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Abstract
Formal solutions of any-order mass, angular-momentum, and dipole perturbations on the Schwarzschild background
spacetime are derived in a gauge-invariant manner. Once we accept the proposal in [K. Nakamura, Class. Quantum
Grav. 38 (2021), 145010], we can extend the gauge-invariant linear perturbation theory on the Schwarzschild back-
ground spacetime including the monopole (l = 0) and dipole (l = 1) modes to any-order perturbations of the same
background spacetime through the arguments in [K. Nakamura, Class. Quantum Grav. 31 (2014), 135013]. As a result
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1. INTRODUCTION
Higher-order perturbation theories are topical subjects in recent re-
searches on general relativity, and they have very wide applications to
cosmology and gravitational-wave physics. In cosmology, the Planck
mission revealed the precise map of the fluctuations of Cosmic Mi-
crowave Background (CMB) [1], and the CMB observation is now
regarded as a precise science. On the other hand, the direct obser-
vation of gravitational waves is accomplished in 2015 [2], and we
can expect that a future direction of gravitational-wave science is also
precise science through the forthcoming data of many gravitational-
wave events. In addition, some projects of space gravitational-wave
antenna are also progressing [3, 4]. Among them, the Extreme-Mass-
Ratio-Inspiral (EMRI), which is a source of gravitational waves from
the motion of a stellar mass object around a supermassive black hole,
is a promising target of the Laser Interferometer Space Antenna [3].
To describe the gravitational waves from EMRIs, higher-order black
hole perturbation theories are required to support the gravitational-
wave physics as a precise science.

In black hole perturbation theories, further sophistication is
possible even in perturbation theories on the Schwarzschild back-
ground spacetime. There are many studies on the perturbations on
the Schwarzschild background spacetime [5, 6] from the works by
Regge and Wheeler [7] and Zerilli [8]. In perturbation theories
of the Schwarzschild spacetime, we may decompose the perturba-
tions on this spacetime using the spherical harmonics Ylm and clas-
sify them into odd- and even-modes based on their parity, because
the Schwarzschild spacetime has a spherical symmetry. However,
monopole (l = 0) and dipole (l = 1) modes were separately treated,
and their “gauge-invariant” treatments were unknown.

In this situation, in [9], we proposed a gauge-invariant treatment
of these modes and derived the solutions to the linearized Einstein
equations for these modes. Since the obtained solutions in [9] is phys-
ically reasonable, we may say that our proposal is also reasonable.
In addition, owing to our proposal, the formulation of higher-order
gauge-invariant perturbation theory discussed in [10, 11, 12, 13] be-
comes applicable to any-order perturbations on the Schwarzschild
background spacetime.

In this article, we carry out this application and derive the for-
mal solutions of mass (l = 0 even mode), angular-momentum (l = 1
odd mode), and dipole perturbations (l = 1 even mode) to any-order

perturbations. We also emphasize that the proposal in [9] is not only
for the perturbations on the Schwarzschild background spacetime but
also a clue to perturbation theories on a generic background spacetime
such as cosmological perturbation theories [18].

The organization of this paper is as follows. In Section 2, we
briefly review the framework of the general-relativistic higher-order
gauge-invariant perturbation theory [10, 11, 12, 13]. In Section 3, we
briefly explain the strategy for gauge-invariant treatments of l = 0,1
modes in [9] and summarize the l = 0,1 mode solutions which was
also derived in [9]. In Section 4, we show the extension of the lin-
ear solutions for l = 0,1 modes to any-order perturbations. Finally, in
Section 5, we provide a brief summary of this paper.

Throughout this paper, we use the unit G = c = 1, where G is
Newton’s constant of gravitation, and c is the velocity of light.

