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Abstract
In this article, we present a very general but not ultimate solution of CPV problem in the standard model.
Our study starts from a naturally Hermitian M2 ≡ Mq · Mq† rather than the previously assumed Her-
mitian Mq. The only assumption employed here is that the real part and imaginary part of M2 can be,
respectively, diagonalized by a common Uq matrix. Such an assumption leads to an M2 pattern which de-
pends on only five parameters and can be diagonalized analytically by a Uq matrix which depends on only
two of the parameters. Two of the derived mass eigenvalues are predicted to be degenerate if one of the
parameters C (C′) in up- (down-) quark sector is zero. As the Uq patterns are obtained, thirty-six VCKM
candidates are yielded, and only eight of them, classified into two groups, fit empirical data within the
order of O(λ). One of the groups is further excluded in a numerical test, and the surviving group predicts
that the degenerate pair in a quark type are the lightest and the heaviest generations rather than the lighter
two generations assumed in previous researches. However, there is still one unsatisfactory prediction in
this research, a quadruple equality in which four CKM elements of very different values are predicted to
be equal. It indicates that the M2 pattern studied here is still oversimplified by that employed assumption
and the ultimate solution can only be obtained by diagonalizing the unsimplified M2 matrix containing
nine parameters directly. The VCKM presented here is already very close to such an ultimate CPV solution.
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1. INTRODUCTION
The theoretical origin of CP violation (CPV) is a long unsolved
problem in particle physics since its first discovery in the decay
of neutral kaons [1]. We know that, in the standard model (SM)
of electroweak interactions, this can only be yielded “explic-
itly” by a complex phase in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [2, 3] which is a product of the two unitary trans-
formation matrices Uu and Ud which diagonalize the mass ma-
trices Mu and Md of up- and down-type quarks, respectively.
However, even if there are only three already known fermion
generations for now, a 3 × 3 mass matrix with eighteen un-
known parameters is obviously too complicated to be diago-
nalized analytically. Thus, for decades, an analytical solution
of CPV problem remains obscured.

Besides the “explicit” way to bring complex phases into
the theory, physicists proposed another way to bring complex
phases into the theory by employing an extra Higgs doublet [4]
and expected that the phase difference between vacuum expec-
tation values (VEVs) of two Higgs doublets will be nonzero.
It is usually referred to as the “spontaneous” way to break CP
symmetry.

In principle, a most general 3 × 3 Mq matrix has nine com-
plex elements, and each of them has two coefficients, one from
the real part and one from the imaginary part. Thus, there
are at most eighteen parameters in total in such a matrix. If
we can diagonalize it analytically, there are always possibil-
ities for inducing complex phases into the CKM matrix by
choosing parameters suitably. However, such a matrix is ob-
viously too complicated to be diagonalized analytically. Thus,
researchers proposed many ways to simplify the Mq pattern to
a manageable level. For instance, various ansatzes like Fritzsch
ansatz (FA) [5, 6], Cheng-Sher ansatz (CSA) [7], Du-Xing ansatz
(DXA) [8], combination of the Fritzsch and the Du-Xing ansatz

(DFXA and FDXA), combination of different assignments in
the Du-Xing ansatz (X̃A), non-mixing top quark ansatz (NTA)
(and references therein) [9], and Fukuyama-Nishiura ansatz
(FNA) (and references therein) [10] were imposed with ad hoc
zeros in Mq to simplify the pattern. Instead, one may em-
ploy symmetries like SN symmetry among fermion generations
[12, 14, 15, 11, 13] and many others to build correlations among
Mq elements so as to simplify its pattern. However, assump-
tions, constraints, symmetries, or ad hoc zero elements always
reduce the generality of researches. Here, we would like to
present a very general solution of the CPV problem in SM and
see how close it is to the ultimate one.

In one of our previous studies [13], an S2-symmetric model
gave us several complex CKM matrices with a predicted Jarl-
skog invariant [16], an estimate of CPV strength, which is four
orders stronger than that detected in current experiments. In an
even earlier article [11], we found that an S3-symmetric model
would not give any CP-violating, complex phases in its CKM
matrix. None of them fit experiments very well even though
[13] gave a concrete proof of explicitly violated CP symmetry
in SM with several evidences. Comparing these two researches,
we observed that the predicted CKM matrix regularly deviates
more from experiments if the constraints are stronger. Thus,
we raise the following question: if there is a model which is
completely SN-nonsymmetric, will its CKM elements fit exper-
iments better? Another reason that pushes us toward such a
nonsymmetric study is that no SN symmetries had been ob-
served in our present universe. That explains why those SN-
symmetric predictions do not fit experiments well.

