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Abstract
In this paper, minimal coupling constants of meson-∆ baryon and meson-nucleon to ∆ baryon transition
have been investigated in the AdS/QCD soft-wall model at finite temperature limits. Initially, the right
and left profile functions of ∆ baryons have been calculated using the Rarita-Schwinger field in this model.
After this, the expressions of coupling constants have been written by considering the profile functions of
thermal hadrons according to the zero-temperature case of expressions. Then, the temperature dependence
graphs have been plotted for strong couplings gρ∆∆(T), ga1∆∆(T), and gρN∆(T). As a result, it was observed
that the values of minimal coupling constants decrease with increasing temperature and approach zero
near the Hawking temperature.
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1. INTRODUCTION
One notable application of string theory is the anti-de Sit-
ter/conformal field theory (AdS/CFT) [1, 2, 3, 4, 5] or holo-
graphic duality, which is used to study the coupling regime
of quantum field theories. This theory is also called grav-
ity/gauge duality. This principle is based on closed and open
string duality according to the relationship between the open
and closed strings. As such, in this principle, the gravita-
tional field corresponding to the closed string is defined by the
boundary, and the field theory corresponds to the open string
by the bulk of the AdS space. QGP (Quark-Gluon Plasma), con-
densed matter systems, and other QCD problems are impossi-
ble to solve by using perturbation theory; however, they can
be studied by using the methods of this duality. The duality
between gravitational and gauge theories is the strong-weak
duality, which also was adapted to describe the low- and high-
energy dynamics of QCD (Quantum Chromodynamics). Inves-
tigating hadron interaction processes in the nuclear medium
in proton-proton and heavy ion collisions in order to study the
phase transition of QGP and the evolution of the early Universe
is also a very important issue. Such problems are solved us-
ing AdS/QCD or holographic QCD models. AdS/QCD which
was created based on this duality has two hard- and soft-wall
models for modifying the metric in the AdS space-time. These
models are widely applied in particle physics for quantify-
ing phenomenological prediction quantities and investigating
other strong interaction problems.

In theoretical physics, many QCD problems were solved by
holographic QCD models in the vacuum and low-temperature
medium in [6, 7, 8, 9, 10, 11, 12, 13, 14]. The derivation of
analytical formulas for the mass spectrum of mesons and ∆
baryons and their coupling constants has been investigated in
[15, 16]. In addition, reasonable results have been found for
the transition and electromagnetic form factors of nucleons in
the soft-wall model of holographic QCD at finite temperatures.
Continuing these investigations in [17], we have studied the
temperature dependence of vector meson coupling constant
in the soft-wall model of AdS/QCD. It was observed that the

coupling constant of ρ vector meson decreases when temper-
ature increases and vanishes at the temperature close to the
confinement-deconfinement phase transition temperature.

It is interesting to check whether this situation takes place
for other meson sectors of the model as well. As a continua-
tion of [17], we have decided to study, for simplicity, the min-
imal coupling constant of meson-baryon and meson-nucleon
to ∆ baryon transitions based on the case reviewed in [18] at
finite temperatures. Our aim here is to study temperature de-
pendence in the spectrum of spin 3/2 baryons (∆ resonances)
and the coupling constants between mesons and baryons in the
soft-wall model of holographic QCD at finite temperatures.

The remainder of this paper is organized as follows. Sec-
tions 2 and 3 are about the soft-wall model and the breaking of
chiral symmetry at finite temperatures. In Section 4, the profile
functions of ∆ baryons have been obtained at finite tempera-
tures in the bulk of AdS space-time. In Section 5, we construct
the Lagrangian for the vector-spinor interaction in the bulk and
obtain the temperature-dependent integral expression for the
minimal coupling constants of gρ∆∆(T), ga1∆∆(T), and gρN∆(T)
using holographic correspondence at the boundary of QCD.
In Section 6, the free parameters are fixed and the graphs of
strong coupling constants are plotted at the different values of
the quark flavor parameter N f . The last section is devoted to
discussion and conclusions.