2. GENERAL-RELATIVISTIC
HIGHER-ORDER GAUGE-INVARIANT
PERTURBATION THEORY

General relativity is a theory based on general covariance, and that
covariance is the reason that the notion of “gauge” has been in-
troduced into the theory. In particular, in general-relativistic pertur-
bations, the second-kind gauge appears in perturbations, as Sachs
pointed out [14]. In general-relativistic perturbation theory, we usu-
ally treat the one-parameter family of spacetimes {(Mλ ,Qλ )|λ ∈
[0,1]} to discuss differences between the background spacetime
(M ,Q0) = (Mλ=0,Qλ=0) and the physical spacetime (Mph, Q̄) =
(Mλ=1,Qλ=1). Here, λ is the infinitesimal parameter for perturba-
tions, Mλ is a spacetime manifold for each λ , and Qλ is the collection
of the tensor fields on Mλ . Since each Mλ is a different manifold,
we have to introduce the point identification map Xλ : M → Mλ

to compare the tensor field on different manifolds. This point iden-
tification is the gauge choice of the second kind. Since we have no
guiding principle by which to choose identification map Xλ due to
the general covariance, we may choose a different point identification
Yλ from Xλ . This degree of freedom in the gauge choice is the gauge
degree of freedom of the second kind. The gauge transformation of the
second kind is a change in this identification map. We note that this
second-kind gauge is a different notion of the degree of freedom of
coordinate choices on a single manifold, which is called the gauge of
the first kind [15]. We have to emphasize that the “gauge” which is
excluded in our gauge-invariant perturbation theory is not the gauge
of the first kind but the gauge of the second kind. In this paper, we
call the gauge of the second kind as gauge if there is no possibility of
confusions.
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Once we introduce the gauge choice Xk : M → Mλ , we can
compare the tensor fields on different manifolds {Mλ }, and per-
turbations of a tensor field Qλ are represented by the difference
X ∗

λ
Qλ −Q0, where X ∗

λ
is the pull-back induced by the gauge choice

Xλ and Q0 is the background value of the variable Qλ . We note that
this representation of perturbations completely depends on the gauge
choice Xλ . If we change the gauge choice from Xλ to Yλ , the pulled-
back variable of Qλ is then represented by Yλ Qλ . These different
representations are related to the gauge-transformation rules as

Y ∗
λ

Qλ = Φ∗
λ
X ∗

λ
Qλ , Φλ := X −1

λ
◦Yλ . (1)

Φλ is a diffeomorphism on the background spacetime M .
In the perturbative approach, we treat the perturbation X ∗

λ
Qλ

through the Taylor series with respect to the infinitesimal parameter
λ as

X ∗
λ

Qλ =:
k

∑
n=0

λ n

n!
(n)
X Q+O(λ k+1), (2)

where (n)
X Q is the representation associated with the gauge choice

Xλ of the kth-order perturbation of the variable Qλ with its back-

ground value (0)
X Q = Q0. Similarly, we can have the representation

of the perturbation of the variable Qλ under the gauge choice Yλ ,
which is different from Xλ as mentioned above. Since these differ-
ent representations are related to the gauge-transformation rule (1),
the order-by-order gauge-transformation rule between nth-order per-
turbations (n)

X Q and (n)
Y Q is given from the Taylor expansion of the

gauge-transformation rule (1).
Since Φλ is constructed by the product of diffeomorphisms, Φλ

is not given by an exponential map [10, 16, 17], in general. For this
reason, Sonego and Bruni [17] introduced the notion of a knight dif-
feomorphism through the following proposition.

Proposition 2.1. Let Φλ be a one-parameter family of diffeomor-
phisms, and T a tensor field such that Φ∗

λ
T is of class Ck. Then, Φ∗

λ
T

can be expanded around λ = 0 as

Φ∗
λ

T =
k

∑
n=0

λ
n

∑
{ ji}∈Jn

Cn,{ ji}£ j1
ξ(1)

· · ·£ jn
ξ(n)

T +O(λ k+1). (3)

Here, Jn := {{ ji}|∀i ∈ N, ji ∈ N, s.t. ∑
∞
i=1 i ji = n} defines the set

of indices over which one has to sum in order to obtain the nth-

order term, Cn,{ ji} :=
n

∏
i=1

1
(i!) ji ji!

, and O(λ k+1) is a remainder with

O(λ k+1)/λ k → 0 in the limit λ → 0.

The vector fields ξ(1), ...,ξ(k) in equation (3) are called the gen-
erators of Φλ . The Taylor expansion (3) is a sufficient representation
at least when we concentrate on perturbation theories [13, 17]. Ac-
tually, this knight diffeomorphism is suitable for our order-by-order
arguments on the gauge issues of general-relativistic higher-order per-
turbations.

