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Abstract

Recent advances in emergent geometry have identified a new class of models that represent spacetime
as the graph obtained as the ground state of interacting Ising spins. These models have many desirable
features, including stable excitations possessing many of the characteristics of a quantum particle. We an-
alyze the dynamics of such excitations, including a detailed treatment of the edge states not previously
addressed. Using a minimal prescription for the interaction of defects we numerically investigate approx-
imate bounds to the speed of propagation of such a “particle”. We discover, using numerical simulations,
that there may be a Lieb-Robinson bound to propagation that could point the way to how a causal structure
could be accommodated in this class of emergent geometry models.
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1. INTRODUCTION

Background and Motivation

The search for a consistent theory of Quantum Gravity (QG)
has so far not produced a finite and self consistent theory. Of the
many attempts to create a consistent formalism, we can identify
two broad classes of approach. The first class work within a
continuous framework, and we include in that semi-classical
approaches to QG [1], the canonical formalisms of the ADM
theory [2], and of course String theory [3]. These approaches
do not address the quantization of spacetime itself. Instead, it
is assumed that the physics described by these theories emerge
from a mathematical formalism based upon a preexisting and
continuous structure of space and time that exists external to
the theory. In short physics happens in space and time.

The second class of theories directly addresses the quan-
tization of spacetime, and does not assume that spacetime
is either pre-existent or continuous. This class of theories in-
cludes Quantum Graphity [4], Causal Set theory [5], Dynam-
ical Triangulations [6], and Loop Quantum Gravity [7, 8]. Fi-
nally and more recently, Wolfram et al proposed an entirely
abstract method of emerging a discrete spacetime based upon
“branchial graphs” [9]. Although entirely different from the
models described here it shares the commonality of represent-
ing emergent geometry as a graph. It should also be remarked
that there are “matrix model” formulations of type IIB String
theories [10, 11] based upon a Lagrangian with an SU(N)
gauge symmetry where N is very large. In these matrix mod-
els, spacetime “emerges”, with Lorentzian signature metrics,
by identification of the eigenvalues of the N x N gauge field
matrices with spacetime points. As N — oo, smooth spacetime
is recovered. In all of these models, physics happens along with
space and time.

For this second class of models spacetime is effectively dis-
crete at the very short range. Although there is no hard evi-
dence for this discreteness, it is widely accepted that there ex-
ists a length below which measurement makes no sense [12].
The model that we focus upon in this work is broadly part
of the Combinatorial Quantum Gravity (CQG) program, and

starts with the view that spacetime is fundamentally discrete.
In particular, one such model of an emergent geometry has
been the subject of recent study, originating from an original
proposal of Trugenberger that describes the emergence of ge-
ometry as a phase transition in a “hot soup” of entangled qubits
[13]. This work was subsequently extended [14, 15, 16] and
used to develop the emerged geometry as a basis for a com-
binatorial approach to gravity. The nature of the model is a
double Ising interaction defined separately for the vertices and
edges of a graph. It is to be understood that the vertices repre-
sent points in spacetime, and the edges the locality relationship
between those points. As the edges have finite length (one im-
plicitly assumes this to be the Planck length I,,, but in principle
it is any small finite length which captures the discreteness of
the model). The Ising interactions operate in opposition, bal-
ancing the alignment of spins at the vertices connected by an
edge, against an opposing term that frustrates, by means of an
energy penalty, the creation of edges. We refer to this type of
model and derivatives as “Ising emergent geometries”. A less
well studied aspect of the model is that it admits stable defects
in the geometry. These defects posses some of the properties of
quantized particle that exhibits quantum dynamics in the con-
tinuum limit [17].

The importance of dynamics is closely linked to the prob-
lem of incorporating a causal structure into the emerged ge-
ometry, and a well formed explanation of how time emerges
to posses distinct features from the other spatial dimensions
in the geometry. Emerging such a “temporal” dimension is a
non-trivial consideration. It has been speculated [14, 17] that
the persistent discrepancy between extrinsic and intrinsic di-
mension of the ground state graphs (with extrinsic dimension
remaining higher than intrinsic dimension) may indicate the
one of the graph’s dimensions being spatially inaccessible, and
therefore temporal.

The subject of this work is to explore the dynamics of the
stable defects of the model, and in particular what they might
reveal regarding causal structure. For the defects to exhibit dy-
namics a minimal prescription for the interaction of a defect
with neighboring vertices is required. The interaction should
be constrained by considerations of locality and consistency,
and locality further strengthened by an inverse distance depen-
dence of the interaction. It is already well known that interact-
ing quantum systems, defined upon a lattice, exhibit approxi-
mate causality in the form of a Lieb-Robinson (LR) bound [18],
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which limits the speed that particular forms of interaction can
propagate in the system. In particular the interactions need to
be long range in nature, and it has been recently shown [19]
that power law interactions produce LR bounds. The presence
of such a bound amounts to a restricted and approximate form
of causality.

