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Abstract
The dynamics of a neutral test particle in the spacetime geometry corresponding to a central massive
and charged object (Reissner-Nordstrom Metric) is examined. For a radial distance r = Q2/M (in natural
units), the gravitational force is null, independently of the value of G, and repulsive below this value. It
is shown that within typical atomic and molecular distances, there is a repulsive force albeit negligible in
comparison with the electromagnetic one ruling the atomic world. For an eventual extremal black hole
having a mass equal to the Planck Mass, a limit to an electric charge equal to 1 (MeV)0 is found. At the
galactic scale and for galaxies with a compact central nucleus with mass below or of the order of M⊙, the
repulsive force can reproduce the flat rotation curve of stellar orbits observed in many galaxies.
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1. INTRODUCTION
The main object of this work is to present some new con-
sequences of a repulsive gravitational force induced by the
Reissner-Nordstrom spacetime which had been reported some
11 years ago [5], apparently not receiving the attention by the
scientific community that such a result deserved. The more
important consequence of the mentioned work is that radial
geodesics followed by test neutral particles in the spacetime in-
duced by the Reissner-Nordstrom metric (RN) have an appar-
ent repulsive behavior below a distance to the center of Q2/M
(in natural units), where Q and M are the charge and mass of
the central object, respectively, the force being null for this dis-
tance.

In this article, new features of this sort of repulsive grav-
ity and some of its consequences for physics and astrophysics
will be explored. A nonphenomenological alternative to the so-
called MOND theory [3] will be presented and also call atten-
tion to the possibility of primordial collapsed objects with a net
electrical charge (together with some other possibilities, see the
FINAL COMMENTS at the end) that perhaps in the early Uni-
verse might have been significant.

Quite recently, a model (Cappelluti et al. 2022) [1] has been
suggested in which primordial black holes with a broad birth
mass function ranging in mass from a fraction of a solar mass to
about 106 M⊙, peaking near the Chandrasekhar mass of 1.4M⊙,
constitute the Dark Matter component in the Universe. On the
other hand, for some years, the so-called MOND theory (Mil-
grom 1983) [3] has offered paradigmatic albeit phenomenolog-
ical explanation of the peculiar flat rotation curves of galaxies.

One of the main results of this study is that it is not possible
to fit the flat galactic rotation curves beyond 1-2 solar masses
of the collapsed objects and, surprisingly, we also find that the
condition GM2 < Q2 corresponding to Naked Singularities
instead of black holes must hold thus pointing to a different
mechanism for the formation of supermassive black holes in
galaxies.

Since its invention, the MOND phenomenological theory
aiming to an explanation of the peculiar rotation curves in

many galaxies has been the subject of many additional studies
and controversies which are out of the scope of this work. What
we shall present in this study, is from the theoretical standpoint
self-consistent, its validity depending only on whether RN col-
lapsed objects exist in the Universe.

2. RADIAL GEODESICS
In spherical coordinates xα = (t, r, θ, ϕ) (natural units c = h̄ = 1
will be used), the element of arch parametrized by proper time
τ is

dτ2 =

(
1 − 2GM

r
+

GQ2

r2

)
dt2 −

(
1 − 2GM

r
+

GQ2

r2

)−1

dr2

− r2dθ2 − r2 sin2 θdϕ2.
(1)

(in natural units, the gravitational constant is G = 6.76088 ×
10−45 MeV−2), and radial distances are given in MeV−1. 1 kpc
= 1.563 × 1020 MeV−1).