Through the above notion of the knight diffeomorphism, Sonego
and Bruni also derived the gauge-transformation rules for nth-order
perturbations. As mentioned above, the gauge-transformation rule be-
tween the pulled-back variables Y ∗

λ
Qλ and X ∗

λ
Qλ is given by equa-

tion (1). In perturbation theories, we always use the Taylor expan-
sion of these variables as in equation (2). To derive the order-by-order
gauge-transformation rule for the nth-order perturbation, we have to
know the form of the Taylor expansion of the pull-back Φ∗

λ
of dif-

feomorphism. Then, we use the general expression (3) of the Taylor

expansion of diffeomorphisms. Substituting equations (2) and (3) into
equation (1), we obtain the order-by-order expression of the gauge-
transformation rules between the perturbative variables (n)

X Q and (n)
Y Q

as

(n)
Y Q− (n)

X Q =
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{Ji}£ j1
ξ(1)

· · ·£ jl
ξ(l)

(n−l)
X Q. (4)

Inspecting the gauge-transformation rule (4), we defined gauge-
invariant variables for metric perturbations and for perturbations of an
arbitrary tensor field [10, 11]. Since the definitions of gauge-invariant
variables for perturbations of an arbitrary tensor field are trivial if we
accomplish the separation of the metric perturbations into their gauge-
invariant and gauge-variant parts, we may concentrate on the metric
perturbations, at first.

We consider the metric ḡab on the physical spacetime (Mph, Q̄) =
(Mλ=1,Qλ=1), and we expand the pulled-back metric X ∗

λ
ḡab to the

background spacetime M through a gauge choice Xk as

Xλ ḡab =
k

∑
n=0

λ n

n!
(n)
X gab +O(λ k+1), (5)

where gab := (0)
X gab is the metric on the background spacetime M .

The expansion (5) of the metric depends entirely on the gauge choice
Xλ . Nevertheless, henceforth, we do not explicitly express the index
of the gauge choice Xλ if there is no possibility of confusion. In [10,
11], we proposed a procedure to construct gauge-invariant variables
for higher-order perturbations. Our starting point to construct gauge-
invariant variables was the following conjecture for the linear metric
perturbation hab := (1)gab.

Conjecture 2.1. If the gauge-transformation rule for a tensor field
hab is given by Y hab −X hab = £ξ(1)

gab with the background metric
gab, there then exist a tensor field Fab and a vector field Y a such that
hab is decomposed as hab =: Fab + £Y gab, where Fab and Y a are
transformed into Y Fab −X Fab = 0 and Y Y a −X Y a = ξ a

(1) under
the gauge transformation, respectively.

We call Fab and Y a the gauge-invariant and gauge-variant parts
of hab, respectively.

Based on Conjecture 2.1, in [13], we found that the nth-order
metric perturbation (n)

X gab is decomposed into its gauge-invariant and
gauge-variant parts as1

(n)gab =
(n)Fab

−
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{ ji}£ j1
−(1)Y

· · ·£ jl
−(l)Y

(n−l)gab.
(6)

Furthermore, through the gauge-variant variables (i)Y a (i = 1, ...,n),
we also found the definition of the gauge-invariant variable (n)Q for
the nth-order perturbation (n)Q of an arbitrary tensor field Q. This
definition of the gauge-invariant variable (n)Q implies that the nth-
order perturbation (n)Q of any tensor field Q is always decomposed
into its gauge-invariant part (n)Q and gauge-variant part as

(n)Q = (n)Q−
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{ ji}£ j1
−(1)Y

· · ·£ jl
−(l)Y

(n−l)Q. (7)

1Precisely speaking, to reach the decomposition formula (6), we have to confirm Con-
jecture 4.1 in [13] in addition to Conjecture 2.1.
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For example, the perturbative expansions of the Einstein tensor
and the energy-momentum tensor, which are pulled back through the
gauge choice Xλ , are given by

X ∗
λ

Ḡ b
a =

k

∑
n=0

λ n

n!
(n)
X G b

a +O(λ k+1), (8)

X ∗
λ

T̄ b
a =

k

∑
n=0

λ n

n!
(n)
X T b

a +O(λ k+1). (9)

Then, the nth-order perturbation (n)
X G b

a of the Einstein tensor and the

nth-order perturbation (n)
X T b

a of the energy-momentum tensor are also
decomposed as

(n)G b
a = (n)G b

a

−
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{ ji}£ j1
−(1)Y

· · ·£ jl
−(l)Y

(n−l)G b
a ,

(10)

(n)T b
a = (n)T b

a

−
n

∑
l=1

n!
(n− l)! ∑

{ ji}∈Jl

Cl,{ ji}£ j1
−(1)Y

· · ·£ jl
−(l)Y

(n−l)T b
a .

