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Abstract
The existence of charged black holes has suggested that wormholes may also be charged.
The purpose of this paper is to construct a general model of a charged wormhole that proves
to be a natural extension of the original Morris-Thorne wormhole. This goal is achieved by
means of the classical embedding theory that has played a major role in the general theory
of relativity.
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1. INTRODUCTION
Wormholes are handles or tunnels in spacetime con-
necting widely separated regions of our Universe or
different universes in a multiverse. Apart from some
forerunners, macroscopic traversable wormholes were
first proposed by Morris and Thorne [1]. The worm-
hole geometry is described by the following static and
spherically symmetric line element

ds2 = −eν(r)dt2 +
dr2

1− b(r)
r

+ r2(dθ2 + sin2θ dφ2), (1)

using units in which c = G = 1. Here ν = ν(r) is called
the redshift function, which must be everywhere finite to
prevent the appearance of an event horizon. The func-
tion b = b(r) is commonly referred to the shape function
since it determines the spatial shape of the wormhole
when viewed, for example, in an embedding diagram
[1]. The spherical surface r = r0 is called the throat of
the wormhole, where b(r0) = r0. The shape function
must also meet the requirements b′(r0) < 1, called the
flare-out condition, while b(r) < r for r > r0. A final re-
quirement is asymptotic flatness: limr→∞ν(r) = 0 and
limr→∞b(r)/r = 0.

The flare-out condition can only be met by violating
the null energy condition (NEC)

Tαβkαkβ ≥ 0 (2)

for all null vectors kα, where Tαβ is the energy-
momentum tensor. Matter that violates the NEC is
called “exotic” in [1] and is usually confined to a narrow
region around the throat. For the outgoing null vector
(1, 1, 0, 0), the violation of the NEC becomes

Tαβkαkβ = ρ + pr < 0. (3)

Here Tt
t = −ρ is the energy density, Tr

r = pr is the ra-
dial pressure, and Tθ

θ = Tφ
φ = pt is the lateral (trans-

verse) pressure.

In the area of wormhole physics, an interesting ex-
tension was proposed by Kim and Lee [2]. Motivated
by the Reissner-Nordström spacetime, they considered
the following line element for a charged wormhole:

ds2 = −
(

1 +
Q2

r2

)
dt2 +

dr2

1− b(r)
r + Q2

r2

+ r2(dθ2 + sin2θ dφ2),

(4)

where Q is the electric charge. The purpose of this pa-
per is to extend this special model to a general Morris-
Thorne wormhole with electric charge by starting with
a spacetime of embedding class one, discussed in the
next section. By assuming that the redshift function is
also dependent on the charge Q, a possible line element
is

ds2 = −eν(r,Q2)dt2 +
dr2

1− b(r)
r + Q2

r2

+ r2(dθ2 + sin2θ dφ2).

(5)

Even though the metric has changed, we would like
b = b(r) to retain the usual properties of a shape func-
tion in a Morris-Thorne wormhole, although this is not
a requirement in [2]. We will see later, however, that due
to the embedding, the shape function actually has the
form b = b(r, Q2). The line element will also be mod-
ified to produce a model for a charged wormhole that
generalizes the original Morris-Thorne wormhole in a
natural way.

2. THE EMBEDDING
Embedding theorems have played a major role in
the general theory of relativity, as exemplified by the
induced-matter theory in [3]: if the embedding of space-
time is carried out in accordance with Campbell’s the-
orem, then the resulting five-dimensional theory can
explain the origin of matter. Like any mathematical
model, the main criterion for its acceptance is its useful-
ness. In this paper, we are primarily interested in space-
times of embedding class one, a special case of the more
general class m: an n-dimensional Riemannian space is
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said to be of embedding class m if m+ n is the lowest di-
mension of the flat space in which the given space can
be embedded. The resulting mathematical model has
proved to be extremely useful in the study of compact
stellar objects [4, 5, 6, 7, 8, 9] and will be used in this pa-
per to extend the above Kim-Lee model. To that end, we
first recall that the exterior Schwarzschild solution is a
Riemannian space of embedding class two. Following
[4], we will assume that a spherically symmetric metric
of class two can be reduced to a metric of class one by a
suitable transformation of coordinates. To see how, we
start with the spherically symmetric line element