Following such a concept, we will start the study from a
most general 3× 3 Mq pattern containing eighteen parameters.
Instead of assuming a Hermitian Mq to simplify it down to only
nine parameters [17, 13], we study here a naturally Hermitian
M2 ≡ Mq · Mq† matrix since fewer assumptions make the the-
ory more general. The only assumption employed in this ar-
ticle is a common Uq matrix which diagonalizes the real part
M2

R and the imaginary part M2
I of M2 respectively and simul-

taneously. In [13], we employed two assumptions, a Hermitian
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Mq and a common Uq, to achieve a set of analytical solutions.
Here, only the assumption of a common Uq remains. It makes
the solution thus obtained more general than that given in [17]
and closer to the reality.

In Section 2, we start from a general review regarding CPV,
CKM matrix, and fermion mass matrices. Then, we analyze
the problems researchers addressed in previous investigations
when trying to diagonalize the mass matrices and present a
way to solve those problems with an assumption much weaker
than previous ones. Subsequently, with the only assumption
that the real part M2

R and imaginary part M2
I of M2 can be

diagonalized simultaneously and respectively by the same Uq

matrix, the M2 matrix is simplified down to a manageable level
so as to be diagonalized analytically. During the derivation, an
interesting relation between M2

R and M2
I is employed by the

assumption to bring about extra correlations among their ele-
ments and thus reduce the parameter number in an M2 from
nine down to five. That relation was originally proposed in
[18] for the Natural-Flavor-Conservation (NFC) in two-Higgs-
doublet models (2HDMs). The eigenvalues and eigenvectors
thus obtained look completely the same as those given in [17],
but they are of very different implications. Thus, we will de-
note them by boldfaced letters like M2 and Uq to distinguish
them from those derived from the original, unsquared matrix
Mq given in [17] and even earlier articles [11, 19, 20].

As the Uq matrices are obtained, surely the CKM matrix
VCKM is obtained. In Section 3, thirty-six VCKM candidates are
presented since there are six ways to designate three mass
eigenvalues to three physical quark masses in a quark type.
All of them are dependent on only four parameters since the
eigenvectors of a quark type are dependent on only two of the
five parameters. Such parameterization of VCKM is very nat-
ural since all its elements are directly dependent on Yukawa
couplings and the VEV of its only Higgs doublet. As will be
shown later, there are some predicted equalities among CKM
elements, and they exclude some of the VCKM candidates. Only
eight of them, classified into two groups, fit experiments within
the order of O(λ), and only one of those two groups gives ac-
ceptable solutions in a numerical test. In such a case, the de-
rived mass spectrum predicts a degeneracy between the heav-
iest and lightest generations, say the up and top quarks in the
up-quark sector, when one of the parameters C is 0.

Though this research gives a better solution to the CPV
problem than previous similar researches, it is still not the
ultimate one since there is still one assumption remains. As
mentioned above, there are several predicted equalities among
CKM elements in such a model. One of them is a quadru-
ple equality which correlates four of the CKM elements, and
this is obviously incoincident with empirical values. This sug-
gests that the employed assumption of a common Uq simplifies
the pattern of M2 too much. The problem will be completely
solved if we can diagonalize the unsimplified M2 containing
nine parameters directly. Unfortunately, such an ultimate so-
lution looks still far beyond our capability for now, and more
discussions on this topic will be provided in Section 4 as con-
clusions.

2. THE PATTERN OF MASS MATRIX
In standard model, the only source of CPV is a complex phase
in VCKM, the CKM matrix. Obviously, the most orthodox way to

study the CPV problem is to find out how such a phase comes
into VCKM.

We start from the Yukawa couplings of Q quarks in SM
which are usually given by

−LY = Q̄LYdΦdR + Q̄LϵYuΦ∗uR + h.c., (1)

where Yq are 3 × 3 Yukawa-coupling matrices for quark types
q = u and d, and ϵ is the 2 × 2 antisymmetric tensor. QL is
left-handed quark doublets, and dR and uR are right-handed
down- and up-type quark singlets in their weak eigenstates,
respectively.