(11)

Through the lower-order Einstein equation (k)
X G b

a = 8π
(k)
X T b

a with

k ≤ n−1, the nth-order Einstein equation (n)
X G b

a = 8π
(n)
X T b

a is auto-
matically given in the gauge-invariant form

(n)G b
a = 8π

(n)T b
a . (12)

Here, we note that the nth-order perturbation of the Einstein tensor is
given in the form

(n)G b
a = (1)G b

a

[
(n)F

]
+ (NL)G b

a

[{
(i)F | i < n

}]
, (13)

where (1)G b
a is the gauge-invariant part of the linear-order perturba-

tion of the Einstein tensor. Explicitly, (1)G b
a [A] for an arbitrary tensor

field Aab of the second rank is given by [11, 15]

(1)G b
a [A] := (1)Σ b

a [A]−
1
2

δ
b

a
(1)Σ c

c [A] , (14)

(1)Σ b
a [A] := −2∇[aH bd

d] [A]−AcbRac, (15)

H c
ba [A] := ∇(aA c

b) − 1
2

∇
cAab. (16)

As derived in [11], when the background Einstein tensor vanishes, we
obtain the identity

∇a
(1)G a

b [A] = 0 (17)

for an arbitrary tensor field Aab of the second rank.
Thus, we emphasize that Conjecture 2.1 was the important

premise of the above framework of the higher-order perturbation the-
ory.

3. LINEAR PERTURBATIONS ON
THE SCHWARZSCHILD
BACKGROUND SPACETIME

We use the 2+2 formulation [6] of the perturbations on spherically
symmetric background spacetimes. The topological space of spheri-
cally symmetric spacetimes is the direct product M = M1 ×S2, and

the metric on this spacetime is

gab = yab + r2
γab, (18)

yab = yAB(dxA)a(dxB)b, γab = γpq(dxp)a(dxq)b, (19)

where xA = (t,r) and xp = (θ ,φ ). In addition, γpq is a metric of the
unit sphere. In the Schwarzschild spacetime, the metric (18) is given
by

yab = − f (dt)a(dt)b + f−1(dr)a(dr)b, (20)

f = 1− 2M
r

, (21)

γab = (dθ )a(dθ )b + sin2
θ (dφ )a(dφ )b. (22)

On this background spacetime (M ,gab), we consider the compo-
nents of the metric perturbation as

hab = hAB(dxA)a(dxB)b + 2hAp(dxA)(a(dxp)b)

+ hpq(dxp)a(dxq)b.
(23)

In [9], we proposed the decomposition of these components as

hAB = ∑
l,m

h̃ABSδ , (24)

hAp = r∑
l,m

[
h̃(e1)AD̂pSδ + h̃(o1)AεpqD̂qSδ

]
, (25)

hpq = r2
∑
l,m

[
1
2

γpqh̃(e0)Sδ + h̃(e2)

(
D̂pD̂q −

1
2

γpq∆̂
)

Sδ

+ 2h̃(o2)εr(pD̂q)D̂
rSδ

]
, (26)

where D̂p is the covariant derivative associated with the metric γpq on
S2, D̂p := γ pqD̂q, and εpq = ε[pq] is the totally antisymmetric tensor
on S2.

Note that the decomposition formulae (24)–(26) implicitly state
that the Green functions of the derivative operators ∆̂ := D̂rD̂r and
∆̂+2 := D̂rD̂r +2 should exist if the one-to-one correspondence be-
tween {hAp,hpq} and {h̃(e1)A, h̃(o1)A, h̃(e0), h̃(e2), h̃(o2)} is guaranteed.
Because the eigenvalue of the derivative operator ∆̂ on S2 is −l(l+1),
the kernels of the operators ∆̂ and ∆̂+2 are l = 0 and l = 1 modes, re-
spectively. Thus, the one-to-one correspondence between {hAp,hpq}
and {h̃(e1)A, h̃(o1)A, h̃(e0), h̃(e2), h̃(o2)} is lost for l = 0,1 modes in de-
composition formulae (24)–(26) with Sδ = Ylm. To recover this one-
to-one correspondence, in [9], we introduced the mode functions k(∆̂)
and k(∆̂+2)m instead of Y00 and Y1m, respectively, and consider the
scalar harmonic function

Sδ =


Ylm for l ≥ 2,
k(∆̂+2)m for l = 1,

k(∆̂) for l = 0.

