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Abstract
We consider the evolution of homogeneous cosmologies toward the future in a dynamical systems for-
mulation. Using a variational equation approach, we show that there is a short period in which transient
solutions between the end of a Mixmaster era and a subsequent Friedmannian state exist. Implications of
the generic inhomogeneous evolution toward the future, the recollapse problem, the horizon problem, and
the initial conditions required for inflation are briefly discussed.
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1. INTRODUCTION
The observable part of the universe is at any time comprised
of a large number of spatial subregions causally connected to
the observer, not all of which are so connected to each other.
This, as is well known, creates the so-called horizon problem,
why any two subregions in the observer’s past causal cone,
sufficiently separated as to never had been in causal contact
throughout their entire history, now appear synchronized in
their physically measurable properties (we shall use the word
“sync” for synchronization hereafter). If causally disjoint re-
gions were so delicately brought to sameness very early [1], pp.
525-6, [2], p. 815, [3], p. 506., then the universe was in some very
specially synchronized state initially, and the question arises as
to why this was so. The basic situation associated with the hori-
zon problem is described in Figure 1, where we see a generic
snapshot of an “observer” at G overlooking two spatial points
B and E in opposite directions, and the two causally discon-
nected regions B = AC and E = DF placed on the spatial
hypersurface Σ.

Inflationary expansion, as is well known, either through a
phase transition or more generally, allows for initially “unsyn-
chronized” regions to become homogeneous very early, hence,
explaining the subtle differences in the measurements of ob-
servables of two such regions [4], Section 4.1B, [5], p. 54, [6],
Section 5.1. This explanation of the horizon problem is the re-
sult of the causal mechanism of pushing the big bang hypersur-
face sufficiently earlier, so that the past light cones of the dis-
joint regions manage to form a nonempty intersection, hence,
allowing them to “homogenize” (cf., e.g., [7], Section 9.7.2, [8],
Section 28.3). However, even if one accepts inflation as a so-
lution to the horizon problem, there is still the issue of initial
conditions for inflation, and the universe must be sufficiently
uniform over some large scale before inflation, so that it subse-
quently inflates. In particular, for large field inflation, one does
not have to assume homogeneity over a Hubble domain be-
cause inhomogeneities redshift [9], but for small field inflation,
there is a problem of initial conditions [10]. Why did the field
have a large averaged value suitable for inflation over many
domains at the end of the preinflationary era?

This question leads to another one: What is the relation be-
tween causality and synchronization at the end of the prein-
flationary period? During inflation, two regions needed only to
be able to communicate causally with each other at some spe-
cific time in their past history to homogenize and be considered
synced.

Here, we introduce the dynamical synchronization of spa-
tial domains as a transient or temporal analog of the phase
transition used in inflationary models. We show that although
causality-induced homogenization may be a sufficient condi-
tion for sync, it is by no means a necessary one. In [11, 12], a
sync mechanism was introduced as a way to drive the universe
to simpler states in the past direction on approach to the initial
Belinski-Khalatnikov-Lifshitz (“BKL”) singularity [13]. In this
paper, however, we focus our attention on the future evolution
of the universe as it exits an early BKL chaotic phase contain-
ing different Mixmaster domains in an inhomogeneous back-
ground as conjectured in [14]. In that case, due to an earlier
formation of horizons, such regions are causally disconnected.
However, we show that they are able to gradually “absorb”
each other and for some finite time interval of their future evo-
lution resemble a single Friedmannian domain and so proceed
in a symphony (for an analogous effect observed in the context
of biological oscillators, see [15, 16, 17]).

The plan of this paper is as follows. In the next section, we
establish notation, and show that the evolution equations we
use admit the dihedral group as their symmetry group. In Sec-
tion 3, we develop a variational equation approach, and us-
ing it, we show that there is a finite time interval in which
an anisotropic Mixmaster domain evolves to become near-
Friedmannian in the future direction. In the last section, we
present arguments that suggest that the same may happen in
the generic inhomogeneous case as the universe exits the BKL
phase and enters a subsequent Friedmannian stage, and com-
ment on the possible implications of this model for the rec-
ollapse problem, the horizon problem, and the issue of initial
conditions for inflation.