We begin in Section 2 with a brief overview of the Ising
emergent geometry models, including a discussion of the emer-
gence of the stable defects we believe are a candidate for mod-
eling matter and dynamics.

We have previously proposed a minimal form of interac-
tion for stable defects in Ising emergent geometries [17], and the
argument used to propose the interaction introduced a power
law dependence on the strength of it. In the original treatment
the interaction Hamiltonian was a simplified one that only
dealt with one half of the Hilbert space used to define the Ising
model. Specifically the defect was treated as simply a vertex
phenomenon, and the behavior of the spin states on the edges
was not dealt with rigorously. In Section 3 we extend the treat-
ment to include the edge states and propose a complete form
of the interaction Hamiltonian in Eq. (11). We proceed to show
that the correspondence with non-relativistic dynamics in the
continuum limit still holds once the edge states are incorpo-
rated, and discuss the details of how the interaction Hamil-
tonian can cause a defects interaction with remote vertices to
propagate without recourse to the continuum limit. This is the
first contribution of this work.

We describe in Section 3.4 how this form of interaction
could admit a LR bound. At this point it is not possible to ana-
lytically compute the magnitude of the bound, but we can ex-
plore numerically the behavior of the interaction on a single
defect in an emerged ground state. We describe these results
in Section 3.4. To undertake these simulations we compute the
time evolution of the state of the vertex spin states for a graph
containing a defect. This evolution is subject to the interaction
Hamiltonian we describe in Section 3, and we calculate the evo-
lution of the defect subject to this interaction in the discrete
model. We discover that the simulation does indicate an ap-
proximate bound on the speed of propagation, and this is the
second contribution of this work. This is an intriguing result as
the incorporation of causality in the Ising emergent geometry
models is not immediately evident, and is an important open
problem.

We conclude with a brief summary of the findings in Sec-
tion 5.

2. ISING EMERGENT GEOMETRIES
2.1. Ground State Model and Definitions

The Ising models of emergent spacetime, originally proposed
by Trugenberger [13] and extended by him and others [14, 15,
17], are formulated as an interaction model of spin “qubits” lo-
cated on the vertices of a graph. Edges are established by in-
teractions between spins that align due to their ferromagnetic
interaction. To prevent a condensate creating a perfect graph,
operating in opposition to edge formation is a link frustration
term, expressed as an anti-ferromagnetic interaction between
spin states defined on the edges.

The detail of the model involves defining the Hilbert spaces
for the edges and the N vertices of a simple, undirected graph
G(V,E) where V is the set of vertices and E C {V x V} the

edges connecting any two distinct vertices. At each vertex v;
we define the following Hilbert space #; = span{|i,0), |i,1)},
and define a spin operator obeying §; |i,s) = s;|i,s) on it. On
this space we impose fermionic anti-commutator algebra,

{85,871 48 571 = 0,087 ,8/ } = 3y, 1)
§71i,1) = 0,81 1i,0) = |i, 1), 2)
87 1i,1) = 1i,0),8; |i,0) = 0. 3)

At the edges we have $N(N — 1) Hilbert spaces Hij =
span{|i,j,0),]i,j,1)}. We interpret the state |i,j, 1) as the pres-
ence of an edge, and |i,/,0) its absence. To distinguish the
edges from the vertices, we propose edge creation fl:.r]. and edge
annihilation 4;; operators. These operators have the following
fermionic algebra ,

{af, afy}, {aij, au} = 0, {aij, 811} = dudy, 4)
ali,j,1) = 0,a%;1i,j,0) = [i,j,1), ®)
a3 [i,j,1) = 1i,],0) , 435 |i,j,0) = 0. (6)

A graph can be completely defined by its adjacency matrix
Ajj, in which a non zero value of A;; indicates the presence of
an edge between v; and v, with zero elsewhere and on the di-
agonal (as the graph is simple and has no self-loops). It will
be useful later to note that this matrix can be represented us-
ing these edge annihilation/creation operators as A;; = ﬁ?jﬁij.
To complete the model we propose a Hamiltonian, with the
ground state graph representing the interaction and matter free
vacuum of the model. The original model,termed a Dynamical
Graph Model (DGM), used the following elegant and simple
Hamiltonian with a dimensionless coupling constant g [13],

gZ N N g
Hpem = = (): Z‘AikAkj> -5 ZSiAijsj' @)
i#] ki ] i

This model however possessed an excess of clustering, and
a physical vacuum needs high locality which necessitates the
absence of clustering. To cure this, we can exploit the prop-
erty of the adjacency matrix that the n'" power of it counts the
number of n length paths between vertices in the graph. As
such adding in a term in A? can be used to suppress triangles,
and therefore clustering [14, 17]. This model is referred to as
Quantum Mesh Dynamics (QMD), as it formed the basis of a
dynamical theory of matter in the emerged ground state. The
Hamiltonian proposed in this model is,

g TEaE g

Homp = 5 Tr A% + Z Z,AikAkj ) ZSiAiij' (8)
i#j k] ij

Solving numerically for the ground states of this Hamilto-

nian at different values of g, it was found that they possess cer-
tain attractive features:

Regqular, Euclidean flat ground state: the ground state corresponds
to a regular graph where nearly all of the nodes posses
the same average degree (number of incident edges) k.
This configuration is referred to as a “large world” in
network science, which means that the graph has a high
degree of locality with few “short-cuts” between distant
nodes.
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Low dimensionality: there are several ways to quantify the di-
mension of a graph, both intrinsic dimension (as would
be measured by an observer confined to the graph), and
extrinsic dimension measured from the point of view of
a higher dimensional space in which the graph is embed-
ded [20]. These two measures agree for the ground state
until around d = 4, at which point the extrinsic dimen-
sion does not reduce any further. This points to a “pre-
ferred” low dimension for the graph.

Entropy Area Law: it is possible to demonstrate that the ground
state graph possesses a measure of informational en-
tropy which is related to the size of the boundary of the
graph or any defects in it, rather than its bulk.

An important unanswered question with this, and other
similar models, is the role of time and causality. As it stands
the model does not have a dimension that is intrinsically tem-
poral. For the purposes of our simulations later, we take the
view that time is a label on the states of the model, which can
be continuous or discrete. We refer to this time as “clock time”,
that is the external time governing dynamical evolution. It is
possible that this definition could be abandoned if more was
understood regarding the nature of time in the Ising models,
but for the purposes of our investigation we consider it a sim-
plifying assumption.

2.2. Stable Defects as Excitations

b - ———

. J o [

FIGURE 1: A section of the ground state of Egs. (8) or (7) with
(k) = 2d = 4. Depicted is an isolated defect surrounding
vertex v;. We chose s; = |i,0), all other spins s; = |j, 1), but the
key requirement is that s; is opposite to its neighbors.

We assume that the models described in Section 2 have
been minimized to produce a regular ground state (the exis-
tence and precise nature of these ground states is extensively
explored in [13, 14, 17] and we do not justify this here). It was
established in the original work that these ground states can
have an excitation that possesses intriguing properties. In Fig-
ure 1 we depict such an excitation where the uniform alignment
of the spins, a characteristic of the Ising condensate phase of the
graph, has been disturbed at v; by the spin being “flipped” rel-
ative to its neighbors. In general at vertex v;, s; # s;, where j
ranges over all of the neighbors of v;. When the spins between
neighbors anti-align, the presence of edges is disfavored, and
the edges would intuitively be expected to be annihilated to re-
duce the overall energy of the graph and result in a new stable
minimum energy, which isolates the vertex and creates a topo-
logical “hole” in the graph. This state has been analyzed using
statistical mechanical arguments [13] and can be shown to be

stable, even as the system is “cooled”, and is thus a persistent
feature once created.

Further analyzing the defect in Figure 1, it is clear that the
removal of the defect would require energy to re-establish links
and flip the spin at v;. Effectively the defect stores the energy
locally in the defect. As such it embodies at least some of the
properties of a particle; it is localized in space, has finite energy
and is at least approximately conserved at least until enough
energy is available to destroy the defect by creating edges and
flipping the spin at v;. In the next section we will analyze the
dynamics of such defects both in the continuum limit and also
by exploring the evolution of the spins of vertices remote to the
defect in the discrete case.

3. DYNAMICS

3.1. The Interaction Hamiltonian

As discussed previously, our defects are persistent, and it can
be shown [17] that they are eigenstates of the ground state
Hamiltonian Eq. (8). For them to become dynamic we must
propose an interaction Hamiltonian that couples the defect lo-
calized at v; to other vertices in the graph. Interactions should
cause the defect to “close” at v; and create a corresponding
defect surrounding a different vertex v;. Such an interaction
Hamiltonian should obey the following desiderata,

Preserve the ground state: any interaction Hamiltonian should
have no coupling between vertices that have aligned
spins, or are connected by an edge. This allows us to ef-
fectively separate analysis of the dynamics from the vac-
uum ground state.

Promote locality: interactions between vertices close in the
graph should be energetically more favorable than be-
tween distant ones. This locality is the origin of the ap-
proximate causality discussed later in the paper.

Self-consistently defined: our proposed Hamiltonian should not
require elements not already present in the existing
model, and represent a minimal prescription for dynam-
ics.

Dimensionally consistent: the final form for the Hamiltonian
should have the correct dimensions of energy.