(27)

As the explicit functions of k(∆̂) and k(∆̂+2)m, we employ

k(∆̂) = 1+ δ ln
(

1− z
1+ z

)1/2
, δ ∈ R, (28)

k(∆̂+2)m=0 = z
{

1+ δ

(
1
2

ln
1+ z
1− z

− 1
z

)}
, (29)

k(∆̂+2)m=±1 = (1− z2)1/2

×
{

1+ δ

(
1
2

ln
1+ z
1− z

+
z

1− z2

)}
e±iφ ,

(30)
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where z = cosθ . This choice guarantees the linear-independence of
the set of the harmonic functions{

Sδ , D̂pSδ ,εpqD̂qSδ ,
1
2

γpqSδ ,(
D̂pD̂q −

1
2

γpqD̂rD̂r

)
Sδ ,2εr(pD̂q)D̂

rSδ

} (31)

including l = 0,1 modes if δ ̸= 0, but it is singular if δ ̸= 0. When
δ = 0, we have k(∆̂) ∝ Y00 and k̂(∆̂+2)m ∝ Y1m.

Using the above harmonics functions Sδ in equation (27), in [9],
we proposed the following strategy.

Proposal 3.1. We decompose the metric perturbations hab on the
background spacetime with the metric (18)–(22), through equations
(24)–(26) with the harmonic functions Sδ given by equation (27).
Then, equations (24)–(26) become invertible with the inclusion of
l = 0,1 modes. After deriving the field equations such as linearized
Einstein equations using the harmonic function Sδ , we choose δ = 0
when we solve these field equations as the regularity of the solutions.

Through this strategy, we can construct gauge-invariant variables
and evaluate field equations through the mode-by-mode analyses
without special treatments for l = 0,1 modes.

Once we accept Proposal 3.1, we reach to the following state-
ment [9].

Theorem 3.1. If the gauge-transformation rule for a tensor field hab
is given by Y hab − X hab = £ξ(1)

gab, where gab is the background
metric with the spherical symmetry, then, there exist a tensor field Fab
and a vector field Y a such that hab is decomposed as hab =: Fab +
£Y gab, where Fab and Y a are transformed as Y Fab −X Fab = 0
and Y Y a −X Y a = ξ a

(1) under the gauge transformation.

Owing to Theorem 3.1, the above general arguments in our
gauge-invariant perturbation theory are applicable to perturbations on
the Schwarzschild background spacetime including l = 0,1 mode per-
turbations. Furthermore, we derived the l = 0,1 solution to the lin-
earized Einstein equation in the gauge-invariant manner [9].

As shown in equation (12), the linearized Einstein equation
(1)G b

a = 8π(1)T b
a for the linear metric perturbation hab = Fab +

£Y gab with the vacuum background Einstein equation G b
a = 8πT b

a =
0 is given by

(1)G b
a [F ] = 8π

(1)T b
a . (32)

Since we consider the vacuum background spacetime Tab = 0, the
linear-order perturbation of the continuity equation of the linear per-
turbation of the energy-momentum tensor is given by

∇
a(1)T b

a = 0. (33)

We decompose the components of the linear perturbation of (1)Tac as

(1)Tac = ∑
l,m

T̃ACSδ (dxA)a(dxC)c

+ 2r∑
l,m

{
T̃(e1)AD̂pSδ + T̃(o1)AεpqD̂qSδ

}
(dxA)(a(dxp)c)

+ r2
∑
l,m

{
T̃(e0)

1
2

γpqSδ + T̃(e2)

(
D̂pD̂q −

1
2

γpqD̂rD̂r
)

Sδ

+ T̃(o2)εs(pD̂q)D̂
sSδ

}
(dxp)a(dxq)c.

(34)

We also derive the continuity equations (33) in terms of these mode
coefficients and use these equations when we solve the linearized Ein-
stein equation.