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2θ dφ2), (6)

where ν and λ are differentiable functions of the ra-
dial coordinate r. It is shown in [4] that this metric of
class two can be reduced to a metric of class one and
can therefore be embedded in the five-dimensional flat
spacetime

ds2 = −(dz1)2− (dz2)2− (dz3)2− (dz4)2 +(dz5)2. (7)

This reduction can be accomplished by the following
transformation: z1 = r sin θ cos φ, z2 = r sin θ sin φ,
z3 = r cos θ, z4 =

√
K eν/2 cosh t√

K
, and z5 =

√
K eν/2 sinh t√

K
. The differentials of the components

are:

dz1 = sin θ cos φ dr + r cos θ cos φ dθ − r sin θ sin φ dφ,
(8)

dz2 = sin θ sin φ dr + r cos θ sin φ dθ + r sin θ cos φ dφ,
(9)

dz3 = cos θ dr− r sin θ dθ, (10)

dz4 =
√

K eν/2 ν′

2
cosh

t√
K

dr + eν/2 sinh
t√
K

dt, (11)

and

dz5 =
√

K eν/2 ν′

2
sinh

t√
K

dr + eν/2 cosh
t√
K

dt. (12)

To facilitate the substitution into Eq. (7), we first ob-
tain the expressions for −(dz1)2 − (dz2)2 − (dz3)2 and
−(dz4)2 + (dz5)2:

−(dz1)2− (dz2)2− (dz3)2 = −dr2− r2(dθ2 + sin2θ dφ2)
(13)

and

−(dz4)2 + (dz5)2 = eνdt2 − 1
4

Keν(ν′)2 dr2. (14)

Substituting Eqs. (13) and (14) in Eq. (7), we obtain the
new metric

ds2 = eνdt2 −
[

1 +
1
4

Keν(ν′)2
]

dr2

− r2(dθ2 + sin2θ dφ2).
(15)

So metric (15) is equivalent to metric (6) if

eλ = 1 +
1
4

Keν(ν′)2, (16)

where K > 0 is a free parameter. Eq. (16) can also be
obtained from the Karmarkar condition [10]

R1414 =
R1212R3434 + R1224R1334

R2323
, R2323 6= 0,

which is equivalent to the above reduction. In fact, Eq.
(16) is a solution to the differential equation

ν′λ′

1− eλ
= ν′λ′ − 2ν′′ − (ν′)2,

readily solved by separation of variables. So K is actu-
ally an integration constant [5].

Next, referring to line element (6), to produce a
wormhole solution, we prefer the opposite signature:

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θ dφ2), (17)

which takes us back to line element (5) with b =
b(r, Q2):

ds2 = −eν(r,Q2)dt2 +
dr2

1− b(r,Q2)
r + Q2

r2

+ r2(dθ2 + sin2θ dφ2).

(18)

As before, we assume that ν(r, Q2) is a differentiable
function of r with limr→∞ν(r, Q2) = 0.

3. THE WORMHOLE SOLUTION
From Eqs. (16) and (18), we obtain

1− b(r, Q2)

r
+

Q2

r2 =
1

1 + 1
4 Keν(r,Q2)[ν′(r, Q2)]2

, (19)

where the prime denotes the derivative with respect to
r. Solving for b(r, Q2), we have

b(r, Q2) = r

(
1 +

Q2

r2 −
1

1 + 1
4 Keν(r,Q2)[ν′(r, Q2)]2

)
.