When the Higgs doublet Φ acquires a vacuum expectation
value, ⟨Φ⟩ = ( 0

v/
√

2), equation (1) yields mass terms for quarks

with Mq = Yqv/
√

2 the mass matrices. The physical states are
obtained by diagonalizing Mq with unitary matrices Uq

L,R, as
Mq

diag = Uq
L · Mq · Uq

R = Uq
L · (Yqv/

√
2) · Uq

R. As a result, the

charged-current W± interactions couple to the physical uL and
dL quarks with couplings given by

−LW± =
g√
2
(ūL, c̄L, t̄L) γµW+

µ VCKM

dL
sL
bL

+ h.c., (2)

where

VCKM = Uu
L · Ud†

L =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (3)

Hereafter, the subindex L in quark fields qL and unitary matri-
ces UL will be neglected if not necessary.

As VCKM is a product of Uu and Ud† which are derivatives
of Mu and Md matrices, respectively, obviously the mass matri-
ces decide everything in VCKM including its phases. Thus, the
most natural way to study the origin of CPV in SM shall start
from the patterns of Mu and Md.

As mentioned above, a most general 3 × 3 matrix contains
eighteen parameters, and such a matrix is obviously too com-
plicated to be diagonalized directly. In several of our previous
researches on SN symmetries [11, 14, 15, 19, 20], mass matrices
were naturally Hermitian as demanded by the SN invariance.
However, in several recent researches [17, 13], Mq = Mq† is an
assumption employed to simplify Mq and consequently give
us complex, CP-violating CKM matrices. These two series of re-
searches studied the CPV problem from very different aspects.
However, the Mq patterns obtained in [13] through a purely
numeric derivation were revealed to possess S2 symmetries be-
tween two of the three fermion generations. They started from
different ends of the problem and finally reached the same goal.
However, such an assumption is still uncomfortable to us. We
would like to further drop off that assumption and study this
topic in a non-Hermitian basis for a better generality.

In case fermions have only three generations, the general
pattern of a 3 × 3 mass matrix is then given by

Mq =

A1 + iD1 B1 + iC1 B2 + iC2
B4 + iC4 A2 + iD2 B3 + iC3
B5 + iC5 B6 + iC6 A3 + iD3

 , (4)

where all A, B, C, and D parameters are by definition real, and
there are eighteen of them in total.
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Multiplying such an Mq with Mq† will produce an M2 ma-
trix given by

M2 = M2
R + M2

I =

A1 B1 B2
B1 A2 B3
B2 B3 A3

+ i

 0 C1 C2
−C1 0 C3
−C2 −C3 0

,

(5)

in which M2
R and M2

I are, respectively, the real part and imag-
inary part of M2, and M2 is naturally Hermitian. The boldface
parameters A, B, and C are defined by

A1 = A2
1 + D2

1 + B2
1 + C2

1 + B2
2 + C2

2 , (6)

A2 = A2
2 + D2

2 + B2
3 + C2

3 + B2
4 + C2

4 , (7)

A3 = A2
3 + D2

3 + B2
5 + C2

5 + B2
6 + C2

6 , (8)

B1 = A1B4 + D1C4 + B1 A2 + C1D2 + B2B3 + C2C3, (9)

B2 = A1B5 + D1C5 + B1B6 + C1C6 + B2 A3 + C2D3, (10)

B3 = B4B5 + C4C5 + B6 A2 + C6D2 + A3B3 + D3C3, (11)

C1 = D1B4 − A1C4 + A2C1 − B1D2 + B3C2 − B2C3, (12)

C2 = D1B5 − A1C5 + B6C1 − B1C6 + A3C2 − B2D3, (13)

C3 = C4B5 − B4C5 + D2B6 − A2C6 + A3C3 − B3D3. (14)

In such a case, only nine parameters are independent in an M2

matrix.
Since the Uq

L matrix of Mq is the same as the Uq of M2,
surely it is much easier to diagonalize an M2 matrix with nine
parameters than an Mq matrix with eighteen parameters. How-
ever, the M2 pattern in equation (5) is still too complicated to be
diagonalized analytically. Here, we would like to employ an as-
sumption that M2

R and M2
I can be diagonalized by the same Uq

to build extra relations between parameters and thus simplify
M2 down to a manageable level. It is the only assumption em-
ployed in this research. Obviously, it is more general than pre-
vious similar researches which employed more assumptions or
ad hoc constraints.