For the study of radial and circular geodesics, a convenient
start point is the Lagrangian [2]

L =
1
2

[(
1 − 2GM

r
+

GQ2

r2

)
ṫ2

−
(

1 − 2GM
r

+
GQ2

r2

)−1

ṙ2 − r2 θ̇2 − r2 sin2 θϕ̇2

]
(2)

(dot meaning derivative with respect to proper time τ).
Together with the Euler-Lagrange equations:

d
dτ

∂L
∂ẋα

− ∂L
∂xα

= 0. (3)

For x0 = t, if we restrict to radial geodesics and since the co-
ordinate time does not explicitly appear in the Lagrangian, the
corresponding canonical momentum is a constant of the mo-
tion Ẽ that can be interpreted as the energy per unit mass:

u0 =
∂L
∂ṫ

=

(
1 − 2GM

r
+

GQ2

r2

)
u0 = Ẽ. (4)

If we drop the test particle from infinity on a radial trajectory
beginning at rest, the constant Ẽ is simply a unit. Then, from
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the last equation and equation (1),

u0 =
dt
dτ

=
1(

1 − 2GM
r + GQ2

r2

) , (5)

u1 =
dr
dτ

=

√
2GM

r
− GQ2

r2 . (6)

The non null Christoffel symbols for the radial coordinate are:

Γ0
01 =

2GMr − 2GQ2

2r (r2 − 2GMr + GQ2)
,

Γ1
00 =

1
2

(
1 − 2GM

r
+

GQ2

r2

)
·
(

2GM
r2 − 2GQ2

r3

)
,

Γ1
11 = − GMr − GQ2

r (r2 − 2GMr + GQ2)
.

(7)

From the precedent relations and the corresponding
geodesic equation, the radial acceleration relative to the proper
time is

d2r
dτ2 =

GM
r2 − GQ2

r3 . (8)

Irrespective of the value of the gravitational constant G, the
right-hand side is null for a radial distance

rNF =
Q2

M
. (9)

For radial distances below this value, no circular orbits can
exist. For r slightly above this value, the repulsive term pro-
duced by the charge (of either sign) makes the orbital velocity
much smaller than the Newtonian or Schwarzschild orbit. As
the repulsive effect decreases faster with distance, far from the
source, orbits are Newtonian.

3. CIRCULAR ORBITS
As obtained in [5], for stable circular orbits, the orbital velocity
is given by

v =

√
GMr − GQ2

r2 − 2GMr + GQ2 . (10)

For r < rNF, no circular orbits exist. On the other hand, it is well
known that the quadratic expression in the lower part of the
precedent equation determines the Event and Cauchy horizons
of the RN spacetime. Solving the quadratic equation for r,

r = GM ±
√

G (GM2 − Q2). (11)

For positive values of GM2 − Q2, both kinds of horizons exist.
The case GM2 = Q2 is the so-called Extreme Black Hole while
for GM2 < Q2 we have a naked singularity. For an analysis of
the three physical situations just mentioned, it is convenient to
rewrite the circular velocity equation in the alternative form:

v =

√√√√√ GM
r

(
1 − Q2

M
1
r

)
1 − GM

r

(
2 − Q2

M
1
r

) . (12)

We introduce next a dimensionless parameter x ≥ 1 so that

r = x
Q2

M
, (13)

thus expressing the orbital velocity as

v =

√√√√√ GM2

xQ2

(
1 − 1

x

)
1 − GM2

xQ2

(
2 − 1

x

) . (14)

The previous results are valid for any physical system
where mass and charge are present (as commented below,
we are at the present cosmic time far from the Planck scale
where quantum effects begin to dominate). For instance, at the
atomic scale, rNF for the Hydrogen atom would be located at
0.000153 cm. This is a rather curious result revealing that in
the atomic and molecular world, electrons live under repulsive
gravitational forces (possibly quite negligible). To further clar-
ify this point, for r = 0.52× 10−8 cm (Bohr Radius), the classical
Coulomb force is

e2

r2
B
= −1.014 × 1017 (MeV)2, (15)

while the repulsive gravitational one (multiplying by the elec-
tron mass in equation (8)) is 1.373 × 10−18 (MeV)2. From this
simple-minded result, it seems that the repulsive component is
probably outside any attempt of experimental verification.

At the atomic level, the zone of null force lies well outside
the atomic region, and consequently, all atoms are immersed in
the repulsive zone. Furthermore, a simple calculation in equa-
tion (11) reveals that from the RN metric standpoint both pro-
tons and electrons are naked singularities avoiding Penrose’s
Cosmic Censorship Hypothesis which is assumed to be only
applicable in the macroscopic domain.