(20)
In line element (18), the effective shape function is given
by

beff(r, Q2) = b(r, Q2)− Q2

r
. (21)

So, due the embedding,

beff(r, Q2) = r

(
1− 1

1 + 1
4 Keν(r,Q2)[ν′(r, Q2)]2

)
. (22)

Unfortunately, the condition beff(r0, Q2) = r0 is now
impossible to meet. It quickly becomes apparent, how-
ever, that the effective shape function in Eq. (21) implies
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that Eq. (20) needs a slight adjustment:

b(r, Q2) = r

(
1 +

Q2

r2 −
1

1 + 1
4 Keν(r,Q2)[ν′(r, Q2)]2

)

+
Q2

r
.

(23)

As noted in Section 1, we would like b(r, Q2) to satisfy
all the properties of a Morris-Thorne wormhole. This
goal can be readily achieved thanks to the free param-
eter K in the embedding theory. In particular, to satisfy
the condition b(r0, Q2) = r0, we let

K =

r2
0

2Q2 − 1
1
4 eν(r0,Q2)[ν′(r0, Q2)]2

, Q 6= 0. (24)

Then

b(r, Q2) = r

1 +
Q2

r2

−

1 +
r2

0
2Q2 − 1

1
4 eν(r0,Q2)[ν′(r0, Q2)]2

1
4

eν(r,Q2)[ν′(r, Q2)]2

−1
+

Q2

r
.

(25)

It follows at once that b(r0, Q2) = r0. Using this shape
function, we obtain a Morris-Thorne wormhole with a
nonzero electric charge.

As noted earlier, asymptotic flatness requires that
limr→∞ν(r, Q2) = 0. Since ν(r, Q2) is a differen-
tiable function of r, we also have limr→∞ν′(r, Q2) =
0. Eq. (25) then yields the other condition, i.e.,
limr→∞b(r, Q2)/r = 0.

To check the flare-out condition at or near the
throat, we assume that r ≈ r0 in Eq. (25). Then

b(r, Q2) ≈ r

(
1 +

Q2

r2 −
2Q2

r2
0

)
+

Q2

r
(26)

and

b′(r0, Q2) ≈ 1− 4Q2

r2
0

< 1, (27)

provided that r0 > 2|Q|, Q 6= 0.
For the final condition, b(r, Q2) < r near r = r0, we

simply let r1 & r0 and observe that

0 <
b(r1, Q2)

r1
≈ 1 +

Q2

r2
1
− 2Q2

r2
0

+
Q2

r2
1

< 1 (28)

since Q 6= 0.

In summary, a general model for a charged worm-
hole is given by

ds2 = −eν(r,Q2)dt2 +
dr2

1− b(r,Q2)
r

+ r2(dθ2 + sin2θ dφ2),

(29)
where b(r, Q2) is the shape function in Eq. (25). The
result is a natural generalization of a Morris-Thorne
wormhole.

4. CONCLUSIONS
The existence of charged black holes has suggested that
wormholes may also be charged. This paper begins
with a discussion of Morris-Thorne wormholes, fol-
lowed by a charged wormhole model due to Kim and
Lee [2]. To extend this special model, we made use of
the classical embedding theory that is normally viewed
as a viable and effective mathematical model. More pre-
cisely, we made use of the fact that a spherically sym-
metric metric of class two can be reduced to a metric
of class one by a suitable transformation of coordinates.
So the Kim-Lee model is not only extended, the embed-
ding theory yields the following natural generalization
of a Morris-Thorne wormhole with electric charge:

ds2 = −eν(r,Q2)dt2 +
dr2

1− b(r,Q2)
r

+ r2(dθ2 + sin2θ dφ2),

where

b(r, Q2) = r

1 +
Q2

r2

−

1 +
r2

0
2Q2 − 1

1
4 eν(r0,Q2)[ν′(r0, Q2)]2

1
4

eν(r,Q2)[ν′(r, Q2)]2

−1
+

Q2

r

and r0 > 2|Q|, Q 6= 0. Both the redshift and shape
functions have the required properties of a Morris-
Thorne wormhole, while the wormhole spacetime itself
is asymptotically flat.
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