For two arbitrary matrices M1 and M2, if there is the same
U matrix which diagonalizes them both simultaneously and re-
spectively, there exists an interesting relation:

M1 · M†
2 − M2 · M†

1 = 0, (15)

which was originally proposed in [18] to solve the FCNC prob-
lem in 2HDMs by surveying matrix pairs which are diagonal-
ized by the same U.

Letting M1 = M2
R and M2 = M2

I and substituting them
into equation (15), we obtain several extra equations by

A1 = A3 + B2

(
B2

1 − B2
3

)
/B1B3,

A2 = A3 + B3

(
B2

1 − B2
2

)
/B1B2,

C2 = −B3C3/B2orx ≡ B2/B3 = −C3/C2,

C1 = B3C3/B1ory ≡ B1/B3 = C3/C1,

(16)

which reduce the number of independent parameters in M2

further down to five, and analytical diagonalization of M2 now
becomes possible. These equations look exactly the same as
those previously given by equations (11)–(14) in [17]; however,
those were derived from an assumed Hermitian Mq while these
are derived from a naturally Hermitian M2.

With the help of equation (16), M2 is now modified to

M2 =

A + xB(y − 1
y ) yB xB

yB A + B
(

y
x − x

y

)
B

xB B A



+

 0 i C
y −i C

x
−i C

y 0 iC
i C

x −iC 0

 ,

(17)

if we choose the five parameters A ≡ A3, B ≡ B3, C ≡ C3,
x ≡ B2/B3, and y ≡ B1/B3 to remain independent.

Then, eigenvalues of equation (17) are given by

m2
1 = A − B

x
y
− C

√
x2 + y2 + x2y2

xy
,

m2
2 = A − B

x
y
+ C

√
x2 + y2 + x2y2

xy
,

m2
3 = A + B

(
x2 + 1

)
y

x
,

(18)

with a Uq matrix given by
−
√

x2+y2√
2(x2+y2+x2y2)

x(y2−i
√

x2+y2+x2y2)
√

2
√

x2+y2
√

x2+y2+x2y2

y(x2+i
√

x2+y2+x2y2)
√

2
√

x2+y2
√

x2+y2+x2y2

−
√

x2+y2√
2(x2+y2+x2y2)

x(y2+i
√

x2+y2+x2y2)
√

2
√

x2+y2
√

x2+y2+x2y2

y(x2−i
√

x2+y2+x2y2)
√

2
√

x2+y2
√

x2+y2+x2y2
xy√

x2+y2+x2y2
y√

x2+y2+x2y2
x√

x2+y2+x2y2

.

(19)

It is astonishing that equation (19) depends on only two of
those five remaining parameters. As will be shown in the next
section, such a compact Uq pattern will give us a CKM matrix
that depends on only four parameters. Such parameterization
is very natural since its elements are fully expressed in elements
of Mu and Md.

In [11, 13], four similar but simpler Uq matrices have been
obtained in S3- and S2-symmetric models. They satisfy the nec-
essary but not sufficient conditions stated in [17] for yielding a
complex CKM matrix. They are in fact special cases of what
obtained here with specific parameter values. For instance,
the S3-symmetric case given in [11] corresponds to the values
x = y = 1; the S2-symmetric cases given in [13] correspond
to values x = −y = 1 (case 2), x = −y = −1 (case 3), and
x = y = −1 (case 4 but with B and C replaced by their oppo-
sites), respectively.

In this section we replace the previously assumed Hermi-
tian Mq by a naturally Hermitian M2 to increase the generality
of our investigation. The only assumption employed here is the
existence of a Uq matrix which diagonalizes the real part and
imaginary part of M2 simultaneously and respectively. With
such an assumption, equation (15) brings in extra equations to
simplify M2 down to that given in equation (17). This enables
us to diagonalize equation (17) analytically. However, such a
common Uq does not always exist. For example, it does not ex-
ist in the two-dimensional case, of a 2 × 2 complex M2, unless
either M2

R or M2
I is zero. However, in the three-dimensional

case, such a Uq has been proved to exist definitely as shown
above.
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3. THE PATTERN OF VCKM

As the Uq pattern is obtained, it is natural to further study the
VCKM pattern which is a product of two such matrices. If we let
the up-type Uu have the pattern given in equation (19) and the
down-type Ud have the same pattern but with their parameters
replaced by primed ones like A′, B′, C′, x′, and y′, respectively,
a VCKM will be thus obtained by substituting them into equa-
tion (3).