2. DIHEDRAL SYMMETRY
The main result of this section is that the equations that de-
scribe the evolution of separate Mixmaster domains are in-
variant under the action of the dihedral group D3, which is
the symmetry group of the equilateral triangle, which consists
of plane rotations through 2π/3 angles followed by (the so-
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FIGURE 1: According to the horizon problem, rays such as CBG
and DEG transport to G the news that the two causally disjoint
regions AC and DF are completely synced although never in
causal contact.

rotated) x-axis reflections. The main purpose of this section is
to describe the path that leads to this result and to establish the
notation that will be used subsequently.

Our treatment uses the orthonormal frame formalism for
the Einstein equations in which one obtains evolution and
constraint equations relative to an orthonormal frame (e0, ea),
a = 1, 2, 3, with e0 normal to the group orbits, cf. [18], Sec-
tion 1.4. For the anisotropic Bianchi models of class A, this
formalism leads to a dynamical system in further “expansion-
normalized” variables. If t denotes proper time and H the Hub-
ble scalar, one introduces the τ-time by dt/dτ = 1/H and finds
equations of the form Ẋ = f (X), with constraint g(X) = 0,
where the prime denotes differentiation with respect to the τ-
time, f is a polynomial vector field in Rn, and g(X) is a smooth
function on Rn (with n relatively small).

More specifically, the Bianchi cosmologies can be described
by a spacetime whose metric admits a 3-dimensional isome-
try group G3 acting simply transitively on the spacelike ho-
mogeneous hypersurfaces of the spacetime. The Lie algebra of
Killing vector fields (with basis ξa, and structure constants sat-
isfying [ξa, ξb] = Cc

abξc) is the one associated with the sym-
metry group G3. The orthonormal frame spatial vectors com-
mute with the ξ’s, [ea, ξb] = 0, thus making the orthonormal
frame (∂/∂t, ea) “group-invariant”. Using the symmetric object
ηmn and vector am, both with constant entries and satisfying
ηmnam = 0 in our case, the commutation functions γc

ab(t) of the
resulting group-invariant, orthonormal frame decompose into
the standard form, γc

ab = ϵabnηmn + aaδm
b − abδm

a , with ϵabc be-
ing the alternating symbol with ϵ123 = +1. Then, ones arrive at
the standard classification of the Bianchi cosmologies into ten
different group types using the eigenvalues of the matrix ηmn

(cf. [18], p. 37).
In the resulting orthonormal frame approach, the metric

components g00 = −1, g0a = 0, and the spatial ones are given
by the identity matrix, gab = δab, so that the basic gravita-
tional variables are the nonzero commutation functions γc

ab(t),
of which now the only remaining ones are as follows: the Hub-
ble scalar H, the diagonal components of the shear tensor σab
which, being traceless, can be parametrized by only two in-
dependent functions σ+, σ−, and the three diagonal compo-
nents of the matrix ηab = diag(n1, n2, n3). Setting X(τ) =
(N1, N2, N3, Σ+, Σ−) where the N’s are the normalized spatial
scale factors na/H, while the Σ’s are the normalized σ’s, σ±/H,

one obtains the following the evolution equations [19, 18]:

N′
1 = (q − 4Σ+) N1, (1)

N′
2 =

(
q + 2Σ+ + 2

√
3Σ−

)
N2, (2)

N′
3 =

(
q + 2Σ+ − 2

√
3Σ−

)
N3, (3)

Σ′
+ = −(2 − q)Σ+ − 3S+, (4)

Σ′
− = −(2 − q)Σ− − 3S−, (5)

with the following constraint:

Σ2
+ + Σ2

− +
3
4
(

N2
1 + N2

2 + N2
3

− 2
(

N1N2 + N2N3 + N3N1
))

= 1,
(6)

where

q = 2
(

Σ2
+ + Σ2

−
)

, (7)

S+ =
1
2

(
(N2 − N3)

2 − N1 (2N1 − N2 − N3)
)

, (8)

S− =

√
3

2
(N3 − N2) (N1 − N2 − N3) . (9)

In this section, we prove that the Wainwright-Hsu system (1)–
(9) is Γ-equivariant, where Γ is the Σ+-reflection subgroup of
the dihedral group D3. This then implies that the system is D3-
equivariant.

