M-theory picture

type IIA. These D2-branes can be lifted to the M2-branes in M-
theory. To get the required contents of Chern-Simons descrip-
tion of the ABJM theory, the D3-branes are arranged so as to
intersect two NS5-branes along the circle. Moreover, the k D5-
branes are added to this configuration as summarized in the
table given in Figure 3.

The x6 direction is compact with period 2πR, with the two
NS5-branes located at x6 = 0 and x6 = πR. x6 = 0 is the lo-
cus of D5-branes. Resolving the intersections of the NS5-brane
with the k D5-branes produces a (p, q) 5-brane web. The result-
ing theory is super Yang-Mills with massive chiral multiplets.
Integrating out the chirality gives rise to the Chern-Simons the-
ory. Finally, the T-duality operation along x6 followed by the lift
to 11-dimensions gives rise to M2-branes spanning (x0, x1, x2).
Under the T-duality, the 5-branes turn into KK-monopoles and
D6-branes. The low-energy description is thus given by M2-
branes probing C4/Zk.

In summary, the configuration of N D3+-branes and N
D3−-branes that are stretched between coincident NS5- and
NS5′-branes can be lifted to the M-theory configuration M5-N
M2-M5′ to give a GL(N|N) WZW model. In the same way, the
configuration figure (Figure 4) M5-N M2-M5′-M M2-M5 will
give GL(N|N)×GL(M|M) WZW model with additional bifun-
damental matter content.

νi

νi+1

FIGURE 5: Toric diagram for the open string wave function
Wνiνi+1 . Red lines denote the periodicity of the vertical side.

The open topological string wave function Wνiνi+1 , which
is a building block of the partition function (11), is also the
counting function for BPS excitations corresponding to the in-
tersecting configurations of M2- and M5- branes. The topologi-
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cal open string wavefunction takes the form [1]

Wνiνi+1 (Qτ , Qm, t, q) = t−
||νm+1 ||

2

2 q−
||νm ||2

2 Z̃νt
m
(q−1, t−1)

Z̃νm+1 (t
−1, q−1)Q

− |νm |+|νm+1 |
2

m ∏
k=1

(1 − Qk
τ)

−1

× ∏
i,j=1

(1−Qk
τ Q−1

m qνm+1,i−j+ 1
2 tνm,j−i+ 1

2)(1−Qk−1
τ Qmqνm,i−j+ 1

2 tνt
m+1,j−i+ 1

2)

(1 − Qk
τqνm+1,i−j+1tνm+1,j−i)(1 − Qk

τqνm,i−jtνt
m,j−i+1

)
.

(60)

We can rewrite the factor Wk1k2 ...kr , given in equation (46), in
terms of the open topological string wave function Wνaνa+1 . Us-
ing the definition of Zk1k2...kr [4] as

Zk1k2...kr =(−1)k1+k2+k3+...kn ∑
νa ,|νa |=ka

W∅ν1Wν1ν2Wν2ν3 ...,Wνn∅,

(61)

we can write (47) in terms of the topological string wavefunc-
tion Wνµ as

Zk1k2...kr∅∅...∅∅...∅(τ, m, ϵ1, ϵ2)W2
k1k2...kr

(τ, m, ϵ1, ϵ2)

= (−1)k1+k2+k3+...k3r ∑
νa ,|νa |=ka

W∅ν1Wν1ν2Wν2ν3 ...Wνr−1νr

Wνr+1νr+2 ...Wν2r−1ν2rWν2r+1ν2r+2 ...Wν3r−1ν3rWν3r∅(
Wνrνr+1 −Wνr∅W∅νr+1

)(
Wν2rν2r+1 −Wν2r∅W∅ν2r+1

)
.

