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Abstract
We describe a prescription for constructing conformal blocks in conformal field theories in any space-time
dimension with arbitrary quantum numbers. Our procedure reduces the calculation of conformal blocks to
constructing certain group theoretic structures that depend on the quantum numbers of primary operators.
These structures project into irreducible Lorentz representations. Once the Lorentz quantum numbers are
accounted for, there are no further calculations left to do. We compute a multivariable generalization of the
Exton function. This generalized Exton function, together with the group theoretic structures, can be used
to construct conformal blocks for four-point as well as higher-point correlation functions.
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1. INTRODUCTION
Exact results in strongly coupled relativistic field theories are
scarce. Analytic treatment is sometimes possible due to ad-
ditional symmetries extending Poincaré invariance. There are
well-known solutions exploiting either conformal symmetry or
supersymmetry. Examples are conformal theories in two di-
mensions and the minimal models in which the scaling dimen-
sions are calculable [1]. Other examples are N = 2 supersym-
metric theories in four dimensions in which the low-energy
gauge coupling is calculable [2]. In both of these cases, addi-
tional symmetries constrain the possible forms of interactions,
and given such constraints, various consistency conditions are
sufficient to obtain analytic solutions.

Conformal symmetry in any number of dimensions re-
stricts the form of two- and three-point correlation functions of
primary operators leaving only a finite number of unspecified
numerical constants. Four-point and higher-point functions de-
pend on conformally invariant combinations of variables, the
conformal cross-ratios. A surprising aspect of conformal field
theories (CFTs) is that symmetries also constrain correlation
functions beyond three points despite the existence of the in-
variant cross-ratios for four, or more, coordinates. What differ-
entiates conformal symmetry restrictions on three-point corre-
lation functions from the higher ones is that the quantum num-
bers of the operators are sufficient to determine the form of the
correlator. With four, or more, points, one needs to specify not
only the quantum numbers of the operators at each point, the
“external” operators, but also additional quantum numbers of
“exchange” operators that do not appear explicitly in the corre-
lator. The functional forms of four-point, or higher-point, corre-
lators with given external and exchange quantum numbers are
known as the conformal blocks.

Conformal blocks are the main inputs for nonperturbative
studies of conformal field theories. The bootstrap approach to
conformal field theories invented in the seventies [3] relies on
very minimal assumptions such as crossing symmetry and uni-
tarity. A correlation function can be expressed in several ways
in terms of the conformal blocks. Since different ways of cal-
culating the same quantity must be equivalent, one obtains
constraints on the scaling dimensions of the operators and the

three-point function coefficients. In some cases, like the mini-
mal models in two dimensions [1], the bootstrap turns out to
be powerful enough to completely determine all parameters.
For theories in more two dimensions, there has been a lot of
progress in the last decade mostly in numerical bootstrap lead-
ing to many interesting results; some examples are in [4].

Beyond two dimensions, the conformal blocks are not
known in general. There are several approaches to computing
the blocks, but the applicability is often restricted to a particu-
lar dimension of space-time or to a particular set of quantum
numbers of the operators [5, 6, 7]. Here, we present a unified
treatment that yields any conformal block completing the ap-
proach we outlined in [8].

We utilize two standard techniques. First is the embedding
space in which the d-dimensional space with coordinates xµ is
embedded on the light cone of a (d+ 2)-dimensional projective
space [9]. We refer to the embedding space coordinates as ηA

with ηAηA = 0 and the identification ηA ∼ ληA for λ > 0. The
position space coordinate is xµ = ηµ/(−ηd+1 + ηd+2). Confor-
mal symmetry acts linearly on the ηA coordinates. Second, we
successively use the operator product expansion (OPE) inside
correlation functions to reduce higher-point functions to lower-
point ones. This iterative process is possible because the OPE is
convergent inside correlators of conformal theories [10].