We begin with some definitions. Let Γ be a compact Lie
group, and we consider its action on Rn. We say that the vector
field f is Γ-equivariant with respect to the action of Γ provided
that for each γ ∈ Γ and X ∈ Rn, we have

f (γX) = γ f (X). (10)

In this case, for any solution X of the Γ-equivariant system Ẋ =
f (X), it follows that γX is also a solution.

Now let D3 be the dihedral group of order 6 acting on the
(x, y)-plane R2. This is the symmetry group of an equilateral
triangle with vertices (1, 2, 3) on the plane, where, for concrete-
ness, we assume that the triangle is positioned such that vertex
1 is somewhere on the negative x-axis, and vertices 2 and 3 are
on the 4th and 1st quadrants, respectively.

Then, D3 consists of the three (counterclockwise) rotations
r0, r1, and r2 about its center of angles 0, 2π/3, and 4π/3, re-
spectively, and the three reflections s, u, and t, where s is the
reflection about the x-axis, that is, s(123) = 132, u is the reflec-
tion about the axis that forms an angle of π/3 with the x-axis,
that is, u(123) = 213, and t is the reflection about the axis that
forms an angle of 2π/3 with the x-axis, that is, t(123) = 321.
Then, r0 = I is the identity, while the remaining five elements
of D3 can be simply described with the help of the rotation and
reflection matrices of the plane.

We now identify the vertices of the equilateral triangle with
N1, N2, and N3, and the x and y axes with Σ+ and Σ−, re-
spectively. If we set Γs = {I, s}, which is the subgroup of D3
that consists of the identity and the s reflection of D3, it is not
difficult to show that the system (1)–(5) is Γs-equivariant. That
is, if (N, Σ) is any given solution, then, s(N, Σ) is also a solu-
tion. This follows by direct calculation (or even by a simple
inspection), since when the s element is applied and we get
s(N1N2N3) = N1N3N2, we also have

s
(

Σ+

Σ−

)
=

(
1 0
0 −1

)(
Σ+

Σ−

)
, (11)
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so that the whole system (1)–(5) is unchanged under s (the con-
straint (6) is also invariant in that case). (We note that under
other subgroups, Γt = {I, t}, Γu, etc., the system is not equiv-
ariant.)1

The property that the system (1)–(5) and (6) is Γs-
equivariant is important because of the following reason. From
the multiplication table of D3, it follows that r1 ◦ u = s = r2 ◦ t,
and therefore, the system is in fact D3-equivariant, in the sense
that it is invariant under 2π/3- and 4π/3-rotations followed by
the corresponding x-axis (that is, u or t) reflection (s-reflection
corresponds to the element r0 ◦ s of D3).

D3-equivariance is in turn important because the D3-
symmetry of rotations and reflections acting on an “initial”
(N, Σ) solution as a base is necessary to sustain the BKL se-
quence of epochs and eras as one progresses to the t = 0 singu-
larity in the homogeneous case as developed in [13]. This fact
is perhaps not clearly emphasized in the literature, for it is hard
to see how the BKL oscillations could be sustained without D3-
equivariance. This symmetry becomes even more important for
the BKL conjecture in the inhomogeneous case, where the ho-
mogeneous BKL behavior is conjectured to exist all the way to
the generic singularity for each Mixmaster domain, as discussed
in [14, 20]. D3-symmetry is then valid on any Mixmaster sub-
region in inhomogeneous spacetime with solutions in distinct
subdomains differing only in their spatially dependent phases
(while preserving the D3 symmetry).

3. TRANSIENT BEHAVIOR
We now consider, besides the solution X = (N, Σ), another so-
lution Y = (M, Π) satisfying the system (1)–(5) and (6), with
p = 2(Π2

+ + Π2
−) in the place of q in (7), the spatial curvatures

Q’s like the S’s in (8) and (9) but with the M’s in the correspond-
ing places of the N’s, and the constraint identical to (6) but with
the (M, Π)’s in the places of the (N, Σ)’s.