(62)

After normalizing by the closed topological string partition
function W∅∅(Qτ , Q, t, q), the resulting expression is

Dνiνi+1 (Qτ , Q, t, q) =
Wνiνi+1 (Qτ , Q, t, q)
W∅∅(Qτ , Q, t, q)

= t−
||νm+1 ||

2

2 q−
||νm ||2

2

Q
− |νm |+|νm+1 |

2
m ∏

k=1
∏

(i,j)∈νm

× (1− Qk
τ Q−1

m q−νm,i+j− 1
2t−νm+1,j+i− 1

2)(1− Qk−1
τ Qmqνm,i−j+ 1

2 tνt
m+1,j−i+ 1

2)

(1 − Qk
τqνm,i−jtνt

m,j−i+1
)(1 − Qk−1

τ q−νm,i+j−1t−νt
m,j+i

)

× ∏
(i,j)∈νm+1

(1−Qk
τ Q−1

m qνm+1,i−j+ 1
2 tνt

m,j−i+ 1
2)(1−Qk−1

τ Qmq−νm+1,i+j− 1
2 t−νt

m,j+i− 1
2)

(1 − Qk
τqνm+1,i−j+1tνt

m+1,j−i
)(1 − Qk−1

τ q−νm+1,i+jt−νt
m+1,j+i−1

)

=

(
t−

||νm+1 ||
2

2 Q
− |νm+1 |

2
m

(1 − Qmqνm,i−j+ 1
2 tνt

m+1,j−i+ 1
2 )

(1 − q−νm,i+j−1t−νt
m,j+i

)

× ∏
k=1

∏
(i,j)∈νm

(1−Qk
τ Q−1

m q−νm,i+j− 1
2 t−νm+1,j+i− 1

2)(1−Qk
τ Qmqνm,i−j+ 1

2 tνt
m+1,j−i+ 1

2)

(1 − Qk
τqνm,i−jtνt

m,j−i+1
)(1 − Qk

τq−νm,i+j−1t−νt
m,j+i

)

)

×
(

q−
||νm ||2

2 Q
− |νm |

2
m

(1 − Qmq−νm+1,i+j− 1
2 t−νt

m,j+i− 1
2 )

(1 − q−νm+1,i+jt−νt
m+1,j+i−1

)
∏
k=1

× ∏
(i,j)∈νm+1

(1−Qk
τ Q−1

m qνm+1,i−j+ 1
2 tνt

m,j−i+ 1
2)(1−Qk

τ Qmq−νm+1,i+j− 1
2 t−νt

m,j+i− 1
2)

(1 − Qk
τqνm+1,i−j+1tνt

m+1,j−i
)(1 − Qk

τq−νm+1,i+jt−νt
m+1,j+i−1

)

)
.

(63)

It can be interpreted [18] as the degrees of freedom of two in-
teracting WZW models. To see this, we consider the first factor

of equation (63):(
t−

||νm+1 ||
2

2 Q
− |νm+1 |

2
m

(1 − Qmqνm,i−j+ 1
2 tνt

m+1,j−i+ 1
2 )

(1 − q−νm,i+j−1t−νt
m,j+i

)
∏
k=1

∏
(i,j)∈νm

(1−Qk
τ Q−1

m q−νm,i+j− 1
2 t−νm+1,j+i− 1

2)(1−Qk
τ Qmqνm,i−j+ 1

2 tνt
m+1,j−i+ 1

2)

(1 − Qk
τqνm,i−jtνt

m,j−i+1
)(1 − Qk

τq−νm,i+j−1t−νt
m,j+i

)

)
.

(64)

This factor is identical to the contribution of the field content of
a supersymmetric WZW model [19, 20, 21].

The expression (64) is reminiscent of the N = 2 minimal
model product representation of the elliptic genus [19]. It was
suggested and proved in [20, 21, 22] that the minimal mod-
els are equivalent to super-renormalizable Landau-Ginzburg
models in the sense that the latter flows to the former at UV
conformal point. To this end, we use the known characters of
the discrete series representation of the N = 2 superconformal
algebra to compute its elliptic genus. For the Landau-Ginzburg
model, a certain superpotential deformation was used to ren-
der the exact computation of the elliptic genus possible.

It is desirable to independently compute the elliptic genus
of the minimal model using some Lagrangian formulation of it.
It turned out that certain minimal models have Lagrangian de-
scription as supersymmetric gauged WZW models. The equiv-
alence was shown by demonstrating that the elliptic genus
computed for a Landau-Ginzburg model matches the ellip-
tic genus computed for a particular supersymmetric gauged
WZW model [21].