To address the first of these, using the Laplacian matrix and
spin ladder operators for the vertices sAl“—L we can construct a
term such as fsAi* (1+L; j)éf, the minus sign chosen to create an
energy gradient that favors dynamics (recall that the eigenval-
ues of §;- are 1). The Laplacian matrix is the difference between
the degree matrix A;j, which is the diagonal matrix defined as
Aji = kj, and the adjacency matrix. As such the (1 + L;;) mul-
tiplier will be zero for any two nodes that are connected, and
the combination of sAli will be zero whenever the two spins
are identical. To satisfy the third desideratum, we note that
we can express the Laplacian matrix in terms of edge annihi-
lation/creation operators as follows:

kj=N
JEN JEIN
Lij= ), ‘5{”ik”kj - dijfij, ©)
kj=0
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To promote locality we insert an inverse distance depen-
dence on the interaction to cause the interaction to reduce as
vertices become more distant. In general this inverse polyno-
mial could be of arbitrary degree. In [17] we choose an inverse
square, but for generality it could be an arbitrary integer value
¥ > 1. We can define the graph distance between two vertices,

T’ij as,
0 p=n
ri=y. {(s(A;;) ) (Z Afj) } . (10)
n=0 p=0
and then insert this into the interaction as an rify factor. The

) (A?]) and & < Y Ap > terms are to be understood as a delta
p=0
# 0)

function such that for integers n € Z, d(n
5(0) =1.

It remains to arrange the dimensions of the interaction ac-
cording to the last desideratum. We set v = 2, which as the
eigenvalues of the SAZjE operators are /1/2, we must insert an en-
ergy in the denominator €, to balance the dimensions. We in-
terpret this energy term as the energy stored in a defect, as de-
scribed above. Using these definitions the proposal for the dy-

namic term of the Hamiltonian is

= 0 and

Bt = — 3 s

int — Zemr2 5 (1 + Ll]) (11)

1

This expression only deals with the spins at the vertices and
does not take care of the edge states between them. To extend
this requires some care in the analysis of the model.

In Figure 2 we have an example of a transition in a 2-
dimensional graph that our interaction Hamiltonian should
cause, including the creation and annihilation of the relevant
edges. In the analysis that follows we will consider the case
of a 2-dimensional graph for simplicity, but any of the results
are easily extended to higher dimensions. The distinct physical
states are characterized by the annihilation of the four edges
surrounding v; and the creation of 4 new edges connecting v; to
the boundary of the defect. Both the ground state, and defects
are valid eigenstates of the Hamiltonian HQ M, and so far H,,;
only affects the spins at the vertices. We therefore need to alter
the interaction Hamiltonian in such as way as the ground state
is unaffected and the defect is translated between |i) and |j).
We can diagrammatically represent our initial and final states,
including the edges, using the following shorthand notation:

i) = ‘E:}NEH]'>/ (12)
f) = |88 (13)

This shorthand represents the states of the edges and spins sur-
rounding the indicated vertex. The presence of a dot, indicates
spin state of |1), the absence |0), and the presence of an edge be-
tween to dots i,j the state |i,j,1) and |i, j, 0) for its absence. The
vertex at the center of the diagram is indicated by the subscript.

To modify our Hamiltonian, let us define a new operator
using a combinatorial sum of all possible subsets of vertices in
the graph that could be neighborhoods of a vertex. A neighbor-
hood of a given vertex v; is defined as the collection of vertices
in the graph that share an edge with v;, and essentially we need
to pick out the appropriate neighborhood of each of the vertices
v, vjin |i),|f) and apply creation and annihilation operators to

obtain the correct transition from | > — \ f).On a general graph
G(V,E), we define a new operator S

S7 =5y ITai (14)

ICV jel

where [ is any subset of vertices, and the sum ranges over every
member of the power set of V, that is every possible subset of
V. For an arbitrarily large graph this is clearly a combinatorially
very large sum!

The sum over products creates a large number of combina-
tions of §;” with edge annihilation operators, but fortunately as
4 |0) = 0, most of the terms in the sum will vanish. Diagram-

matically we can represent the action of SAf on a fully connected

state |H3;) as:

ST =3 r4x i) e x |B) +4x I8,

where the pre-factors arise from the symmetry and dimen-
sion of the graph, and count the possible equivalent number
of states to the diagram in the ket. Recall that the shorthand
|£.3;) and [} ;), is in fact the tensor product of every edge and
spin state (assumed to be uniformly |1) except at the consid-
ered vertices). Each edge and vertex has a set of basis vectors
|0),|1), such that (n|m) = 6, up to a normalization constant.
This is helpful later when we take an expectation value of an
operator as most of those terms will vanish due to orthonor-
mality. This simplification occurs because our initial and final
states only contain §§ and {.} states and we note,

(353 or i) = (83 or KEH) = (£} or KEE) = 0.

We can define the equivalent inverse operation to SAI-_ by
taking the complex conjugate of Eq. (14) as follows,

§ =) =¢ C 14" (15)

ICV jel

It is easy to verify that the operation of this expression on |{:}>
has the desired result, producing again the following sequence
of intermediate states,

ST = ) +4x B +6x [B,) +4x [iH,).