If we ask the question of what should be the minimum mass
and charge of a stable collapsed object such that it would be an
extreme RN black hole, a natural choice seems the Planck Mass,
from equation (11); the condition is

(GM)2 − GQ2 = 0, (16)

and then
Q =

√
GM, (17)

generally valid for any RN extreme black hole. For M being
equal to the Planck Mass, Mp = 1/

√
G, and we find

Q = 1 (MeV)0 (18)

(note that rNF is also located at the only horizon at the Planck
Length Lp = 1/Mp).

As it is only G that determines the value of Mp, the pre-
vious numerical value is independent of any specific value of
the gravitational constant, thus setting a lower limit for the
electric charge of an extreme RN collapsed object. Recalling
that the electron charge e = 0.08542 (eV)0, Q = 1 is equal
to 11.706 × 106 times the electron charge. Note that in Planck
Units electric charge is absent as Planck himself considered
mass and charge incommensurable quantities. As we cannot go
beyond the Planck scale of energy about 1019 GeV where quan-
tum effects begin to dominate, this is perhaps a sensible result
for the initial conditions in the Universe.

For any extremal RN black hole, in terms of the dimension-
less coordinate x, the velocity curve is always the same irre-
spective of the mass (see Figure 1):

v =

√√√√√ 1
x

(
1 − 1

x

)
1 − 1

x

(
2 − 1

x

) , (19)

2



Letters in High Energy Physics LHEP-319, 2023

FIGURE 1: Universal rotation velocity for Extreme Black Holes.
The label of the horizontal axis is the dimensionless parameter
x. Vertical axis: velocity as a fraction of the velocity of light. (For
x = 2, v = 1.)

The question now arises as whether circular orbits could
exist in the presence of a naked singularity (the very existence
of naked singularities is forbidden by the questionable cosmic
censorship hypothesis). To clarify such an intriguing possibil-
ity, we obtain the derivative with respect to r of equation (10)
and solve for r the resulting expression equated to zero, thus
obtaining the radial distance corresponding to the maximum
and minimal orbital velocity:

r =
1
M

Q
(

Q ±
√

Q2 − GM2
)

. (20)

Since no circular orbits exist below rNF, the maximum ve-
locity corresponds to the + sign solution. We note further that
the reality condition Q2 ≥ GM2 in the last equation, opposite
to the same condition in equation (11), excludes the possibility
of two horizons. If we are going to have some interval in r of
circular orbits, only the extreme case of a naked singularity is
allowed.

4. FIT TO OBSERVATIONAL RESULTS
To see whether what has been exposed until now might have
something to do with observational reality at the galactic scale
we shall consider two illustrative cases which were used to
manifest the adequacy of MOND (Milgrom and Sanders 2007)
[4] for explaining the experimental shape of the velocity rota-
tion curve of some low-mass galaxies.

The first case to consider is the extrapolation of MOND
to very low-mass spiral galaxies as explained in Milgrom and
Sanders (2007). They test MOND from the experimental data
of four spiral galaxies with a baryonic mass below 4M8

⊙. We
have taken two of them KK98 250 and NGC 3741 (no reference
found to the existence of a black hole in any of them) both with
rotation curves extending from 0 to 4 kpc (see Figure 1 in [4]).
To fit the rotation curves, I considered an RN collapsed object
with a 0.00258M⊙ mass and a total charge equivalent to the
charge of 1.04× 1040 electrons (see Figure 2). The radius of null
force and null velocity is Q2/M = 1.56 kpc. From the mass and
charge values fitting the experimental curves, it is readily seen
that they correspond to a Naked Singularity.

The other three figures are intended to describe the relative
influence of mass and charge in shaping the rotation curves

FIGURE 2: Rotation curve fitting the MOND and experimental
results of NGC 3741 and KK98 250. Horizontal axis distance in
kpc and vertical axis velocity in km/s.