The field content of the supersymmetric gauged WZW
model comprises [21] a Lie group G valued bosonic field g,
a gauge field Aα that is Lie(H)-valued, where H ⊂ G and
Lie(G/H) valued left moving and right moving fermionic fields
ψ̃+ and ψ̃−, respectively. The dynamics is given by the La-
grangian

S = − k
8π

∫
d2z

√
hhijTrg−1∂ig.g−1∂jg

− ik
12π

∫
B

d2σϵijkTrg−1∂ig.g−1∂jg.g−1∂kg

+
k

2π

∫
d2zTr

(
Az̄g−1∂zg − Az∂z̄gg−1

− Az̄ Az + Az̄g−1 Azg
)

+
ik
4π

∫
d2zTr(ψ̃+Dz̄ψ̃+ + ψ̃−Dzψ̃−),

(65)

where B is the 3-manifold whose boundary is the 2d world-
sheet, hij is the worldsheet metric, Dz = ∂z + [Az, ] and Dz̄ =
∂z̄ + [Az̄, ] are the covariant derivatives, and the integer k is the
level. After the identification of a global U(1) that is part of the
left moving N = 2 algebra, the charge assignment of the fields
is given by

ψ̃+ → ei γ
(k+2) ψ̃+

ψ̃− → ei γ(k+1)
(k+2) ψ̃−

g → −i
γ

(k + 2)
(Ug + gU)

Aα → Aα,

(66)

where U ∈ Lie SU(2) denotes the generator of the U(1) ⊂ SU(2)
which is gauged. This allows us to show that the elliptic genus

10
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of the supersymmetric WZW model of the coset SU(2)/U(1) is
given by

ESWZW = e−iγkα/2 1 − eiγ(k+1)α

1 − eiγα

×
∞

∏
n=1

(1 − qneiγ(k+1)α)(1 − qne−iγ(k+1)α)

(1 − eiγα)(1 − e−iγα)
,

(67)

where the contribution of the fermionic zero modes is sepa-
rated, respectively, as

1
(1 − eiγα)(1 − e−iγα)

(68)

and bosonic zero modes as

e−iγkα/2(1 − eiγ(k+1)α)(1 − e−iγα). (69)

Moreover, the nonzero mode contribution of the fermions is
separated as

(1 − qneiγ(k+1)α)(1 − qne−iγ(k+1)α)(1 − q̄neiγα)(1 − q̄ne−iγα)
(70)

and the bosons as

1
(1 − qneiγα)(1 − qne−iγα)(1 − q̄neiγα)(1 − q̄ne−iγα)

. (71)

Note that the antiholomorphic part is canceled out.
The various contributions of the supersymmetric WZW

model are thus arranged in the following.

• Contribution of the Fermionic and Bosonic Zero Modes:

(1 − Qmqνm,i−j+ 1
2 tνt

m+1,j−i+ 1
2 )

(1 − q−νm,i+j−1t−νt
m,j+i)

. (72)

• Contribution of the Fermionic and Bosonic Nonzero Modes:

(
∏
k=1

∏
(i,j)∈νm

(1−Qk
τ Q−1

m q−νm,i+j− 1
2 t−νm+1,j+i− 1

2)(1−Qk
τ Qmqνm,i−j+ 1

2 tνt
m+1,j−i+ 1

2 )

(1 − Qk
τqνm,i−jtνt

m,j−i+1
)(1 − Qk

τq−νm,i+j−1t−νt
m,j+i

)
.

(73)

• Contribution from the Phase Factors:

(
t−

||νm+1 ||
2

2 Q− |νm+1 |
2

m

)
. (74)

Note that for the second WZW model the phase contribution

changes from t−
||νm+1 ||

2

2 to q−
||νm ||2

2 , i.e., from a t-factor to a q-
factor. Similarly, the second factor in equation (63) also de-
scribes a WZW model.

Recall that the partition function ZN(τ, m, t f1
, t f2 , ..., t fN ,

ϵ1, ϵ2) of N parallel and separated M5-branes with M2-branes
stretched between them can alternatively [1] be written in

terms of the normalised open topological string wavefunctions
Dνiνi+1 (Qτ , Q, t, q) as

ZN(τ, m, t f1
, t f2 , ..., t fN , ϵ1, ϵ2)

= ∑
ν1,...,νN−1

( N−1

∏
a=1

(−Q fa )
|νa |
)
× D∅ν1 (Qτ , Q, t, q)

× Dν1ν2 (Qτ , Q, t−1, q−1)Dν2ν3 (Qτ , Q, t, q)...DνN−1∅.