These two tricks are old and well known. What allowed us
to derive completely general results were two further observa-
tions. A careful choice of a differential operator on the embed-
ding space made the necessary calculations manageable. All
operators are uplifted to the embedding space in the same way,
independently of their quantum numbers, using spinor indices
only.

In Section 2, we describe how operators are uplifted to the
embedding space and we outline the ingredients of the OPE.
The main algebraic results are presented in Section 3 leading to
a generalization of the Exton G-function [12]. We illustrate our
method with examples in Section 4 and summarize in Section 5.
We briefly comment on the special form of the scalar conformal
block in even dimensions in Appendix A.

2. OPERATORS, DERIVATIVES, AND
THE OPE

Primary operators in CFTs are characterized by their scaling
dimensions and Lorentz quantum numbers. We are going to
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work exclusively in the embedding space, in which the scaling
dimension is simply related to the homogeneity degree of an
operator

ηA ∂

∂ηA O(η) = −τOO(η), (1)

where τO is the twist of the operator, which is given in terms of
its dimension and spin τO = ∆O − SO . For now, we suppressed
any information about Lorentz representation of O.

Since the embedding space is larger than the original space,
operators with Lorentz indices have additional components
that need to be removed. We found it most convenient to repre-
sent Lorentz quantum numbers as tensor products of spinors.
Any representation of SO(d + 2) is contained in a tensor prod-
uct of the spinor representations. We will not specify the signa-
ture of space as it will not play a role here. For simplicity of the
presentation, let us assume that d is odd, so we do not need to
distinguish different spinor representations. This too is a tech-
nical detail that is not relevant. With spinor indices explicit, we
will write operators as Oa1 ...an (η).

The following transversality condition

ηA(Γ
A) ai

a Oa1 ...ai ...an (η) = 0, (2)

imposed on every index i = 1, . . . , n removes the unwanted
components of Oa1 ...an (η). In the equation above, ΓA are the
usual Dirac matrices in d + 2 dimensions. We want the opera-
tors to transform in irreducible representations, so we assume
that (PN) b1 ...bn

a1 ...an Ob1 ...bn = Oa1 ...an . PN is a projection oper-
ator from the tensor product of n spinors into any irreducible
representation, denoted by N, in that product. Labelling repre-
sentations by their Dynkin indices, the position space operator
with Np = (n1, . . . , nr) is related to the embedding space repre-
sentation N = (0, n1, . . . , nr). This way of embedding operators
is convenient because the number of spinor indices in the po-
sition and embedding spaces is exactly the same. The transver-
sality condition in equation (2) changes the representation from
N to Np.

Schematically, the OPE of two operators can be written as

Oi (η1)Oj (η2) = ∑
k

Nijk

∑
a=1

ac k
ij aD k

ij (η1, η2)Ok (η2) , (3)

where the operators on both sides can be in arbitrary Lorentz
representations. The sum over a runs over different possibilities
for contracting Lorentz indices of a given set of operators. The
number of terms in this sum is the number of independent co-
efficients in the three-point function ⟨Oi (η1)Oj (η2)Ok (η3)⟩.
The operator on the right-hand side of the OPE is assumed to
be at η2 although one could make an equivalent choice of η1
instead. This operator has to be on the null light cone, so a sym-
metric choice that treats both coordinates on the same footing
is not possible.

The derivative operator aD k
ij in equation (3) serves two

goals. It soaks up some number of Lorentz vector indices to
ensure that the OPE is Lorentz covariant. It is also needed to
ensure that both sides of the OPE have the same degree of ho-
mogeneity with respect to coordinates η1 and η2.

The derivative operator is not unique as the OPE dictates
only the number of vector indices and scaling with respect to
the coordinates. One constraint is that the derivatives cannot
take fields defined on the light cone outside such light cone.