Furthermore, we derived the solutions to the Einstein equation for
l = 0,1 mode imposing the regularity of the harmonics Sδ through
δ = 0. For this reason, we may choose T̃(e2) = T̃(o2) = 0 for l = 0,1
modes. In addition, we may also choose T̃(e1)A = 0 and T̃(o1)A = 0 for
l = 0 modes due to the same reason. This choice and a component of
equation (33) lead to T̃(e0) = 0 for l = 0 mode.

Through the above premise, in [9], we derived the l = 0,1-mode
solutions to the linearized Einstein equations as follows.

For l = 1 m = 0 odd-mode perturbations, we derived

2(1)FAp(dxA)(a(dxp)b)

=

(
6Mr2

∫
dr

1
r4 a1(t,r)

)
sin2

θ (dt)(a(dφ )b)+ £V(1,o1)gab,

(35)

where the generator V a
(1,o1) of the term £V(1,o1)gab in equation (35) is

V(1,o1)a =
(

β1(t)+W(1,o)(t,r)
)

r2 sin2
θ (dφ )a. (36)

Here, β1(t) is an arbitrary function of t. The function a1(t,r) is given
by the solutions to the linear-order Einstein equation (32) as follows:

a1(t,r) = −16π

3M
r3 f

∫
dtT̃(o1)r + a10

= −16π

3M

∫
drr3 1

f
T̃(o1)t + a10,

(37)

where a10 is the constant of integration which corresponds to the
Kerr parameter perturbation. Furthermore, r f ∂rW(1,o) of the variable
W(1,o) in equation (36) is determined by the evolution equation

∂
2
t

(
r f ∂rW(1,o)

)
− f ∂r

(
f ∂r

(
r f ∂rW(1,o)

)
+

1
r2 f [3 f −1]

(
r f ∂rW(1,o)

)
= 16π f 2T̃(o1)r.

(38)

For the l = 0 even-mode perturbation, we should have

(1)Fab =
2
r

(
M1 + 4π

∫
dr

[
r2

f
T̃tt

])
×
(
(dt)a(dt)b +

1
f 2 (dr)a(dr)b

)
+ 2

[
4πr

∫
dt
(

1
f

T̃tt + f T̃rr

)]
(dt)(a(dr)b)

+ £V(1,e0)gab,

(39)

where M1 is the linear-order Schwarzschild mass parameter pertur-
bation, and γ1(r) is an arbitrary function of r. Here, the generator
V(1,e0)a of the term £V(1,e0)gab in equation (39) is given by

V(1,e0)a :=
(

1
4

f Υ1 +
1
4

r f ∂rΥ1 + γ1(r)
)
(dt)a

+
1

4 f
r∂t Υ1(dr)a.

(40)

In the generator (40), (1)F̃ := ∂t Υ1 satisfies the following equation:

− 1
f

∂
2
t F̃ + ∂r( f ∂rF̃)+

1
r2 3(1− f )F̃

= − 8
r3 m1(t,r)+ 16π

[
− 1

f
T̃tt + f T̃rr

]
,

(41)
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where

m1(t,r) = 4π

∫
dr

[
r2

f
T̃tt

]
+M1

= 4π

∫
dt
[
r2 f T̃rt

]
+M1, M1 ∈ R.

(42)

For the l = 1 m = 0 even-mode perturbation, we should have

(1)Fab = −16πr2 f 2

3(1− f )

[
1+ f

2
T̃rr + r f ∂rT̃rr − T̃(e0)−4T̃(e1)r

]
× cosθ (dt)a(dt)b

+ 16πr2
{

T̃tr −
2r

3 f (1− f )
∂t T̃tt

}
× cosθ (dt)(a(dr)b)

+
8πr2(1−3 f )

f 2(1− f )

[
T̃tt −

2r f
3(1−3 f )

∂rT̃tt

]
× cosθ (dr)a(dr)b

− 16πr4

3(1− f )
T̃tt cosθγab + £V(1,e1)gab,

(43)

V(1,e1)a := −r∂t Φ(e) cosθ (dt)a

+
(

Φ(e)− r∂rΦ(e)

)
cosθ (dr)a

− rΦ(e) sinθ (dθ )a,

(44)

where Φ(e) satisfies the following equation:

− 1
f

∂
2
t Φ(e)+ ∂r

[
f ∂rΦ(e)

]
− 1− f

r2 Φ(e) = 16π
r

3(1− f )
S(Φ(e))