(75)

This form of the partition function allows an interpretation in
terms of N domain walls interpolating between the M2-brane
vacua. In terms of the supersymmetric WZW model, we can
say that the partition function is a superposition of the wave-
functions of a chain of coupled supersymmetric WZW models.
The center of mass motion of the multiple M-strings as well as
their mutual dynamics is encoded in this wave function. For
example, for the case of two M-strings, it involves their center
of mass motion as well as their motion relative to each other.
The components of the elliptic genus Zν1ν2,...,νk are related to
the open topological string wave function. For example,

Z22 − Z2
2∅ = W∅2W2∅

(
W22 −W∅2W2∅

)
,

Z33 − Z2
3∅ = W∅3W3∅

(
W33 −W∅3W3∅

)
,

Z1212 − Z2
12∅∅ = W∅1W12W2∅

(
W21W12 −W∅1W12W2∅

)
.

(76)

In other words, the universal factors W2(τ, m, ϵ1, ϵ2), W3(τ, m,
ϵ1, ϵ2) and W12(τ, m, ϵ1, ϵ2) for these M5-M2 brane configura-
tions can be expressed in terms of open topological wavefunc-
tion in equation (60) as

W2(τ, m, ϵ1, ϵ2) =
(
W22 −W∅2W2∅

)
,

W3(τ, m, ϵ1, ϵ2) =
(
W33 −W∅3W3∅

)
,

W12(τ, m, ϵ1, ϵ2) =
(
W21W12 −W∅1W12W2∅

)
.

(77)

Similarly, we can write for WN(τ, m, ϵ1, ϵ2)

WN(τ, m, ϵ1, ϵ2) =
(
WNN −W∅NWN∅

)
. (78)

Recall that in a given M-theory vacuum the coupling constant
τ is related to the radius of the circle S1 parallel to the M5-
brane worldvolume. Formally, we can consider different cou-
pling constants τi for different domain walls. Each τi is re-
lated to the circle S1 parallel to the i-th M5-brane worldvol-
ume. This M-theory setup can be dualized in type IIB strings to
a 5d N = 1∗ supersymmetric gauge theory living on a par-
ticular (p, q) D5-NS5-brane web. τi correspond to the gauge
coupling constant of the supersymmetric gauge theories dual
to corresponding M5 brane-M2 brane-M-string configurations.
For these general cases, for instance, we can write

Z1212 − Z12∅∅Z∅12∅

= W∅1(τ1)W12(τ4)W2∅(τ5)

× (W12(τ2)W21(τ3)−W∅1(τ3)W12(τ2)W2∅(τ3),

(79)

Z222 − Z22∅Z∅∅2 − Z∅22Z2∅∅ − Z2∅∅Z∅2∅Z∅∅2

= W∅2(τ1)W2∅(τ4)

× ((W22(τ2)−W∅2(τ2)W2∅(τ2))

× (W22(τ3)−W∅2(τ3)W2∅(τ3))).

(80)
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More generally, we can write for ν1 = ν2 = ν3 the recursive
relation for Zν1ν2ν2 as

Zν1ν2ν3 − Zν1ν2 Zν3 − Zν1 Zν2ν3 + Zν1 Zν2 Zν3

= W∅ν1W∅ν3

(
Wν1ν2 −W∅ν1W∅ν2

)(
Wν2ν3 −W∅ν2W∅ν3

)
.

(81)

Comparing the last expression with equation (20), we see that
the first factor W∅ν1W∅ν3 is the result of fusing all the parti-
tions, the second factor (Wν1ν2 −W∅ν1W∅ν2 ) appears when we
fuse the partitions ν1, ν2 along with the removal of the second
M5-brane, and the third factor (Wν2ν3 − W∅ν2W∅ν3 ) appears
when we remove the third M5-brane fusing ν2, ν3.

A generalization of Zν1ν2ν3ν4...νk for ν1 = ν2 = ν3 = ... = νk
can be expressed as

Zν1ν2ν3ν4...νk − Zν1ν2ν3...νk−1 Zνk − Zν2ν3ν4...νk Zν1 + Zν1 Zν2 Zν3ν4...νk

+ Zνk−1 Zνk Zν1ν2ν3ν4...νk−2 + ... − Zν1 Zν2 Zν3 ...Zνk

= W∅ν1W∅ν4

(
Wν1ν2 −W∅ν1W∅ν2

)(
Wν2ν3 −W∅ν2W∅ν3

)
×
(
Wν3ν4 −W∅ν3W∅ν4

)
...
(
Wνk−1νk −W∅νk−1

W∅νk

)
.