(for real observational curves, see, for instance, [7], Figure 4
and [6]). The upper curve is always the same in the three fig-
ures corresponding to a collapsed central object of 0.232 solar
masses. In Figure 3, we keep the charge constant and decrease
the mass in the middle and lower curves. In Figures 4 and 5, we
keep the 0.232 M⊙ mass constant while increasing and decreas-
ing the charge, respectively. Note in Figure 4 how the increase
in charge flattens the rotation curves (the decrease in charge
makes the curves in Figure 5 close together).

In Figures 3, 4, and 5, the radial distance of null force rNF =
Q2/M in the upper curve is located at 3.753 × 1020 MeV−1,
equivalent to 2.401 kpc (1 kpc = 1.563 × 1020 MeV−1).

A simple look at equation (14) reveals that all rotation
curves having the same value of the dimensionless quantity
GM2/Q2 will have the same shape. However, the radial dis-
tance to the source can be quite different. For instance, if we
take a mass of 1066 MeV which is of the same order of magni-
tude than the supermassive black hole in our galaxy, we ob-
tain the same rotation curve but rNF would be displaced to
1.467 · 107 kpc in disagreement with the almost flat part in the
rotation curve of the Milky Way extending from 6 to about
16 kpc.

FIGURE 3: Rotation curve fitting some of the data relative to
spiral galaxies (see Figure 4 in [7]). M1 = 2.587 × 1059 MeV,
M2 = 2.00 × 1059 MeV, and M3 = 1.00 × 1059 MeV, corre-
sponding to 0.232, 0.179, and 0.090 solar masses, respectively.
Q = 9.8536 × 1039 MeV0, and M⊙ = 1.11542 × 1060 MeV.

5. FINAL COMMENTS
Although this study, extended to the galactic scale, does not go
beyond an initial exploratory stage, it seems valid to explain
the rotation curves of low-mass galactic nuclei, typically up to
about 1M⊙.

Apart from the cosmic censorship hypothesis, we note that
from the general relativity standpoint a simple electron, or
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FIGURE 4: Rotation curves (charge increasing from the upper
to the lower part), Q1 = 9.8536 × 1039 MeV0, Q2 = 11.5536 ×
1039 MeV0, and Q3 = 14.9536 × 1039 MeV0.

FIGURE 5: Rotation curves (charge decreasing from the upper
to the lower part), Q1 = 9.8536 × 1039 MeV0, Q2 = 9.05363 ×
1039 MeV0, and Q3 = 8.55363 × 1039 MeV0.

positron, is a naked singularity. On the other hand, there is no
evidence of a charged Universe either locally or at the cluster
or supercluster scale. We have seen that the obtained results
do not depend on the sign of the charge. Hence, on a suffi-
ciently large scale (cluster or supercluster), at least in princi-
ple, no conflict with a priory neutral Universe might arise (for
the hypothetical case of an overall charged Universe, see [10]).
How a charged naked singularity could be formed, possibly in
the very early Universe, is an open question.

Regarding the Dark Matter (DM) issue (proposed for the
first time just a hundred years ago [15]), since DM does not
interact with the electromagnetic field, thereby its name, it is
clear that the present study, like MOND, eludes the necessity
of DM for the explanation of galactic rotation curves.

At the time of writing, there is not any established theory
of DM. Once such a theory is found, perhaps, it might even be
compatible with the alternative proposed in this work where,
according to general relativity, if charged collapsed objects ex-
ist, this describes the rotational curves at least in some range of
masses irrespective of the existence of DM in galaxies.

The existence of Dark Matter is usually associated with all
sorts of gauge fields and the local gauge invariance principle
there being myriads of articles dealing with it. Unlike MOND,
the present work is susceptible to being related to a U(1) local
gauge symmetry or a Stueckelberg mechanism in the case of a
massive field [9] (this could be the subject of another work re-
quiring a different mathematical formalism than the usual ten-
sor calculus (see [13])).1

1The connection between DM and U(1) has been the subject of research
through many different ways including even String Theory [12]. For some works
following other lines of development, see, for instance, [8, 11, 14].
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