Our choice is driven by computational convenience. The basic
building blocks for the derivatives are, see [15] for details,

DA
12 = (η1 · η2)

1
2 AAB

12 ∂2B,

D2
12 = DA

12D12A,

AAB
12 =

1
(η1 · η2)

[
(η1 · η2) gAB − ηA

1 ηB
2 − ηB

1 ηA
2

]
.

(4)

The transverse metric AAB
12 appears in many places in our con-

struction because η1AAAB
12 = η2AAAB

12 = 0. The operator that
has really convenient properties is

DA
12|h =

ηA
2 D2

12

(η1 · η2)
1
2

+ 2hDA
12 − h(d + 2h − 2)

ηA
1

(η1 · η2)
1
2

, (5)

satisfying, for example, DA
12|h+1D

B
12|h = DB

12|h+1D
A
12|h and

D2h
12DA

12|h′ = DA
12|h+h′D

2h
12 . For now, the parameter h is arbitrary,

but when DA
12|h appears in the OPE, h will be uniquely deter-

mined.
One of the most useful identities for the derivatives is

DAn
12|h+n . . .DA1

12|h+1D
2h
12 =

D2(h+n)
12 ηA1

2 . . . ηAn
2

(η1 · η2)
n
2

, (6)

because it allows us to trade the scalar derivative acting on co-
ordinates for derivatives with Lorentz indices. This combina-
tion is so useful that we define

D(d,h,n)A1 ...An
12 = DAn

12|h+n . . .DA1
12|h+1D

2h
12 . (7)

The exponent 2h of the scalar derivative is not necessarily inte-
ger as it is related to the scaling dimensions of the fields.

Having defined the derivatives, it is now possible to write
the OPE as

Oi (η1)Oj (η2) =
(
T Ni

12 Γ
) (

T Nj
21 Γ

)
· ∑

k

Nijk

∑
a=1

ac k
ij at12k

ij

(η1 · η2)
pijk

· D(d,hijk−na/2,na)
12

(
T12Nk Γ

)
∗ Ok (η2) ,

(8)

where ac k
ij are arbitrary coefficients, one for each independent

structure, while at12k
ij is a tensor that contracts Lorentz indices

of different objects in the OPE. The exponents pijk and hijk are
determined by comparing the homogeneity of the two sides of
the OPE.

The last ingredient of our framework is the half-projectors
T Ni

12 Γ appearing in equation (8). By construction, these objects
are transverse to match the transversality, equation (2), of the
operators Oi (η1) and Oj (η2). T Ni

12 Γ also matches the Lorentz
representation of operator Oi (η1). A simple example will il-
lustrate this concept. Suppose we consider an operator with
N = (0, 1, 0, . . .) that is a two-index antisymmetric tensor. In
this case, T N

12 Γ ∝ ΓABη1A(A12)BC. We termed these objects half-
projectors because one gets a projection operator by contract-
ing together two Γ matrices PN ∝ ΓABΓAB, where the spinor
indices of the Γ matrices are free. For more complicated repre-
sentations, T Ni

12 Γ can be constructed recursively; see [14]. It will
be important shortly, where as far as coordinate dependence
is concerned, the half-projectors are simply polynomials in the
coordinates ηA and also contain dot products (η1 · η2).
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3. APPLYING THE OPE
Using the OPE in an M-point correlation function reduces it to a
function with one fewer point. This can only be of practical use
if the derivative operator in equation (8) can be evaluated on
the most general function of coordinates that appear in an M −
1 function. We only need to be concerned with dot products
since any variable with free Lorentz indices can be absorbed
into derivatives by the identity in equation (6). Thus, the most
general expression we need is

I(d,h,n;p)A1···An
ij = D(d,h,n)A1···An

ij ∏
a ̸=i,j

1(
ηj · ηa

)pa
, (9)

where the derivative operator Dij is identical to D12 defined in
the previous section, except we replaced η1 with ηi and η2 with
ηj as we are dealing with multiple coordinates.