,

S(Φ(e))
:=

3(1−3 f )
4 f

T̃tt −
1
2

r∂rT̃tt +
1+ f

4
f T̃rr +

1
2

f 2r∂rT̃rr

− f
2

T̃(e0)−2 f T̃(e1)r. (45)

4. EXTENSION TO THE HIGHER-ORDER
PERTURBATIONS

As reviewed in Section 2, the n-th order perturbation of the Einstein
equation is given in the gauge-invariant form. We may write this n-th
order Einstein equation (12) as follows:

(1)G b
a

[
(n)F

]
= −(NL)G b

a

[{
(i)Fcd | i < n

}]
+ 8π

(n)T b
a

=: 8π
(n)T b

a .
(46)

Here, the left-hand side in equation (46) is the linear term of (n)Fab
and the first term on the right-hand side is the nonlinear term con-
sisting of the lower-order metric perturbation (i)Fab with i < n. The
right-hand side 8π(n)T b

a of equation (46) is regarded as an effec-
tive energy-momentum tensor for the n-th order metric perturbation
(n)Fab.

The vacuum background condition G b
a = 0 implies the mathe-

matical identity (17), and equation (46) implies

∇
a(n)T b

a = 0. (47)

This equation gives consistency relations which should be confirmed
in concrete physical situations. The first term on the right-hand side
in equation (46) does not contain (n)Fab. The n-th order perturba-
tion (n)T b

a does not contain (n)Fab, either, because our background

spacetime is the vacuum. Then, (n)T b
a does not include (n)Fab. This

situation is the same as that we used when we solved the linear-order
Einstein equation (32) with the linear perturbation (33) of the conti-
nuity equation of the energy-momentum in [9]. Furthermore, we de-
compose the tensor (n)Tab as follows:

(1)Tab =: ∑
l,m

T̃ABSδ (dxA)a(dxB)b

+ 2r∑
l,m

{
T̃(e1)AD̂pSδ + T̃(o1)AεpqD̂qSδ

}
(dxA)(a(dxp)b)

+ r2
∑
l,m

{
T̃(e0)

1
2

γpqSδ + T̃(e2)

(
D̂pD̂q −

1
2

γpqD̂rD̂r
)

Sδ

+ T̃(o2)εs(pD̂q)D̂
sSδ

}
(dxp)a(dxq)b.

(48)

Then, the replacements

T̃AB → T̃AB, T̃(e1)A → T̃(e1)A, T̃(o1)A → T̃(o1)A,

T̃(e0) → T̃(e0), T̃(e2) → T̃(e2), T̃(o2) → T̃(o2) (49)

in the solutions (35)–(45) yield the solutions to equation (46).
Then, following the strategy as Proposal 3.1 and the results de-

rived in [9], the l = 0,1-mode solutions to equation (46) are summa-
rized as follows.

For l = 1 m = 0 odd-mode perturbations, we should have

2(n)FAp(dxA)(a(dxp)b)

=

(
6Mr2

∫
dr

1
r4 an(t,r)

)
sin2

θ (dt)(a(dφ )b)+ £V(n,o1)gab,

(50)

where the generator V a
(n,o1) of the term £V(n,o1)gab in equation (50) is

V(n,o1)a =
(

βn(t)+W(n,o)(t,r)
)

r2 sin2
θ (dφ )a. (51)

Here, βn(t) is an arbitrary function of t. The function an(t,r) is given
by the solutions to the nth-order Einstein equation (46) as follows:

an(t,r) = −16π

3M
r3 f

∫
dt(n)T̃(o1)r + an0

= −16π

3M

∫
drr3 1

f
(n)T̃(o1)t + an0,

(52)

where an0 is the constant of integration which corresponds to the
Kerr parameter perturbation. Furthermore, r f ∂rW(n,o) of the variable
W(n,o) in equation (51) is determined by the evolution equation

∂
2
t

(
r f ∂rW(n,o)

)
− f ∂r

(
f ∂r

(
r f ∂rW(n,o)

)
+

1
r2 f [3 f −1]

(
r f ∂rW(n,o)

)
= 16π f 2(n)T̃(o1)r.