However, there is the problem of which m2
i corresponds to

which m2
q. There are six ways to find the corresponding items

in the up-quark sector, and there are also six in the down-quark
sector. Thus, totally thirty-six candidate VCKM patterns are ex-
hibited in Table 1. The full expressions of elements in them are
given by

r =
1

2
√

x2 + y2
√

x′2 + y′2
√

x2 + y2 + x2y2
√

x′2 + y′2 + x′2y′2

×
[

i
(
xy′ − x′y

) (
x′y′

√
x2 + y2 + x2y2 + xy

√
x′2 + y′2 + x′2y′2

)
+
(
xx′ + yy′)(xyx′y′ +

√
x2 + y2 + x2y2

√
x′2 + y′2 + x′2y′2

)
+

(
x2 + y2) (x′2 + y′2)] , (20)

s =
1

2
√

x2 + y2
√

x′2 + y′2
√

x2 + y2 + x2y2
√

x′2 + y′2 + x′2y′2

×
[

i
(
xy′ − x′y

) (
x′y′

√
x2 + y2 + x2y2 − xy

√
x′2 + y′2 + x′2y′2

)
+
(
xx′ + yy′)(xyx′y′ −

√
x2 + y2 + x2y2

√
x′2 + y′2 + x′2y′2

)
+

(
x2 + y2) (x′2 + y′2)] , (21)

p =
1√

2
√

x2 + y2
√

x2 + y2 + x2y2
√

x′2 + y′2 + x′2y′2

×
[

y′y2(x − x′
)
+ x′x2 (y − y′)+ i

(
xy′ − x′y

)√
x2 + y2 + x2y2

]
,

(22)

p′ =
1√

2
√

x2 + y2 + x2y2
√

x′2 + y′2
√

x′2 + y′2 + x′2y′2

×
[

yy′2(x′ − x
)
+ xx′2

(
y′ − y

)
+ i

(
xy′ − x′y

)√
x′2 + y′2 + x′2y′2

]
(23)

q =
xx′ + yy′ + xyx′y′√

x2 + y2 + x2y2
√

x′2 + y′2 + x′2y′2
, (24)

in which all elements depend on only four parameters, and
they are allowed to be complex if the parameters are properly
chosen. Such parameterization of VCKM is very natural since
all of the elements are composed of the Yukawa couplings pre-
sented in equation (1) and the VEV of its only Higgs doublet.

However, there is a very serious problem in these candi-
date CKM matrices. If VCKM is unitary, the elements must obey
following rules

2|p|2 + |q|2 = 1, (25)

2|p′|2 + |q|2 = 1, (26)

|p|2 + |r|2 + |s|2 = 1, (27)

and they give a quadruple equality

|p| = |p′|, (28)

since each of them correlates to two CKM elements. Such a
quadruple equality is a big problem since it must include CKM
elements which are very different.

As we have get candidates which are shown in Table 1, the
next step is naturally to find out which of them fits experiments
best. The first reference standard used here is the empirical
CKM elements given in [21]

Vemp.
CKM =

0.97401+0.00011
−0.00011 0.22650+0.00048

−0.00048 0.00361+0.00011
−0.00009

0.22636+0.00048
−0.00048 0.97320+0.00011

−0.00011 0.04053+0.00083
−0.00061

0.00854+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.0000024
−0.000035


≈

 O(1) O(λ) O(λ3)
O(λ) O(1) O(λ2)
O(λ3) O(λ2) O(1)

 ,

(29)

where λ ≈ 0.22 is one of the Wolfenstein’s parameters.
In equation (29), the values of VCKM elements can be classi-

fied into four grades, O(1), O(λ), O(λ2), and O(λ3). If we clas-
sify the ratio of two elements on both sides of a predicted equal-
ity in the same way, we may estimate the rationalities of each
VCKM by the ratio of its most significant pair, and the results are

demonstrated in Table 2. For instance, in the
( 1

2
3

)
(1 2 3) case,

the ratio of |Vtd| to |Vts| is about 0.2147 ≈ O(λ). Among all
thirty-six candidates, twenty-eight have at least one such pair
whose ratio is of the order of O(λ2) or O(λ3). Thus, they will
be excluded in subsequent discussions, and only those eight of
the order of O(λ) will be considered.