The natural variables for conformal blocks are the invariant
cross-ratios. For M > 3, we single out two coordinates, ηk and
ηl . Our basis for the cross-ratios is

xa =

(
ηi · ηj

)
(ηk · ηℓ) (ηi · ηa)

(ηi · ηk) (ηi · ηℓ)
(

ηj · ηa

) , (10)

zab =
(ηi · ηk) (ηi · ηℓ) (ηa · ηb)

(ηk · ηℓ) (ηi · ηa) (ηi · ηb)
, (11)

where a, b ̸= i, j. For convenience, we also define a homoge-
neous derivative

D̄A
ij;kℓ|h =

(
ηi · ηj

) 1
2
(ηk · ηℓ)

1
2

(ηi · ηk)
1
2 (ηi · ηℓ)

1
2

DA
ij|h. (12)

In terms of D̄, we define

Ī(d,h,n;p)
ij;kℓ = D̄(d,h,n)

ij;kℓ ∏
a ̸=i,j

xpa
a . (13)

By definition, Ī(d,h,n;p)
ij;kℓ is homogeneous in every coordinate,

and it is proportional to I(d,h,n;p)
ij in equation (9).

The expression for Ī(d,h,n;p)
ij;kℓ is the central result here. It

was obtained mostly by recursion. In the following, we use
(α)β = Γ(α + β)/Γ(α) to denote the Pochhammer symbol. We
also singled out one of the cross-ratios xm and traded the re-
maining xa’s for ya = 1 − xm/xa when a ̸= i, j, m.

Ī(d,h,n;p)
ij;kℓ = (−2)h( p̄)h( p̄ + 1 − d/2)hx p̄+h

m

× ∑
{qr}≥0

q̄=n

S(q)x
q̄−q0−qi
m K(d,h;p;q)

ij;kℓ;m (xm; y; z) , (14)

SA1···Aq̄

(q) = g(A1 A2 · · · gA2q0−1 A2q0 η̄
A2q0+1

1 · · · η̄
A2q0+q1
1

· · · η̄
Aq̄−qN+1

N · · · η̄
Aq̄)
N ,

(15)

K(d,h;p;q)
ij;kℓ;m =

(−1)q̄−q0−qi−qj (−2)q̄−q0 q̄!
∏r≥0 qr !

×
(−h − q̄)q̄−q0−qj (pm)qm

( p̄ + h)q̄−q0−qi

( p̄)q̄−2q0−qi−qj ( p̄ + 1 − d/2)−q0−qi−qj

× ∏
a ̸=i,j,m

(pa)qa
K
(d+2q̄−2q0,h+q0+qj ;p+q)
ij;kℓ;m ,

(16)

K(d,h;p)
ij;kℓ;m = ∑

na ,nam ,nab≥0

(−h)n̄m+ ¯̄n (pm)n̄m
( p̄ + h)n̄− ¯̄n

( p̄)n̄+n̄m ( p̄ + 1 − d/2)n̄m+ ¯̄n

× ∏
a ̸=i,j,m

(pa)na
yna

a xnam
m znam

am

nam!(na − nam − n̄a)!ynam
a

× ∏
a,b ̸=i,j,m

b>a

1
nab!

(
xmzab
yayb

)nab

.

(17)

Further details can be found in [14]. It is clear that the expres-

sion for Ī(d,h,n;p)
ij;kℓ is fairly complicated. However, it is the most

general function needed to construct any conformal block with
M points.

For M = 4, I(d,h,n;p)
ij in equation (9) is directly related to

conformal blocks. For M > 4, I(d,h,n;p)
ij can be used to build

the blocks recursively [11]. When M = 4, there are only two
independent cross-ratios, which are x3 and x4. In that case, p =
(p3, p4), y4 = 1 − x3/x4, and

K(d,h;p3,p4)
12;34;3 (x3; y4) = ∑

n4,n34≥0

(p3)n34
(p4)n4

(p3 + p4)n4+n34
(n4 − n34)!