(53)

For the l = 0 even-mode perturbation, we should have

(n)Fab =
2
r

(
Mn + 4π

∫
dr

[
r2

f
(n)T̃tt

])
×
(
(dt)a(dt)b +

1
f 2 (dr)a(dr)b

)
+ 2

[
4πr

∫
dt
(

1
f
(n)T̃tt + f (n)T̃rr

)]
(dt)(a(dr)b)

+ £V(n,e0)gab,

(54)
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where Mn is the nth-order Schwarzschild mass parameter perturba-
tion, and γn(r) is an arbitrary function of r. Here, the generator
V(n,e0)a of the term £V(n,e0)gab in equation (54) is given by

V(n,e0)a :=
(

1
4

f Υn +
1
4

r f ∂rΥn + γn(r)
)
(dt)a +

1
4 f

r∂t Υn(dr)a,

(55)

In the generator (55), (n)F̃ := ∂t Υn satisfies the following equation:

− 1
f

∂
2
t
(n)F̃ + ∂r

(
f ∂r

(n)F̃
)
+

1
r2 3(1− f )(n)F̃

= − 8
r3 mn(t,r)+ 16π

[
− 1

f
(n)T̃tt + f (n)T̃rr

]
,

(56)

where

mn(t,r) = 4π

∫
dr

[
r2

f
(n)T̃tt

]
+Mn

= 4π

∫
dt
[
r2 f (n)T̃rt

]
+Mn, Mn ∈ R.

(57)

For the l = 1 m = 0 even-mode perturbation, we should have

(n)Fab = −16πr2 f 2

3(1− f )

×
[

1+ f
2

(n)T̃rr + r f ∂r
(n)T̃rr − (n)T̃(e0)−4(n)T̃(e1)r

]
× cosθ (dt)a(dt)b

+ 16πr2
{
(n)T̃tr −

2r
3 f (1− f )

∂t
(n)T̃tt

}
× cosθ (dt)(a(dr)b)

+
8πr2(1−3 f )

f 2(1− f )

[
(n)T̃tt −

2r f
3(1−3 f )

∂r
(n)T̃tt

]
× cosθ (dr)a(dr)b

− 16πr4

3(1− f )
(n)T̃tt cosθγab + £V(n,e1)gab,

(58)

V(n,e1)a := −r∂t Φ(n,e) cosθ (dt)a

+
(

Φ(n,e)− r∂rΦ(n,e)

)
cosθ (dr)a

− rΦ(n,e) sinθ (dθ )a.

(59)

These are the main assertion of this article.

5. SUMMARY
In summary, we extended the linear-order solution of the mass pertur-
bation (l = 0 even mode), the angular-momentum perturbation (l = 1
odd mode), and the dipole perturbation (l = 1 even mode) to the any-
order formal solutions. Our logic starts from the complete proof of
Conjecture 2.1 for perturbations on the Schwarzschild background
spacetime. The remaining problem in Conjecture 2.1 was in the treat-
ment of l = 0,1 modes of the perturbations on the Schwarzschild
background spacetime. To resolve this problem, in [9], we introduced
the harmonic functions Sδ defined by equation (27) instead of the
conventional harmonic function Ylm and proposed Proposal 3.1 as a
strategy of a gauge-invariant treatment of the l = 0,1 perturbations on
the Schwarzschild background spacetime. Once we accept this pro-
posal, we reach Theorem 3.1 and we can apply our general arguments

of higher-order perturbation theory developed in [10, 11, 12, 13] to
perturbations on the Schwarzschild background spacetime.

In [9], we derived the l = 0,1 solutions (35)–(45) to the linearized
Einstein equations following Proposal 3.1. The premise and equations
for any-order perturbations are the same as those for the linear per-
turbations. Then, we reached the formal solutions (50)–(59) for the
any-order nonlinear perturbation by the replacements (49).

Of course, the solutions derived here are just formal ones and
we have to evaluate the nonlinear terms in the effective energy-
momentum tensor (n)T b

a , i.e., (NL)G b
a [{(i)Fcd | i < n}] and (n)T b

a .
This evaluation will depend on the situations which we want to clar-
ify. In addition to the perturbations on the Schwarzschild background
spacetime, the strategy in Proposal 3.1 is a clue of the generaliza-
tion of applications of our general framework on the gauge-invariant
higher-order perturbations to other physical situations such as higher-
order gauge-invariant cosmological perturbations [18]. We leave fur-
ther evaluations of our formal solutions (50)–(59) in specific physical
situations and the applications to the other perturbation theories with
different background spacetimes as future works.
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