(82)

4. ABJM MODEL VS M-THEORY
The ABJM model is defined by a 3d N = 6 supersymmet-
ric U(N)k × U(N)−k Chern-Simons theory with matter cou-
pling given by the bifundamental scalars Za and spinors Ψa

with SU(4) R-symmetry index a. The low-energy 2d gauge the-
ory corresponds to the reduction of the worldvolume theory
of M2-branes to two dimensions with the boundary conditions
provided by the M5-branes. For details, we refer the reader to
[23]. This 2d theory is termed as ABJM slab and is identical to
the N = (4, 4) super Yang-Mills having SU(2)3 R-symmetry,
and the gauge coupling g2

2d is determined by the distance be-
tween the M2-branes stack and the Zk orbifold singularity of
the transverse space C2/Zk. This 2d theory is special in the
sense that the M2-branes do not sit on top of the Zk singular-
ity. This avoids the appearance of Nahm poles. Moreover, the
Ramond-Ramond boundary conditions used in the definition
of elliptic genus project out the massive modes corresponding
to the KK modes. The elliptic genus of the 2d gauge theory with
nonzero coupling constant g2

2d > 0 turns out to be the same as
that of N = (4, 4) super Yang-Mills.

The M2-M5 brane intersection is described by the bound-
ary conditions that preserve six supercharges and the SU(2)×
SU(2) × U(1) subgroup of the full R-symmetry group SU(4).
The two scalars Z1 and Z2 are longitudinal to the M5-brane
and form a doublet under one of the two SU(2)s. The other
two scalars Z3 and Z4 are transverse and form a doublet under
the second SU(2). Moreover, under the U(1) group, the two
doublets are oppositely charged. The boundary conditions on
bosons and fermions are given as

Ψ1
+ = Ψ2

+ = Ψ1
− = Ψ2

− = 0, Ψ̄1
+ = Ψ̄2

+ = Ψ̄1
− = Ψ̄2

− = 0,

DµZA = 0, Dx2 ZI =
2π

k
(ZI Z̄ J ZJ − ZJ Z̄ J ZI),

ZAZ̄I ZB = ZBZ̄I ZA, ZI Z̄AZB = ZBZ̄AZI .
(83)

The boundary forces the gauge fields of the two U(N)s to be
related as

FµνZA = ZA F̃µν. (84)

Moreover, the variation of the ABJM action gives rise to a
boundary term

δS =
k

4π

∫
boundary

Tr(αdA − α̃dÃ), (85)

which vanishes only if A = Ã and α = α̃. However, if one takes
A ̸= Ã, then the anomalous boundary term can be canceled by
introducing boundary fermions of one chirality coupled to A
and boundary fermions of the opposite chirality coupled to Ã.
This effectively gives rise to WZW model degrees of freedom
at the boundary and the gauge anomaly they generate cancels
the anomalous term (85).

We first write down the expression of the elliptic genus of
the 2d gauge theory obtained from the dimensional reduction
of the ABJM model for the case k = 1 as considered in [23]

ZABJM
T2

=
∫ N

∏
i=1

dwidw̄i
Imτ ∏

i,j

θ1(wi−wj+m+ϵ+)θ1(wi−wj+m−ϵ+)

θ1(wi − wj + ϵ1)θ1(wi − wj + ϵ2)
.

(86)

However, in our case, the integral is finite with respect to
the integration variables, and no special regularization is re-
quired. We will use instead a prescription given in [24] for the
case of N = 2.

For ABJM theory and for N = 1, we get the expression

ZABJM
T2 =

θ1(m + ϵ+)θ1(m − ϵ+)

θ1(ϵ1)θ1(ϵ2)
. (87)

This expression matches with its ZM−string

T2 [1].

N≥ 2
For the complex integration beyond and including N = 2, we
will use the results [24, 25, 26]

ZABJM
T2 =

(
θ1(m + ϵ+)θ1(m − ϵ+)

θ1(ϵ1)θ1(ϵ2)

)N

∫ N

∏
i=1

dwidw̄i
Imτ ∏

j ̸=i

θ1(wi − wj + m + ϵ+)θ1(wi − wj + m − ϵ+)

θ1(wi − wj + ϵ1)θ1(wi − wj + ϵ2)
.