·
(−h)n34 (p3 + p4 + h)n4

(p3 + p4 + 1 − d/2)n34
n34!

yn4
4

(
x3
y4

)n34

,

(18)

which equals the Exton G-function with the following argu-
ments [12]:

G (p4, p3 + p4 + h, p3 + p4 + 1 − d/2, p3 + p4; x3, y4) . (19)

Function G in equation (19) can also be written as a sum of

the fourth Appel functions.1 For M = 4, K(d,h;p3,p4)
12;34;3 (x3; y4) is

the same as Exton G, while for M > 4, K(d,h;p)
ij;kℓ;m generalizes the

Exton function to M points.

1Exton studied a system of partial differential equations related to the fourth
Appel function [12]. Depending on the properties of the solutions near singular-
ities of the differential equations, he defined four functions G, H, K, and L. The
relationship of the Exton G-function to the conformal blocks was first pointed out
by Dolan and Osborn [13].
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4. EXAMPLES
We now turn to some simple examples. A general four-point
function can be written as〈

Oi (η1)Oj (η2)Ol (η3)Om (η4)
〉

=

(
T Ni

12 Γ
) (

T Nj
21 Γ

) (
T Nl

34 Γ
) (

T Nm
43 Γ

)
(η1 · η2)

r12 (η1 · η3)
r13 (η1 · η4)

r14 (η3 · η4)
r34

× ∑
k

Nijk

∑
a=1

Nlmk

∑
b=1

ac k
ij bclmk

(
G

ij|k|lm
(a,b)

)
.

(20)

To get this result, we applied the OPE twice: once to the pair
Oi and Oj and another to the remaining pair Ol , Om. The sums
over k and a are the same as in equation (3), as are the coeffi-
cients ac k

ij . The OPE applied to Ol and Om is responsible for the
sum over b; however, there is no second sum because the two-
point function is unique ensuring that the index k must be the
same for the two OPEs. The powers rij are uniquely determined
by comparing homogeneities of the two sides of equation (20)
with respect to the coordinates η.

G
ij|k|lm
(a,b) in equation (20) is the four-point conformal block. It

is homogenous of degree zero under all four variables η. The
conformal block depends on the external operators i, j, l, and
m and on the exchange operator k that appeared on the right-
hand side of the OPE, as we described earlier. Given the set of
operators (ij|k|lm), there can still be several different ways of
contracting the Lorentz indices, which are denoted by the sub-
scripts a and b. The conformal blocks are functions of the in-
variant cross-ratios because of homogeneity. A common choice
for the cross-ratios with four variables is

u =
(η1 · η2) (η3 · η4)

(η1 · η3) (η2 · η4)
, v =

(η1 · η4) (η2 · η3)

(η1 · η3) (η2 · η4)
. (21)

The cross-ratios introduced in equation (10) are equal to x3 = u
v

and x4 = u, while y4 = 1 − 1
v .

The simplest case is when none of the operators carry any
Lorentz indices, that is, when both external and exchange oper-
ators are scalars. With scalar operators only, there are no indices
to contract and thus only one block, which is

G
ss|s|ss
(1,1) = x

∆k+hijk
3 K

(d,hijk ;−hlmk ,∆k+hlmk)
12;34;3 (x3; y4), (22)

where hijk = − 1
2 (∆i − ∆j + ∆k). This conformal block can be

easily expressed in terms of the Exton G-function as in equa-
tion (19). We omitted the overall numerical normalization of the
conformal block above since it is unimportant here. However,
such normalization is necessary to correctly relate the four-
point function to the OPE coefficients in equation (20).