However, these eight O(λ)-level VCKM candidates are fur-
ther found to be grouped into four complex conjugate pairs as
shown below:

V

2
1
3

 (1 2 3) = V∗

1
2
3

 (2 1 3) =

s∗ r p
r∗ s p∗

p′ p′∗ q

 , (30)

V

1
2
3

 (1 2 3) = V∗

2
1
3

 (2 1 3) =

r∗ s p∗

s∗ r p
p′ p′∗ q

 , (31)

V

1
3
2

 (2 3 1) = V∗

2
3
1

 (1 3 2) =

 s p∗ r∗

p′∗ q p′

r p s∗

 , (32)

V

2
3
1

 (2 3 1) = V∗

1
3
2

 (1 3 2) =

 r p s∗

p′∗ q p′

s p∗ r∗

 . (33)

Besides, these four pairs can be even further grouped into
two sets in which one of the members can be obtained from the
other by exchanging their r and s. For instance, exchanging the
r and s parameters in equations (30) and (32) will give equa-
tions (31) and (33), respectively. Thus, those eight remaining
candidates can be further classified into two different groups.

As we get these two groups of VCKM candidates, we per-
form numerical tests to find out in what kind of parameter
spaces they will fit empirical values best. In those cases given
in equations (30) and (31), we can not find a parameter space in
which |r| ≥ 0.89 and 0.3 ≥ |s| ≥ 0.1 while |Vcb|(≈ 0.04053) ≥
|p| ≥ |Vub|(≈ 0.00365), or |s| ≥ 0.89 and 0.3 ≥ |r| ≥ 0.1 while
|p| falls in the same range. However, in cases of equations (32)
and (33), there are many sets of x, y, x′, and y′ which all give
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u \ d (123) (231) (312) (213) (132) (321)1
2
3

 r∗ s p∗

s∗ r p
p′ p′∗ q

  s p∗ r∗

r p s∗

p′∗ q p′

 p∗ r∗ s
p s∗ r
q p′ p′∗

  s r∗ p∗

r s∗ p
p′∗ p′ q

 r∗ p∗ s
s∗ p r
p′ q p′∗

 p∗ s r∗

p r s∗

q p′∗ p′


2

3
1

 s∗ r p
p′ p′∗ q
r∗ s p∗

  r p s∗

p′∗ q p′

s p∗ r∗

  p s∗ r
q p′ p′∗

p∗ r∗ s

  r s∗ p
p′∗ p′ q
s r∗ p∗

 s∗ p r
p′ q p′∗

r∗ p∗ s

  p r s∗

q p′∗ p′

p∗ s r∗


3

1
2

 p′ p′∗ q
r∗ s p∗

s∗ r p

 p′∗ q p′

s p∗ r∗

r p s∗

  q p′ p′∗

p∗ r∗ s
p s∗ r

 p′∗ p′ q
s r∗ p∗

r s∗ p

 p′ q p′∗

r∗ p∗ s
s∗ p r

  q p′∗ p′

p∗ s r∗

p r s∗


2

1
3

 s∗ r p
r∗ s p∗

p′ p′∗ q

  r p s∗

s p∗ r∗

p′∗ q p′

  p s∗ r
p∗ r∗ s
q p′ p′∗

  r s∗ p
s r∗ p∗

p′∗ p′ q

 s∗ p r
r∗ p∗ s
p′ q p′∗

  p r s∗

p∗ s r∗

q p′∗ p′


1

3
2

 r∗ s p∗

p′ p′∗ q
s∗ r p

  s p∗ r∗

p′∗ q p′

r p s∗

 p∗ r∗ s
q p′ p′∗

p s∗ r

  s r∗ p∗

p′∗ p′ q
r s∗ p

 r∗ p∗ s
p′ q p′∗

s∗ p r

 p∗ s r∗

q p′∗ p′

p r s∗


3

2
1

 p′ p′∗ q
s∗ r p
r∗ s p∗

 p′∗ q p′

r p s∗

s p∗ r∗

  q p′ p′∗

p∗ s∗ r
p∗ r∗ s

 p′∗ p′ q
r s∗ p
s r∗ p∗

 p′ q p′∗

s∗ p r
r∗ p∗ s

  q p′∗ p′

p r s∗

p∗ s r∗


TABLE 1: Thirty-six candidate patterns of VCKM. In the first row, there are six designations of the up-type m2

1, m2
2, and m2

3 to
physical quarks m2

u, m2
c , and m2

t from light to heavy. In the first column, there are also six such designations for down-type
quarks.