2. THERMAL SOFT-WALL MODEL OF
HOLOGRAPHIC QCD

The Schwarzschild metric can be written as follows [15]:

ds2 = e2A(z)
[

f (z)dt2 − (dx⃗)2 − dz2

f (z)

]
, f (z) = 1 − z4

z4
H

. (1)

The relation between tortoise coordinates r and z is as fol-
lows:

r =
∫ dz

f (z)
. (2)

In the finite temperature limit, the r coordinate can be ex-
panded as

r ≈ z

[
1 +

z4

5z4
H
+

z8

9z8
H

]
. (3)
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So, the AdS-Schwarzschild space-time metric in the Regge-
Wheeler (RW) tortoise coordinate r [15] will be written as fol-
lows:

ds2 = e2A(r) f
3
5 (r)

[
dt2 − (dx⃗)2

f (r)
− dr2

]
. (4)

Here, A(r) = log( R
r ) and the thermal factor f (r) has the fol-

lowing form:

f (r) = 1 − r4

r4
H

, (5)

where rH is the position of the event horizon. It is related to the
Hawking temperature as T = 1/(πrH), x = (t, x⃗) is the set of
Minkowski coordinates, A(r) = log( R

r ), and R is the AdS space
radius. k is a scale parameter.

The AdS-Schwarzchild geometry is more suitable at high
T, while at small T this metric can be also used by making a
small T-expansion. The limit T = 0 corresponds to a mapping
of the AdS-Schwarzchild geometry onto AdS Poincare metric,
and the small T-the behavior of hadron properties can be gen-
erated in the formalism based on AdS Poincare metric and with
the use of a thermal dilaton. It leads to equivalent results: AdS-
Schwarzchild geometry with small T is equal to AdS Poincare
metric with thermal dilaton.

The dilaton field φ has the following form:

φ(r, T) = K2(T)r2, (6)

where
K2(T) = k2 [1 + ρ(T)] . (7)

So, K2(T) is the parameter in the spontaneous breaking of chi-
ral symmetry, while the thermal function ρ(T) up to T4 order
has the following form:

ρ(T) = δT1

T2

12F2 + δT2

(
T2

12F2

)2

. (8)

Here, F is the decay constant, and there is the relation between
the coefficients δT1 and δT2 and quark flavors N f

δT1 = −
N2

f − 1

N f
, (9)

δT2 = −
N2

f − 1

2N2
f

. (10)

3. CHIRAL SYMMETRY BREAKING AT
FINITE TEMPERATURES

In AdS/CFT correspondence, the currents in the boundary
will correspond to the bulk gauge fields at finite temperatures.
The scalar field X transforms as a bifundamental under the
SU(2)L × SU(2)R group. The five-dimensional mass M2

5 =
∆0(∆0 − 4) of the scalar which is fixed with the scaling dimen-
sion ∆0. The solution for the bulk scalar X at finite temperatures
is defined as χ(r, T) ≈ 1

2 amqr + 1
2a Σ(T)r3 = ϑ(r, T), where the

mass of quarks is mq, Σ(T) is the value of thermal chiral con-

densate, and a =
√

Nc
2π . The conventions are the fact that the

temperature dependence of Σ(T) quark condensate is defined
as Σ(T) = Σ[1 + ∆T ] and Σ(T) = ⟨0|q̄q|0⟩T = −N f B(T)F2(T)

[28]. In the chiral limit, N f is the number of quark flavors,
B(T) is the quark condensate parameter, and F(T) is the pseu-
doscalar meson decay constant in the chiral limit at finite tem-
peratures. F(T) and B(T) have been studied and calculated in
[19].

4. MESON FIELDS AT FINITE
TEMPERATURES

In this section, the author derives the results of the meson-
baryon coupling constants of hadrons at low temperatures.
First, the author calculates the meson profile function at low
temperatures using the universal action derived in [15]. The
corresponding EOM (Equation of Motion) for the Fourier
transform of the bulk-to-boundary profile function of mesons
ϕn(r, T) in Euclidean metric is as follows:[

− d2

dr2 + U(r, T)
]

ϕn(r, T) = M2
n(T)ϕn(r, T). (11)

U(r, T) is the effective potential and consists of the temperature-
dependent and nondependent parts:

U(r, T) = U(r) + ∆U(r, T). (12)