Another instructive case is the conformal block with all
scalar external operators, but with the exchange operator of
spin ℓ that is transforming in the ℓ-index traceless symmetric
representation. This is the only representation of the exchange
operator that is allowed by group theory with four external
scalar fields. It turns out that the blocks can be written in a very
compact form, neglecting overall numerical normalization, as

G
ss|spin ℓ|ss
(1,1) = C(d/2−1)

ℓ (X)
∣∣∣
s

, (23)

where C(d/2−1)
ℓ is the ℓ-order Gegenbauer polynomial with

index d/2 − 1. The argument of this polynomial X =

(α4−α2)x4−(α3−α2)x3
2 is a symbolic expression where the param-

eters α2,3,4 are power-counting variables that are replaced ac-
cording to a substitution indicated by |s in equation (23).

The compact expression in equation (23) can be unpacked

by expanding C(d/2−1)
ℓ (X) in power series and then collecting

terms with different powers of αi and powers of the invariant
cross-ratios x3,4. The substitution s implies

αs2
2 αs3

3 αs4
4 xr3

3 xr4
4

→ ρ(d, ℓ+s2−s3−s4
2 ;−hijm− ℓ

2 )ρ(d,hijm−
s2−s3−s4

2 ;∆m)

× x
∆m+hijm−

s2+s3−s4
2

3 x−s4
4 K(d,a;b,c)

12;34;3 (x3; y4) ,

(24)

with ρ(d,h;p) = (−2)h(p)h(p + 1 − d/2)h, a = hijm − (s2 − s3 −
s4)/2, b = −hklm + (r3 − r4)/2, and c = ∆m + hklm − (r3 −
r4)/2. It is straightforward to use the binomial expansion to
express the conformal block for the spin ℓ exchange in equa-
tion (23) as a linear combination of the K12;34;3(x3; y4) functions
with different parameters. For l = 0, all powers are restricted
to s2,3,4 = r3,4 = 0, and the expression in equation (23) reduces
to equation (22). It turns out that analogous expressions for
conformal blocks, written as substitutions on the Gegenbauer
polynomials, can be also found for other choices of spins of the
operators [17].

Expressions for conformal blocks become rapidly compli-
cated when the operators of interest transform in larger Lorentz
representations. With larger representations, the group theo-
retic tensors carry many indices, and there are many terms in-
volved in contracting all those indices. Such contractions in-
volve the metric tensor and the coordinates η1 through η4. Each
term that combines various Lorenz representations leads to the
Īij;kℓ function in equation (14) with arguments that depend on
the numbers of different coordinates present. Moreover, gen-
eral conformal blocks carry indices that contract with the in-
dices of the half-projectors in equation (20).

One of the simplest nontrivial representations is the vector
representation, and we will consider operators that transform
as vectors in position space. The corresponding half-projector
in the embedding space is T v

12Γ ∝ ΓABη1A(A12)BC that car-
ries one un-contracted vector index C. Our second example is
the conformal block for the scalar exchange with two external

scalars and two external vectors. This will be denoted as G
sv|s|sv
(1,1)

as with this choice of operators there is, again, only one possi-
ble Lorentz contraction. The block must carry two indices that
contract with the half-projectors of the two vector operators.
Relatively straightforward algebra leads to

G
sv|s|sv
(1,1) = Ī

(d,hijk−3/2,2;−hlmk+1/2,∆m+hlmk+1/2)
12;34 CjCm , (25)

where, once again, purely numerical normalization was omit-
ted. Cj and Cm are the indices that contract with the half-
projectors of the vector operators Oj and Om.

The conformal blocks in equations (22) and (25) can be di-
rectly compared with derivations using other methods, and the
results agree with [5] and [16], respectively. A number of fur-
ther, significantly more involved, derivations of four-point con-
formal blocks are presented in [17].
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5. DISCUSSION
There are several advantages of the formalism described in this
article for computing conformal blocks. Every Lorentz repre-
sentation appears on the same footing: there is no significant
distinction between bosonic and fermionic operators. All op-
erators carry only spinor indices, with an even number of in-
dices for bosons and an odd number for fermions. The partic-
ulars of the representation are encoded in the half-projectors
T Ni

12 Γ introduced in equation (8). The half-projectors are func-
tions of coordinates and the Γ matrices of SO(d + 2). The half-
projectors are straightforward to write for any fundamental
representation. Half-projectors for larger representations can be
constructed recursively starting from the smaller ones.