the same set of results

|s| (or|r|) = |Vud| = |Vtb| ≈ 0.9925, (34)

|r| (or|s|) = |Vub| = |Vtd| ≈ 0.0075, (35)

|p| = |p′| = |Vus| = |Vts| = |Vcd| = |Vcb| ≈ 0.122023,
(36)

|q| = |Vcs| ≈ 0.9845, (37)

in the range from −25 to +25 of each parameter.
Taking equation (32) as an example and comparing those

values in equations (34)–(37) with equation (29), we find that
|s| = 0.9925 in equation (34) is very close to |Vud|emp. = 0.97401
and |Vtb|emp. = 0.999172, |r| = 0.0075 in equation (35) is very
close to |Vub|emp. = 0.00361 and |Vtd|emp. = 0.00854, and
|q| = 0.9845 in equation (37) is very close to |Vcs|emp. = 0.97320.
These predictions are already very close to the empirical values.

On the other hand, the quadruple equality predicted in
equation (36) has the same value of 0.122023 which lies be-
tween the O(λ) pair |Vus| ≈ |Vcd| ≈ 0.226 and the O(λ2)
pair |Vts| ≈ |Vcb| ≈ 0.04. Though it is still a little far from
both ends, it is very close to the intermediate value 0.13314 of
the largest |Vus| = 0.2265 and the smallest |Vts| = 0.03978 of the
quadruplets, or 0.09492 the geometric mean of them. Thus, we
will study this set of VCKM candidates more in what follows.

It is very interesting that in equations (32) and (33) the des-
ignations of eigenvalues to physical quarks in up- and down-

type sectors are different. For instance, the V
( 1

3
2

)
(2 3 1) case

in equation (32) corresponds to(
m2

u, m2
c , m2

t

)
↔

(
m2

1, m2
3, m2

2

)
,(

m2
d, m2

s , m2
b

)
↔

(
m′2

2 , m′2
3 , m′2

1

)
,

(38)

u \ d (123) (231) (312) (213) (132) (321)1
2
3

 O(λ) O(λ3) O(λ3) O(λ) O(λ3) O(λ3)2
3
1

 O(λ3) O(λ) O(λ3) O(λ3) O(λ) O(λ3)3
1
2

 O(λ3) O(λ3) O(λ2) O(λ3) O(λ3) O(λ2)2
1
3

 O(λ) O(λ3) O(λ3) O(λ) O(λ3) O(λ3)1
3
2

 O(λ3) O(λ) O(λ3) O(λ3) O(λ) O(λ3)3
2
1

 O(λ3) O(λ3) O(λ2) O(λ3) O(λ3) O(λ2)

TABLE 2: Estimations of irrationalities of equalities
between CKM elements. If we classify the VCKM el-
ements into several grades like Vud ≈ Vcs ≈ Vtb ≈
O(1), Vus ≈ Vcd ≈ O(λ), Vcb ≈ Vts ≈ O(λ2), and
Vub ≈ Vtd ≈ O(λ3), the notations given above de-
note the largest differences between the predicted
pairs in order of Wolfenstein’s λ parameter.
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while the V∗
( 2

3
1

)
(1 3 2) case corresponds to

(
m2

u, m2
c , m2

t

)
↔

(
m2

2, m2
3, m2

1

)
,(

m2
d, m2

s , m2
b

)
↔

(
m′2

1 , m′2
3 , m′2

2

)
.

(39)

In equation (33), the V
( 2

3
1

)
(2 3 1) case corresponds to

(
m2

u, m2
c , m2

t

)
↔

(
m2

2, m2
3, m2

1

)
,(

m2
d, m2

s , m2
b

)
↔

(
m′2

2 , m′2
3 , m′2

1

)
,

(40)

while the V∗
( 1

3
2

)
(1 3 2) case corresponds to

(
m2

u, m2
c , m2

t

)
↔

(
m2

1, m2
3, m2

2

)
,(

m2
d, m2

s , m2
b

)
↔

(
m′2

1 , m′2
3 , m′2

2

)
.