Explicit forms of the U(r) and ∆U(r, T) terms were given as

U(z) = k4r2 +

(
4m2 − 1

)
4r2 , (13)

∆U(r, T) = 2∆(T)k4r2. (14)

The meson mass spectrum M2
n is shown in the following

form by the sum of zero and finite temperature parts:

M2
n(T) = M2

n(0) + ∆M2
n(T), (15)

∆M2
n(T) = ρ(T)M2

n(0) +
Rπ4T4

k2 , (16)

M2
n(0) = 4k2

(
n +

m + 1
2

)
, (17)

where R = (6n − 1)(m + 1).
In the low-temperature case, the hadronic mass spectrum is

M2
n(T) = M2

n(0) + ∆M2
n(T), (18)

∆M2
n(T) = ρT M2

n(0) +
Rπ4T4

k2 , R = (6n − 1)(m + 1). (19)

The profile function of mesons in general form is given [15] as
follows:

ϕn(r, T)

=

√
2Γ(n + 1)

Γ(n + m + 1)
K(T)m+1rm+ 1

2 e−
K(T)2r2

2 Lm
n

(
K(T)2r2

)
.

(20)

For the meson with two quarks m = L. By taking m = 1 for the
vector and axial vector mesons, we have replaced ϕn(r, T) by
M0(r, T) as the meson profile function in the expression of the
coupling constant.
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5. RARITA-SCHWINGER FIELDS AT
FINITE TEMPERATURES

According to the principle of holographic duality, the fields set
against the ∆ baryon operators and the nucleon operator with
a defined spin 1/2 at the boundary of the AdS space-time differ
from each other. Thus, while the Dirac field corresponds to nu-
cleons with spin 1/2, the ∆ baryon operators with spin 3/2 are
opposed to the Rarita-Schwinger fields ΨM within this space-
time [20, 21, 22, 23]. The action for the Rarita-Schwinger field
at finite temperatures can be written corresponding to zero-
temperature case as follows:∫

d5x
√

G
(

iΨ̄AΓABCDBΨC − m1Ψ̄AΨA − m2Ψ̄AΓABΨB

)
,

(21)
where ΨA = eM

A ΨM, and we used notations ΓABC =
1
3! Σperm(−1)pΓAΓBΓC = 1

2 (Γ
BΓCΓA − ΓAΓCΓB) and ΓAB =

1
2 [Γ

A , ΓB]. The Rarita-Schwinger equations in AdS5 are written
as

iΓA (DAΨB − DBΨA)− m−ΨB +
m+

3
ΓBΓAΨA = 0, (22)

where m± = m1 ±m2. m1 and m2 correspond to those of spinor
harmonics on S5 of AdS5 × S5 [24].

As is well known, the Rarita-Schwinger field contains the
states of the field with spin 1/2 in addition to spin 3/2 compo-
nents. In 4-dimensional space, the components with spin 1/2
are eliminated by imposing the Lorentz condition on this field:

γµΨµ = 0. (23)

The following Lorentz-covariant constraint will project out one
of the spin-1/2 components from the Rarita-Schwinger fields in
a five-dimensional space corresponding to a four-dimensional
space.

eM
A ΓAΨM = 0, (24)

which then gives ∂MΨM = 0 for a free particle if combined with
equations of motion.

This field has extra spin-1/2, Ψz, if decreased to four-
dimensional space-time at finite temperatures. By choosing
Ψr = 0, it is possible to reduce the extra spin-1/2 degrees of
freedom, because there is no extra spinor at finite temperatures.(

izΓAΨA + 2iΓ5 − m−
)

Ψµ = 0 (µ = 0, 1, 2, 3), (25)

ΨM(R) =
1
2

(
1 + γ5

)
ΨNE, (26)

ΨM(L) =
1
2

(
1 − γ5

)
ΨM, (27)[

∂2
r −

2
(
m− + K(T)2r2)

r
∂r +

2
(
m− −K(T)2r2)

r2 + p2

]
ΨL = 0,

(28)[
∂2

r −
2
(
m− + K(T)2r2)

r
∂r + p2

]
ΨR = 0. (29)