With these new operators that take care of both vertex and
edge states we can now redefine our dynamic Hamiltonian as,

it = _7g2 Sa(1+ LS, . (16)
€mly;

Because the eigenvalues of the creation and annihilation oper-

ators, like the spin ladder operators are identically 1, the in-

clusion of the edge operators Sii does not change the sign or

factors compared to Eq. (20) when operating on a state such as

[£3 8];) o [/ 1.

3.2. Quantum Mechanics and the Continuum Limit

As a consistency check, we should recover regular non-
relativistic quantum mechanics when we take the continuum
limit of our model. We define the continuum limit in this con-
text as the process of shrinking the minimum distance (edge
length) in the graph to zero. To simplify the analysis we con-
sider only the vertex states and ignore the edges, which we
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FIGURE 2: A defect located at v; in a 2d graph and a target location in the graph at distance r;; centered around v;. We consider
the transition amplitude between a defined physical state |i) represented by the left hand section of the graph, and a final state | f)
on the right hand side. To translate the vertex from v; to v;, the marked edges {ejl. ey e]-4}, must be destroyed and {e;q...., e}
created. The defect at v; in [i) is localized surrounding v;, and that in | f) around v;.

justify by observing that in the continuum limit the edges will
disappear.

As the states as defined in Section 2 have no dependence
upon time we are essentially in the Heisenberg picture. The
time dependence is then obtained by applying unitary time
evolution and for a general increment in time 7, the state vector
|v;, t) evolves as,

[vi, t +T) = e Hn /M |y 1)
We compare this to the Taylor series expansion of the state in T,

, — |vs 9 vi, ) 2
v, t+ 1) = |Z),,f>+TT+O<T )

Expanding the exponential to O(7), and gathering terms we
obtain,

halo,t)  gc?h? gc2h?
B A7 A vi )+ Lijo, ). (17
i ot 121| i > 8€m7’i2j 1]| i > (17)

8emr

In the last step, we assume that in the continuum limit v; is
zero distance from v}, and as L;; is just a number the §* opera-

tors both act on the state |v;, t), contributing 72 /4. The graph
becomes a smooth manifold in the limit, and each vertex is
thereby identified with a point in this d dimensional space ¥,
and |v;, t) — |X, t).

Discrete dynamical systems on a graph often involve the
Laplacian matrix, and in the continuum limit, the Laplacian
matrix is equivalent to —V?2, as discussed in [21]. As rij — 0,
we “renormalize” the coupling constant g to absorb the resul-
tant infinity. We recall that the edges of the graph are assumed
to be a finite length (most often the Planck length I,,), and so
the continuum limit is achieved by setting that distance [, = 0.
We reinterpret ¢ as the “bare” coupling constant, valid only
when [, > 0, and absorb the infinity into g, replacing it with
the “physical” coupling constant g, defined as g, = g3,/ 4r1-2]-.
Once we have made these substitutions we have,

nolE ) gl L g (ho)2 L
Tioor oam Mo (V) RO (9

which we can immediately recognize as the Schrodinger equa-
tion for a non-relativistic particle in a constant potential V (¥) =

2
%. This result, although seemingly remarkable, is simply
the direct consequence of unitary evolution providing that the
Laplacian matrix is present to recovered the —V? term. It is
the last point that is more significant, as the Laplacian matrix
was inserted to guarantee consistency with the original Ising
models, and indicates that the defects could be reasonable and
self-consistent model of mass in the models.

3.3. The Time Evolution of Defects

Having discussed how in the continuum limit one recovers
non-relatavistic QM, lets us return to the time evolution of a
defect in the graph. Computing the time evolution of a defect
in the discrete model will allow us in Section 3.4 to simulate the
propagation of a defect in the ground state of an Ising model,
and explore the causality of the interaction.

We continue to use as the concept of time the label we at-
tach to the sequential evolution of the states of the spacetime
graph, and there is no requirement for it to be continuous or
discrete. This label is globally the same for all observers in the
graph and is therefore intrinsically non-relativistic, occupying
the same significance as in ordinary QM where it appears as a
label on a quantum state without a corresponding operator and
eigenstates. In short we are not adding in “by hand” any causal
structure or Lorentz invariance.

We start with a system at time fy where a single defect is
present, centered at the vertex v;. To explore the dynamics we
use the interaction defined by Eq. (16) to compute the expected
value of the spin §; (assumed to be measured in the z direction)
at a vertex v; separated from a defect present at v; by distance
rij. By considering unitary evolution of the spin states using our
interaction Hamiltonian we can calculate an expression for that
expected value as a function of time, and we work in natural
units where i = ¢ = 1. As the vertex and edge spin states are
in the Heisenberg picture and independent of time, we evolve
the initial state to time ty, and the final state to time ¢ > t; and
compute the following expected value,

(Ft18) li, to) = (f| e Mlmtsje=iHinto |i) (19)

The unitary evolution should of course be undertaken using
the whole Hamiltonian, including the appropriate ground state
Hamiltonian Eq. (8) or similar. We can safely ignore that be-
cause both |f) and [i) are eigenstates of Hopp, and due to or-
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thonormality (f| Homp |i) = (f|i) = 0. Expanding the expo-
nential and setting ¢ty = 0, we have,

igt N AL A 1.
> (155757 li) +O(82).