(88)

The wi, w̄i integrals are well defined and do not require any
regularization. So we can write normalized elliptic genus in the

limit Qm =
√

t
q as

ẐABJM
T2 =

∫ N

∏
i=1

dzi
2πizi

∏
j ̸=i

θ1(
zi
zj

t
q )θ1(

zi
zj
)

θ1(
zi
zj

t)θ1(
zi
zj

q−1)
. (89)

For 2d gauge theories containing the adjoint matter, the poles
contributing to the elliptic genus were found to be [25, 26]

za = txq−y, (90)
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where (x, y) are the coordinates of the a-th box in the Young
diagram µ such that |µ| = N for all N ≥ 0. Evaluating the
residue of (89) on these poles, we get

ẐABJM

T2 = ∑
x1 ̸=x2 ,y1 ̸=y2

∏
(x1 ,y1)∈Y,(x2 ,y2)∈Yt

θ1((x1 − x2)ϵ1 + (y1 − y2)ϵ2)θ1((x1 − x2 − 1)ϵ1 + (y1 − y2 − 1)ϵ2)

θ1((x1 − x2 − 1)ϵ1 + (y1 − y2)ϵ2)θ1((x1 − x2)ϵ1 + (y1 − y2 + 1)ϵ2)

= ∏
θ1(ϵ1)θ1(ϵ2)

θ′1θ1(ϵ1 + ϵ2)
∑ ∏

(x1 ,y1)∈Y,(x2 ,y2)∈Yt

θ1((x1 − x2)ϵ1 + (y1 − y2)ϵ2)θ1((x1 − x2 − 1)ϵ1 + (y1 − y2 − 1)ϵ2)

θ1((x1 − x2 − 1)ϵ1 + (y1 − y2)ϵ2)θ1((x1 − x2)ϵ1 + (y1 − y2 + 1)ϵ2)
.

(91)

This can be written in the canonical form by using the theorem
(2.11) of reference [27]:

∑
(x1,y1)∈Y

tx1
1 ty1

2 + ∑
(x2,y2)∈Yt

t1−x2
1 t1−y2

2

−
(

∑
(x1,y1)∈Y

t
x1−λt

y1
(Yt)

1 t
1−y1+λx1 (Y)
2

+ ∑
(x2,y2)∈Yt

t
1−x2+λt

y2
(Y)

1 t
y2−λx2 (Y

t)
2

)
= ∑

(x1,y1)∈Y,(x2,y2)∈Yt

tx1−x2
1 ty1−y2

2 (1 − t1)(1 − t2)

(92)

as

ẐABJM

T2

= ∏
θ1(ϵ1)θ1(ϵ2)

θ′1θ1(ϵ1 + ϵ2)
∑

Y,Yt
∏

(x1 ,y1)∈Y,(x2 ,y2)∈Yt

θ1(x1ϵ1 − y1ϵ2)θ1((1 − x2)ϵ1 − (1 − y2)ϵ2)

θ1
(
(x1 − λt

y1
)ϵ1 − (1−y1+λx1 )ϵ2

)
θ1
(
(1−x2−λt

y2
)ϵ1−(y2−λx2 )ϵ2

) .

(93)

It is interesting to compare ẐT2 with ZI IA
T2 given by

ZI IA
T2 = ∑

Y,Yt
∏

(i,j)∈Y

× θ1((i − 1)ϵ1 + (j − 1)ϵ2)θ1(−iϵ1 − jϵ2)

θ1((i − λt
j)ϵ1 + (λi − j+1)ϵ2)θ1((1− i+λt

j)ϵ1+(j−λi)ϵ2)
.

(94)

5. CONCLUSIONS
We have studied the structure of the free energies of M-strings.
An interesting recursive structure in the free energies (BPS
counting functions) was observed [4] for the configuration
—M2-M5-M2-M5-M2— of M2-M5 branes. We show that for
configurations containing multiple M2-branes sandwiched be-
tween M5-branes the recursive structure in free energies is lost.
Instead, the coefficients ZA1 A2...An in the expansion of partition
function enjoy the recursive structure. For completeness, we
also describe the M2-brane configurations with symmetric rep-
resentations and mixed representations.