For τ in some open interval J, and assuming that the solu-
tion Y satisfies the initial condition Y(τ0) = Y0, we introduce
the synchronization (or variational) function:

ω = X − Y, on J, (12)

and define the variational equation along the solution Y = (M, Π):

ω′ = DX f (Y(τ))ω = 0, (13)

where DX f (Y) denotes the Jacobian of the vector field f (X)
given by the right-hand sides of (1)–(5) evaluated at the solu-
tion Y = (M, Π). This is a linear equation, with time-dependent
coefficients in general.

The basic result associated with the equation (13) is as fol-
lows: provided that the initial condition ω(τ0) = ω0 is small
(that is, for X0 near Y0), the function ω + Y is a good approx-
imation to the solution X = (N, Σ) on some compact interval

1The fact that the s reflection is a symmetry of the equations was first noted
in [19], cf. their first unnumbered equation in their p. 1416. However, the whole
statement in that reference after their equation (2.29) is misleading, because the
previously stated symmetry in the last unnumbered equation of p. 1415 as rep-
resenting a “rotation through 2π/3 rad in the Σ+ − Σ− plane” is erroneous. As
presented in that reference, the first transformation that appears in the last line
on p. 1415 is the element r1, while the second one written there is the element r2

in our notation (in which case one gets a full rotation around the circle, that is,
the identity element).

J0 ⊂ J containing τ0 (for a proof of this result, see [21], pp. 299–
302); we note that the length of J0 can be anything provided
that J0 is compact. That is, if ϕτ(X) is the flow of the system
(1)–(5), and for ξ being small, we consider the spatial deriva-
tive of the flow ∂ϕτ(τ, Y0)/∂X = ω(τ, ξ); then, as ξ tends to
zero, the function Y(τ) + ω(τ, ξ) becomes a better and better
approximation to Y(τ, ξ). The former is usually a better choice
than the latter, because ω(τ, ξ) is linear in ξ. The approxima-
tion is uniform in τ on the compact interval J0 and depends on
a smooth variation of the initial condition, Y0 → Y0 + ξ (hence,
the name “variational”).

Below we shall be interested in the behavior of solutions of
the variational equation for two special choices of the particular
solution Y = (M, Π), both being equilibrium solutions of the
system (1)–(5), namely:

(EQ-1): Friedmann-Lemaı̂tre point F :

Σ+ = Σ− = 0, N1 = N2 = N3 = 0, (14)

(EQ-2): Kasner circle K,

Σ2
+ + Σ2

− = 1,

N1 = N2 = N3 = 0,

Σ+, Σ−: constants.

(15)

According to the previous theory, for initial conditions X0 near
(EQ-1) or (EQ-2) (that is, for ω0 small), the corresponding so-
lutions X of the system (1)–(5) are well approximated by those
solutions ω of the variational equation (13) for which the Jaco-
bian is evaluated at the equilibrium solutions (EQ-1) and (EQ-
2), respectively.2

Let us consider a homogeneous and anisotropic domain
that evolves according to the system (1)–(5).

At the equilibrium (EQ-1), the Jacobian DX f (Y) has eigen-
values 0, 0, 0, −2, and −2 and corresponding generalized eigen-
vectors, the standard basis of R5. This means that, in the (N, Σ)
phase space, thought as a plane, every point on the N axis is
an equilibrium, and all phase points are stably attracted to the
N axis along orbits representing parallel lines to the (vertical)
Σ-axis as in Figure 2.

Therefore, on the finite time interval J0, all solutions of the
system (1)–(5) in this case are well approximated by Friedmann
universes, the exact types of which depend on the specific point
of the N axis on which the orbit lands. All such Friedmann uni-
verses have been classified, cf., e.g., [18], p. 129.