(F] gein(t=10) i) = (i) -

Noting that (f|i) = 0 and $; |i) = §;|f) = 1. In fact §, and
$* anti-commute, but the negative sign that is picked up either
from the value of s; in |f) or |i) after doubly commuting will
not be relevant when we square the transition amplitude later.
The the only surviving term after expansion can therefore be
represented using diagrammatic notation as,

<£§ i B3 stj_ \EILI £§j>-~

We can choose to operate the SAIJr operator on the left or right,
but choosing the left we have,

<£§i/ {3]- 5t — <£§i' EIE]] (SA1+)+_
( 57 = (11, B3| ax (1, 1
+6x (1, B +4x (1, 11

Similarly for the other operator we have,

§ ok 1) ) 25
+6x ){:}i, {§j>+4>< \Ei},v iﬁj>-

When we combine the outcome of operating on the initial
and final states with $* only the terms in <{3 i B3 ‘{3 R ]->

survive, as all other states are orthogonal. This is because our
simplified notation hides the fact that these states are in fact the
tensor product states across every vertex and edge state in the
system. Any non-identical component state in (f|i) contributes
a multiplicative zero eliminating such a term.

Having understood that the edges states do not complicate
the calculation we can simplify the computation and focus on
the spin states of the vertices v; and v;. As the two points are
disconnected, we simplify Eq. (11) for the interaction between
the two vertices to,

ir

8
. 20
J 2€mr1] (20)

To compute Eq. (19), we evolve our states using the inter-
action Hamiltonian as before. We can write our initial and final
states (retaining ¢y for now) as,

li, tg) = e~ Himto |j) 1)
|f ) = e it ). 22)

As with the edge states this is highly economical notation
as in fact these are states of the whole graph and are properly
defined in the full tensor product Hilbert space. We introduce
the simplification of considering only pairwise interactions of
the vertices and work in the restricted Hilbert space spanned
by H; @ H;, that is the tensor product of the Hilbert space of
the quantum spin states at v; and v;. At each of the vertices, we
have a simple set of basis vectors, which we can chose to define

the Hilbert space as #; = span{(}), ({)}. In this representa-
tion our spin operators are,

R .
s=(o %) e

which satisfy the normal anti-commutation relationships
{8,,8F} =0, [8,,8F] = £28%F.

To avoid writing out the representation in matrix form for
the tensor product space, we write in abbreviated form the ini-
tial and final states |i) = |0,1), |f) = |1,0), to indicate the state
in the Hilbert space H; ® H; corresponding to v; having spin
down v; spin up in the initial state, with the opposite values in
the final state.

The spin operators anticommute and obey a similar expo-
nential expansion to c-numbers obeying a Grassmann algebra
[22]. This simplifies the exponential in the time evolution op-
erator, and we can demonstrate this when we expand it as fol-
lows,

et =1 — jatsf s + (iat)? 67875787 + 0O(57) ..
For powers higher than O(g), this involves further pairs
of §1.+§]. operators. By definition §; 5 |0,1) = |1,0), and

sAjsA]_ |1,0) = 0, so terms O(g?) and above will not contribute
to the expansion. We conclude that,

s iats} s, (25)

which is the standard form of the exponential function of anti-
commuting operators.
Setting ¢ty = 0 and operating on the right with the remain-
ing e!fimt term, we have,
¢iflint |0,1) = (]1 +iatsfs:)[0,1),
= \O,l)—l—ia t5F 8 0,1).
Noting that § |0 1) =11,0)
=10,1) + it \l,O) .

We now multiply on the left by (1,0|
—|1,0), and obtain our final result,

8, and as 8 [1,0) =

<f, f| §1' |1, to = 0> = —iat. (26)

If we add in the edge states and evolve forward using the
full interaction Eq. (11) we obtain the same result as the edge
states simply contribute +1 to the term, which when we square
for a transition probability are irrelevant.

The transition amplitude is now in a form we can test with
simulations in Section 3.4. Essentially this allows us to deter-
mine the probability of a defect interacting with a remote ver-
tex at a distance r;; after time . Strict causality would demand
(f, t|8i]i, to = 0)2 decays rapidly to 0 when r;; > ct, but as we
have no causal structure in our model, perhaps it should be ex-
pected that there is no such constraint on the expectation value.
The presence of both time and distance though in Eq. (26) sug-
gests that the situation in our model may be more complex.
There is a more rigorous way to treat causality in lattice bound
quantum systems that focuses on the commutator of interac-
tions, known as Lieb-Robinson bounds that we turn to next.
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3.4. Lieb-Robinson Bounds and Causality