Given the explicit form for Ī(d,h,n;p)
ij;kℓ in equation (13), no

evaluations are needed to obtain a conformal block. There is
no need to solve differential equations or compute integrals.
The problem has been reduced to putting together Lego bricks.

The half-projectors and Ī(d,h,n;p)
ij;kℓ form a complete Lego set for

conformal blocks. We are not implying that obtaining blocks
with large Lorentz representations, or many points, is trivial,
but that our formalism offers a prescription for how to do that
and provides all the necessary ingredients.

Ī(d,h,n;p)
ij;kℓ is very complicated. Part of that complication

stems from its generality. It can be used for M-point functions,
not just four-point functions one might be most interested in.
There are only two cross-ratios for four points, as discussed in
the previous section. Hence, the set of cross-ratios xm, y, and z,
in equation (13), reduces to just two: one x one y, and no z’s. We
computed the most general function because the methods that
yielded the answer for four points were sufficient to extend the
answer to M points and the corresponding M(M − 3)/2 cross-
ratios.

The OPE plays the primary role in our approach. It ex-
tends (M − 1)-point functions to M-point functions. Focusing
on four-point functions alone, one could use the OPE only once
since three-point functions can be written relatively easily. It is,
however, possible to construct every possible correlator using
the OPE starting with the two-point function. The two-point
function follows the OPE of two operators with the identity op-
erator on the right-hand side. Moving on to three points, one
can construct a basis for the three-point functions and relate
them to the OPE coefficients. The conformal blocks at four, and
more, points are the next steps in employing the OPE.

The functions K(d,h;p;q)
ij;kℓ;m and its little sibling K(d,h;p)

ij;kℓ;m in
equation (13) have a number of interesting properties [14].

For example, contiguous relations express K(d,h;p)
ij;kℓ;m in terms of

K(d+2,h;p′)
ij;kℓ;m . Such relations suggest associations between confor-

mal blocks that we are only starting to explore.
We hope that our methods will lead to further advances in

conformal bootstrap. The numerical bootstrap can benefit from
derivations of previously unknown conformal blocks. It might
also be possible to formulate analytic bootstrap completely in
the embedding space, which seems more natural for CFTs com-
pared to the position space.

Appendix A. EVEN DIMENSIONS
Dolan and Osborn in their seminal papers [5] pointed out that
the scalar conformal blocks are simplified in even dimensions
when the invariant cross-ratios are expressed in terms of z and
z̄, which are defined as u = zz̄ and v = (1 − z)(1 − z̄). In these
variables, the blocks can be expressed as sums of terms that
factorize into products of the 2F1 hypergeometric functions that
depend on z and z̄.

It might be of interest to know how the result for even di-
mensions follows from equations (23) and (24). This is, how-
ever, not completely straightforward. The direct route of chang-
ing variables from x3 and y4 to z and z̄ involves multiple power
series resummations. Although the brute force approach works
for a specific numbers of dimensions, it is not at all illuminating
and much too long to be presented here.

A better approach is utilizing the recurrence relation for the
Gegenbauer polynomials:

Cα
ℓ (X) =

1
ℓ

[
2X(ℓ+ α − 1)Cα

ℓ−1(X)− (ℓ+ 2α − 2)Cα
ℓ−2(X)

]
.

This leads to a recurrence relation for the blocks, which is de-
scribed in detail [17]. The recurrence relation in [17] is identical
to the relation in [5]. Since the recurrence relates blocks with
spin ℓ exchange to those with smaller ℓ’s, it is enough to check
that the ℓ = 0 block derived using our method coincides with
the block in [5]. The results for even dimensions for ℓ > 0 in
terms of z and z̄ then follow from the recurrence relation.
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