To obtain the behavior of the solutions at (EQ-2), we intro-
duce the Kasner exponents pi, i = 1, 2, 3, with ∑ pi = ∑ p2

i = 1,
where in standard notation in terms of the polar angle ψ, we
have: p1 = (1 − 2 cos ψ)/3, p2,3 = (1 + cos ψ ±

√
3 sin ψ)/3,

with Σ+ = cos ψ, Σ− = sin ψ.

2We note here the following important fact. For any equilibrium solution Ȳ of
the system (1)–(5), the Jacobian DX f (Ȳ) is a constant matrix. This matrix, depend-
ing on the nature of the equilibrium Ȳ, may or may not have some eigenvalues
on the imaginary axis. Of course, when the equilibrium Ȳ is nonhyperbolic, the
stability of the solutions of the system (1)–(5) near such an equilibrium cannot
be described by studying the linearized equation, and other methods are needed
to study the behavior of the solutions of the system (1)–(5). However, the impor-
tance of the variational equation in this case is that it does describe the transient
or “observable” behavior of the solutions of (1)–(5), that is, their behavior on a com-
pact time interval (rather than their long-term behavior (τ → ±∞) as implied in
stability studies).
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FIGURE 2: Phase portrait giving the behavior of the orbits near
the equilibrium (EQ-1).

Then, the eigenvalues of the Jacobian DX f (EQ-2) are
6p1, 6p2, 6p3, 0, 4, with corresponding generalized eigenvectors
(no relation to the e’s of the orthonormal frame previously), and
e1, e2, e3, (0, 0, 0,− tan ψ, 1), (0, 0, 0, cot ψ, 1), where ei, i = 1, 2, 3,
are the first three vectors of the standard basis of R5. The
0- and 4-eigenspaces are in the (Σ+, Σ−)-plane along the di-
rections defined by the two last eigenvectors, while the three
eigenspaces corresponding to the remaining three eigenvalues
are along the N1, N2, and N3 directions, respectively.

The properties of the solutions near (EQ-2) during their
transient passage on the time interval J0 are classified accord-
ing to various subsets of the Kasner circle. There are two cases
of such sets on the Kasner circle:

(1) The special case of the so-called Taub points, where two
of the Kasner exponents are zero, namely, the pi’s are
(1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. In this case,
the eigenvalues become 0, 0, 0, 1, 4, and so due to the un-
stable directions, the system is repelled from the Kasner
circle in the future direction.

(2) In all other cases, all of the pi’s are nonzero, with two
of them being positive and one negative. This means
that the eigenvalues are 0,−,+,+, 4; that is, there is al-
ways a zero eigenvalue corresponding to the eigendi-
rection (0, 0, 0,− tan ψ, 1), one negative eigenvalue de-
pending on which of the pi’s is negative corresponding
to one of the eigendirections N1, N2, and N3, two posi-
tive eigenvalues corresponding to the remaining two Ni-
directions, and the eigenvalue 4 along the eigendirection
(0, 0, 0, cot ψ, 1).

Because of the presence of zero, negative, and positive eigen-
values, the system is thus generally unstable in the future di-
rection. In particular, we can obtain a four-dimensional unsta-
ble set for all solutions of the system (1)–(5) which have the Ni0

that corresponds to the zero eigenvalue pi0 equal to zero. The
nature of this invariant set depends on the Bianchi type, and,
in particular, orbits with two of the Ni’s zero exist in that set.
Along such orbits (with three zero eigenvalues), the system will
move away from the Kasner circle and toward the Friedmann
state in the future direction.

Therefore, the behavior of the system resembles the one de-
picted in the symbolic phase portrait of Figure 3: the system
moves away from the Kasner circle (EQ-2) in the future be-
cause of its instability, and an exit from the phase of the BKL
oscillations is realized in the future direction where the system
is attracted by the equilibrium (EQ-1).

N

Σ

FIGURE 3: Symbolic phase portrait depicting the behavior of
the orbits during the transient period from last BKL era (Kasner
circle) to the Friedmann state at the origin.

This completes the description of the dynamics of the sys-
tem during the transient period predicted by the variational
equation (13).

4. DISCUSSION
There are various possible implications of these results that we
discuss here. One is related to the recollapse problem, another
to the horizon problem, and a third one to the impossibility of
small field inflation.