The partition functions of M2-brane configuration that en-
ter the M-strings elliptic genera can also be interpreted as the
vacuum-n to vacuum-(n+1) amplitude with M5-branes acting

as the domain wall. The M5-brane domain wall acts as the dual-
ity transformation that interpolates between the two vacua [8].
ABJM formulation of M2-brane theories allows a more direct
study of the domain wall partition functions. We compute the
elliptic genus of a dimensionally reduced 2d theory of ABJM
slab model and compare it with the M-string computations. We
find an interesting mismatch that can be explained in terms of
the center of mass motion of M2-M5 branes in the transverse
space. The factor corresponding to the mismatch accounts for
this center of mass motion in the transverse space.

It will be interesting to study the WZW-topological string
correspondence for more general backgrounds in M-theory.

Appendix A. DENOMINATOR FACTORS
Dν1,...,νK(τ, M, ϵ1, ϵ2)

D134134134(τ, m, ϵ1, ϵ2)

= θ1 (ϵ1 − m)9 θ1 (−m − 4ϵ2)
3 θ1 (−m − 3ϵ2)

6

θ1 (−m + ϵ1 − 3ϵ2)
3 θ1 (−m − 2ϵ2)

6 × θ1 (−m + ϵ1 − 2ϵ2)
6

θ1 (−m − ϵ2)
9 θ1 (−m + ϵ1 − ϵ2)

6 ,

D134134∅∅∅(τ, m, ϵ1, ϵ2)

= θ1 (ϵ1 − m)6 θ1 (−m − 4ϵ2)
2 θ1 (−m − 3ϵ2)

4

θ1 (−m + ϵ1 − 3ϵ2)
2 θ1 (−m − 2ϵ2)

4 × θ1 (−m + ϵ1 − 2ϵ2)
4

θ1 (−m − ϵ2)
6 θ1 (−m + ϵ1 − ϵ2)

4 ,

D134∅∅∅∅∅∅(τ, m, ϵ1, ϵ2)

= θ1 (ϵ1 − m)3 θ1 (−m − 4ϵ2) θ1 (−m − 3ϵ2)
2

θ1 (−m + ϵ1 − 3ϵ2) θ1 (−m − 2ϵ2)
2 × θ1 (−m + ϵ1 − 2ϵ2)

2

θ1 (−m − ϵ2)
3 θ1 (−m + ϵ1 − ϵ2)

2 ,

D232323(τ, m, ϵ1, ϵ2)

= θ1 (ϵ1 − m)6 θ1 (−m − 3ϵ2)
3 θ1 (−m − 2ϵ2)

6

θ1 (−m + ϵ1 − 2ϵ2)
3 × θ1 (−m − ϵ2)

6

θ1 (−m + ϵ1 − ϵ2)
6 ,

D2323∅∅(τ, m, ϵ1, ϵ2)

= θ1 (ϵ1 − m)4 θ1 (−m − 3ϵ2)
2 θ1 (−m − 2ϵ2)

4

θ1 (−m + ϵ1 − 2ϵ2)
2 × θ1 (−m − ϵ2)

4

θ1 (−m + ϵ1 − ϵ2)
4 ,

D232323(τ, m, ϵ1, ϵ2)

= θ1 (ϵ1 − m)2 θ1 (−m − 3ϵ2) θ1 (−m − 2ϵ2)
2

θ1 (−m + ϵ1 − 2ϵ2)× θ1 (−m − ϵ2)
2

θ1 (−m + ϵ1 − ϵ2)
2 ,

D121212(τ, m, ϵ1, ϵ2) = θ1 (ϵ1 − m)6 θ1 (−m − 2ϵ2)
3

θ1 (−m − ϵ2)
6 θ1 (−m + ϵ1 − ϵ2)

3 ,

D1212∅∅(τ, m, ϵ1, ϵ2) = θ1 (ϵ1 − m)4 θ1 (−m − 2ϵ2)
2

θ1 (−m − ϵ2)
4 θ1 (−m + ϵ1 − ϵ2)

2 ,

D12∅∅∅∅(τ, m, ϵ1, ϵ2) = θ1 (ϵ1 − m)2 θ1 (−m − 2ϵ2)

θ1 (−m − ϵ2)
2 θ1 (−m + ϵ1 − ϵ2) .

(A.1)
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