Discrete lattice systems with long range interactions have
been understood to exhibit bounds on the propagation speeds
of such interactions, independent of any imposed relativistic
causality [18]. This upper bound on the propagation speed is
commonly referred to as a Lieb-Robinson (LR) bound. Our in-
teraction Hamiltonian has many of the characteristics of those
that exhibit a LR bound, including a long range interaction that
falls in strength according to a power law [19]. The computa-
tion of the LR bound involves estimating the operator norm
of the commutator of arbitrary observables at physically sep-
arated sites in the lattice. It can be proven that in certain cir-
cumstances this commutator bound is such that it decays away
exponentially to zero for distances greater than a value that in-
creases with time. If the commutator of arbitrary observables is
zero between two points in the lattice, they cannot be causally
connected, and hence the supposition of a maximum propaga-
tion velocity. If such a bound existed in our model, even ap-
proximately, we would have an indication of the presence of a
causal structure intrinsic to the emerged geometry.

The calculation of a LR bound is highly technical, and we
refer the reader to the literature [18, 23, 24, 25] for more details.
In essence, we state it in terms of two collections of non over-
lapping lattice points containing two vertices v; and v;, sepa-
rated by a distance 7;; in the lattice, where r;; is the distance
determined by an appropriate graph metric such as minimum
edge traversal distance. The definition of vertex separation de-
fined by Eq. (10), for example, would be a valid distance mea-
sure.

Denoting ||-|| as the operator bound of an operator we state
the main result of LR as follows,

A

It B < 0 ep o, 1y D v,

(27)
The statement bounds the commutator between any two well
behaved operators representing observables A and B, whose
supports are the disjoint sets X and Y considered as subsets
of a d dimensional lattice Z", separated by a distance function
D(X,Y). Between the sets X, Y, there is an interaction ®;; de-
fined between any pair of lattice points such as v; € X and v; €
Y. The interaction is assumed to be approximately short range
in that it is possible to express a bound upon the interaction in
terms of the distance function D(X,Y) and a constant C,, the
convolution constant, that is defined by examining the geome-
try of the lattice upon which the system is defined. A modified
distance function is also defined D,(r;;) = e " D(r;;),a > 0,
and we note that D,(r;;) < D(rj). Specifically, the distance
function must satisfy the inequality,

Y Da(riz)Da(rzj) < CaDa(rij), (28)

for all points in the lattice v, # v;, v; The constant a is the sub-
script referred to as the convolution constant C,. With this new
distance function we define a new operator norm for Q>,-]- as,

5 Lo
=sup) ———~
a ij ij Dﬂ("ij)

&

The bound expresses approximate causality because via the
modified distance function the exponential term in Eq. (27) be-

comes exp <2HCI>H 2Calt] — ar,-]->, which we note decays quickly

to zero for rij > ULRE, where v g, the Lieb-Robinson velocity, is
defined as
2Hc1>ij

Ca
a .

VLR (29)

a

To make use of this calculation for our model, we need to
be more precise about the calculation of Cq, a4, D(X,Y) and tijs
and re-cast our dynamical Hamiltonian so it can be written as
a LR interaction . Without computing a precise result for the
LR bound of our interaction, we present an overview of how
the calculation could be performed, and an argument for the
existence of a bound.

We consider our interaction I:I,-]- = aé? 57 to be split into a
spin-spin and distance function, which we slightly modify to
Hi = p(1+ r,-j)*ZsAjg]f, with B = — 5. The change (1+ ;) 2
is to ensure that our interaction does not become infinite for
rij = 0, as required by the standard set up of the LR bound. If

we define D = ,Bsffs?, the existence of the LR bound is thus
determined by the norm of this interaction.

To determine whether this exists we note that <I>;-rj = dj;,
where although we have omitted the operator notation on ®;;
it should be remembered that it is an operator. From elemen-

tary operator theory Hd%i is the square root of the maximum

eigenvalue of CI>:-r]-CI>,j = @;;®;;. Because of the order of spin lad-

der operators, we have only to consider the state ‘{3 is H ]->,

for arbitrary vertex v;, as the operation of ®;;®;; on any other
state is zero. One can straightforwardly verify that,

B ) = BT BE),

PjiPij

= ’B
This argument is neither a calculation of, nor a precise proof
of the existence of the LR bound, but does indicate that such a
result may be obtainable. A more rigorous treatment requires
the computation of C,, which arises from the geometry of the

and so the norm exists, and we state the result HQD,']'

graph, and the value of HQDU , and is the subject of ongoing
a

work. We can, however, make progress by investigating the
propagation of our defects according to the interaction Hamil-
tonian Eq. (20) using numerical simulations in the following
section.