Our results show that in the future direction at the end
of the BKL period, as a Mixmaster domain evolves off one of
the arcs of the Kasner circle of (EQ-2) will subsequently be at-
tracted by the Friedmann solution (EQ-1) and remain close to
it for a finite period of time (given by the “observable” time in-
terval, we denoted earlier by J0). This describes the mechanism
of transient synchronization in a rigorous way (in the future
direction and for some finite period of time).

This result brings some new light to the known property
of the Bianchi IX universes in the vacuum case that there are
no such universes that expand forever and must recollapse, cf.
[22], Theorem 1. This result also provides an alternative mech-
anism (other than inflation) for the nonpremature recollapse of
anisotropic universes until they become isotropic by transient
synchronization without the need for an inflationary stage. Since
it is known that such universes cannot recollapse until they are
isotropized by inflation cf. [23], in a sense, our result increases
the probability of inflation to occur because it makes the exis-
tence of short-lived anisotropic universes that recollapse before
inflation less likely. Our result is also to be compared with the
long-term behavior of the Bianchi IX model in the case with a
positive cosmological constant, cf. [24], although a nonzero λ is
not considered here however.

Once one has a Friedmann domain, what may happen in
the next phase of evolution (including the “recollapse” prob-
lem discussed above, or studies of small fluctuations) is not
completely addressed either by inflation or by the standard ap-
proach to cosmological dynamical systems. This is because one
has to take into account dispersive aspects present in the struc-
ture of the Friedmann equations, and the novel properties of
the universe that are implied in this sense (for more on this, the
reader is invited to study [25]).

One may in fact speculate that in an inhomogeneous set-
ting at the end of the last BKL era, each one of the different
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Mixmaster regions involved in the BKL inhomogeneous evolu-
tion as they exit the BKL stage in the future direction will, by a
similar process, be attracted by and become a “subdomain” in
the attracting Friedmann universe. Hence, the Friedmann do-
main will contain many such regions which will be causally
disjoint because of the formation of horizons during the earlier
BKL stage (cf., e.g., [26]). The corresponding solutions in other
domains will evolve with different phases on the Kasner circle
compared to the specific Mixmaster domain discussed above;
however, one expects that such differences will be erased dur-
ing the transient period of the Friedmannian evolution.

We end up with a transient period from around the end of
the BKL stage to the state described by a Friedmannian domain
containing causally disjoined subdomains all synchronized to
each other and proceeding in a uniform fashion. As we have
already discussed, the length of the transient interval J0 cannot
be taken as a stability interval, and so, we expect the time du-
ration of transient synchronization where the system gets close
to Friedmann to be generally short. This provides an alterna-
tive approach to the horizon problem.

On a different front, transient synchronization as described
here may have an important consequence for early time—
in particular—small field inflation. All the various Mixmaster
subdomains that eventually connect to a Friedmannian domain
at the end of the transient period have arisen at the end of the
BKL stage as chaotically oscillating regions in the earlier BKL
phase in inhomogeneous spacetime. Each one of these Mixmas-
ter subdomains has therefore well-known stochastic properties
as described in [27], and consequently, any function defined on
the resulting Friedmann domain at the end of the transient pe-
riod will have its values randomly distributed on the set of these
Mixmaster subdomains.

If one imagines a scalar field adjoined to the resulting Fried-
mannian domain, its initial, i.e., pre-inflationary, values would
thus be expected to be likewise chaotically distributed, pretty
much as dictated by the Mixmaster subdomains at the end
of the last BKL era. Therefore, the most natural value of the
scalar field potential energy averaged over all Mixmaster subdo-
mains in the inhomogeneous setup considered at the end of the
BKL stage could naturally be a very large one, of the order of
M4

Planck, for classically treated domains of a typical minimum
size of the order of M−1

Planck. If true, this implies that no small
field problem of the sort discussed in [9, 10] could actually
be possible at the end of the transient synchronization period.
Hence, inhomogeneous initial conditions natural for inflation
are probably expected to occur due to transient synchroniza-
tion.
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