(41)

It is interesting that there is a commonality among equa-
tions (34)–(37); the eigenvalues m2

3 and m′2
3 always correspond

to the middle ones, m2
c and m2

s , respectively, in both quark
types. The difference among those four equations lies only in
taking up-type quarks for example, how m2

1 and m2
2 should

be, respectively, assigned to m2
u and m2

t , and the same is true
for the down-quark sector. However, as shown in equation
(18), the (m2

u, m2
t ) ↔ (m2

1, m2
2) case can be obtained from the

(m2
u, m2

t ) ↔ (m2
2, m2

1) case by giving the parameter C a “-” sign.
The difference between m2

1 and m2
2 is just the C dependent

term, ±C
√

x2+y2+x2y2

xy . It is more interesting that if C = 0, m2
u

and m2
t will be equal or degenerate. We may imagine that m2

u
and m2

t were degenerate when C = 0 in some very early stage
of our universe. They were split up into two different values
when C became nonvanishing and grew to present values. This
suggests that quark masses could not be constants or they are
running in time. Unfortunately, those equations do not tell us
how they run with time t or temperature T of the universe.

As mentioned above, there are many sets of parameters giv-
ing numerically the same set of p, p′, q, r, and s values shown in
equations (34)–(37), and we do not know which one is the best
solution. Here, we would like to pick up one of them,

x = −16.3201, y = 19.767,

x′ = 12.4127, y′ = −20.001,
(42)

for further studies on their values.
If we let m2

1 = m2
u, m2

2 = m2
t , m′2

1 = m2
d, and m′2

2 = m2
b and

substitute the empirical quark masses mu = 0.00216 GeV, mc =
1.27 GeV, mt = 172.76 GeV, md = 0.00467 GeV, ms = 0.093 GeV,
and mb = 4.18 GeV into equation (18), we will get

A = 14885.1, B = 45.9634, C = −14876.1, (43)

A′ = 8.71459, B′ = 0.0348408, C′ = −8.69718, (44)

which are their present values. Even if these six parameters
are fixed or constant, the quark masses vary with the other
four x, y, x′, and y′ parameters. This describes the running of
quark masses in another way with very interesting theoretical
descriptions.

In this section, a very general CKM pattern is given analyti-
cally. It is still not the ultimate solution since there is still one as-
sumption employed. From our experiences obtained in previ-
ous investigations, from S3 symmetry [11] to S2 symmetry [13]
to “no symmetry” [17], the M2 pattern given in equation (17) is
still oversimplified. That is why there is a quadruple equality
in the derived VCKM. We expect that direct diagonalization of
equation (4) may solve this problem completely. Unfortunately,
such an ultimate solution still looks unattainable for now. We
still need more efforts on this subject.

4. CONCLUSIONS AND DISCUSSIONS
The VCKM presented here is so general that it is already only
one step away from the ultimate solution of CPV problem in the
standard model, since only one assumption is employed in this
research. The natural Hermitian M2 studied here has only nine
independent parameters, and the assumption of a common Uq

further reduces the parameter number down to five.
Analytical diagonalization of such a matrix gives three

eigenvalues, among which two are degenerate at C = 0 and
a Uq depends on only two of the parameters. With such a Uq

pattern, thirty-six VCKM candidates are yielded. Twenty-eight
of them are excluded in the first run of examination, and the
remaining eight are divided into two groups. One of the re-
maining two groups is further excluded with a numerical test.

The finally remaining group of VCKM candidates predicts
several equalities among VCKM elements. One of them is a
quadruple equality among four elements, which includes el-
ements of very different values. In a numerical test, only the fi-
nally remaining group gives unsatisfactory but acceptable val-
ues for CKM elements in that equality. This suggests that the
VCKM thus derived is not the ultimate one and the assumption
of a common Uq still oversimplifies the M2 pattern. Besides,
the parameterization of VCKM given here is a very natural one
since all its elements are dependent on only four parameters
which are dependent only on Yukawa couplings and VEV of
the only Higgs doublet in SM.

However, the fitting of derived VCKM elements with empir-
ical values indicates that those two quarks predicted to be de-
generate at C = 0 are the lightest and heaviest generations in a
quark type, say mu = mt in the up-quark sector, rather than the
lighter two generations supposed in our previous researches.
Besides, the derived eigenvalues allow quark masses to be run-
ning in history of the universe, since under a completely S3-
symmetric circumstance the values x = 1, y = 1, x′ = 1, and
y′ = 1 are very different from those given in equation (42). This
is a very interesting topic to be studied in future researches.

Though this research does not solve the CPV problem com-
pletely, it is already one step away from the ultimate solution
of it. The only barrier now on the way is the assumption of a
common Uq which diagonalizes M2

R and M2
I simultaneously

and respectively. If we can diagonalize the unsimplified M2

directly, surely the problem will be solved completely. Before
such an ultimate solution comes onto the stage, the VCKM pre-
sented here is the closest one to it.
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