4. SIMULATIONS

We simulate our interaction using an idealized ground state in
a 2-dimensional regular graph. In previous work it has been
argued that such a graph is a ground state of Ising emergent
geometry models [13, 17], and so it is a reasonable simplifica-
tion. At the center of this graph we create a single defect at time
t = 0. We then evolve forward the model using the results from
Section 3. For every vertex at a time t in the graph we can com-
pute the expected value of the spin using Eq. (26), so that,

(35(5)) = | (st Byt [95,t = 0) P51 =0),  (30)

where |y;) = ’Eﬁi, {:}]> and |y;) = ’{:}i, Eﬂj>, and we in-
duce the time dependence by evolving forward the states using
Egs. (21) and (22).
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(a) Simulation of |{1;] Hi; [y) }2 arrested at time = 250, with v;  (b) Simulation of |(;] I:I,-j [pi) |2 arrested at time ¢ = 450, with v;

located at origin.
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(c) Simulation of |<1[J]'| Hij ) |2 arrested at time t = 650, withv;  (d) Simulation of ‘<l[1]'| H,'j lp:) |2 arrested at time t = 850, with v;

located at origin.

located at origin.

FIGURE 3: Starting with a defect instantaneously created at the origin at time ¢t = 0, we present a numerical simulation of the
amplitude of the interaction Hamiltonian Eq. (26) at progressively later times. The model has implicit circular symmetry and we
observe that the maximum amplitude of the interaction propagates outwards from the center. Either side of the wave front the

interaction decays rapidly.

In Figure 3 we arrest the simulation at times t =
250,450,650 and 850 and plot the value of this expectation
value. We can see in the plots the presence of a distinct max-
imum that appears to propagate away from the defect as time
increases. It is well localized in the graph, in the sense that the
maximum decays away quickly for values of r;; less than or
greater than the position of the maximum. We could interpret
this to indicate that the interaction at a given value of ¢, does
not interact with lattice sites further away than the position of

the maximum of <§]-(t) >, which we call 7, (t) to underline that

it is time dependent. For earlier times { < t the maximum of
the interaction will have passed through all points closer to the
defect than ry, (t), but will not have interacted significantly with
more distant vertices.

We can analyze the the evolution of r;,; with time numer-
ically and in Figure 4 we present two graphs that show this
behavior. For computational efficiency, our simulation is con-
ducted on a finite size graph, and as r;; gets close to the bound-
ary of the graph we encounter the effect of it. In Figure 4b
we plot the speed with which the interaction propagates away
from the defect, 9;7,,(t), for a variety of graphs of size N = 40
to N = 200. As the graph increases in size the velocity overall
increases, whilst appearing to converge to a maximum value
at each distance, but the most distinct feature is the reduction
in ¢y (t) for larger t. This is to be expected, and is once again
interpreted as the effect of the finite size of the graph.

Perhaps more interesting is Figure 4a, where we plot the
position of 7, (t) of the interaction against time. As the size of
the graph increases the relation tends to a limiting curve, and
for small 1, (t) the relationship is approximately linear. We be-
lieve that this could indicate the emergence of an approximate
light-cone and the presence of a Lieb-Robinson bound for the
system. Of course the position ry, (#) is not exact as we are deal-
ing with a quantum amplitude which is non zero for r # 1y, (¢).
Nevertheless this is a motivational result, although short of a
direct comparison with an exact analytical computation of a LR
bound.

5. CONCLUSION

Our principle focus in this work was to investigate the dynam-
ics of a defect in an emerged geometry obtained as the ground
state of Eq. (8). We have re-examined the result previously pre-
sented in [17] and provided further investigation of the dynam-
ics including a more rigorous treatment of the edge states in the
graph.

Further, we speculated that the interaction Hamiltonian Eq.
(11) may carry with it an approximate causality in the form of
a Lieb-Robinson bound. Numerical simulations provided evi-
dence that this may be the case, but it is an open question to
determine analytically whether our interaction supports such a
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(a) Starting at time t = 0 with an instantaneously created defect at (b) For the same defect created instantaneously at time t = 0, we

the origin, we compute the position of the maximum of

compute the velocity of propagation of the maximum of

[(i] Hij [i) |2 for a 2-dimensional graphs of sizes up to N = 200. |(i;] Hij [ i) |2 away from the origin. This is performed for

2-dimensional graphs of sizes up to N = w00.

FIGURE 4: For a defect created instantaneously at the origin at time t = 0, we compute light-cones and velocity dispersion
diagrams for increasingly large graphs. It is visible as we scale the graph up that the propagation of the defect according to Eq.
(26) is tending to a limit. The drop off of velocity and change in the light cone for greater distances away from the origin is an

effect of the finite size of the graph.

bound, and indeed if it is consistent with the numerical experi-
mentation.

The role of time, and a causal structure is a key question
in the combinatorial quantum gravity program. We hope that
this more detailed analysis of dynamical extensions to the Ising
models provides an indication of how time could be incor-
porated into such models, simply by extending to include a
minimal prescription for defect interactions. It is possible that
the subtle interplay between geometrical emergence and quan-
tum mechanics could in these settings also provide an origin of
emergent time and causality.
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