The solution of these equations with the polynomial is similar
to the fermion field, as follows:

f L
n (r, T) =

√
2Γ(n + 1)

Γ (n + mL + 1)
KmL+1rmL+

1
2 e−

K2r2
2 LmL

n

(
K2r2

)
,

f R
n (r, T) =

√
2Γ(n + 1)

Γ (n + mR + 1)
KmR+1rmR+

1
2 e−

K2r2
2 LmR

n

(
K2r2

)
,

(30)

where mL,R = m ± 1
2 . To describe the spin 3/2 baryons (∆ reso-

nances) in the soft-wall model at finite temperatures, one has to
introduce a pair of Rarita-Schwinger fields in the bulk, ΨA

1 (for
the left-handed spin-3/2) and ΨA

2 (for the right-handed spin-
3/2), which obey the above Rarita-Schwinger equations. The
author has considered [14] to describe the spin 1/2 baryons
(nucleons) profile functions in the soft-wall model at a finite
temperature which obeys the Dirac equation in the bulk [16].
The left-handed spin-1/2 baryon profile function is given by
FA

1 (r, T), whenever the right-handed spin-1/2 baryon is given
by FA

2 (r, T). Note that the profile functions of spin 1/2 and 3/2
baryon are the same in a certain approximation. The profile
functions of ∆ baryon fm(r, T) and nucleon Fn(r, T) obey nor-
malization conditions as∫ ∞

0
dre−

3
2 A(r) f L,R

m (r, T)FL,R
n (r, T) = δmn. (31)

6. STRONG COUPLING CONSTANTS
Gρ∆∆(T), GA1∆∆(T), AND GρN∆(T)
AT FINITE TEMPERATURES

In this section, the author is interested in the properties of
∆ resonances in AdS/QCD at finite temperatures. The reso-
nance to nucleons of ∆ baryons is very necessary for the study
of nucleon potential, as the decay channel of ∆ resonance at
finite temperatures. Generally, the interaction Lagrangian is
constructed based on the gauge invariant of the model and
contains a term of minimal gauge interaction of the meson
field with the fermions corresponding zero-temperature limit
[18]. Meson-baryon transition coupling constants have been
obtained from the action by including the thermal dilaton field
in the action.

The thermal couplings have expressions of thermal pro-
file functions of the bulk fields. It has calculated the terms of
thermal action in the momentum space and taken the variation
derivative from Lagrangian terms. This variation gives us the
following contribution of each Lagrangian term to the nucleon
current.

The minimal Lagrangian term of π meson is as follows:

Lπ∆∆ = Ψ̄µ
1 Γr ArΨ1µ − Ψ̄µ

2 Γr ArΨ2µ. (32)

Here, Γ is Dirac matrices in the reference frame. Γr matrices
are chosen as Γr = (γµ,−iγ5). The expressions Ψσ

L,R(p, r) =

∑n F(n)
L,R(p, r)ψ(n)σ

L,R (p) are spinors for the five-dimensional AdS
space.

So, by making some calculations, the temperature depen-
dence expression of the π meson ∆ baryon coupling constant is
obtained from the minimal Lagrangian Lπ∆∆ term which cor-
responds to the π meson ∆ baryon coupling constant at zero-
temperature.
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The π meson ∆ baryon coupling constant g(0)nm
π∆∆ (T) has the

following form:

g(0)nm
π∆∆ (T)

= −
∫ ∞

0

dr
2r2

[
M0(r, T)

(
f (n)∗1L (r, T) f (m)

1R (r, T)

− f (n)∗2L (r, T) f (m)
2R (r, T)

)]
.

(33)

The Lagrangian of ρ meson-∆ baryon interaction Lρ∆∆ is as fol-
lows [25]:

Lρ∆∆ = Ψ̄ν
1ΓµVµΨ1ν + Ψ̄ν

2ΓνVνΨ2ν. (34)

From its corresponding Lagrangian, the ρ meson ∆ baryon cou-

pling constant g(0)nm
ρ∆∆ (T) has the following form:

g(0)nm
ρ∆∆ (T)

= −
∫ ∞

0

dz
r2 M0(r, T)

[(
f (n)∗1L (r, T) f (m)

1L (r, T)

+ f (n)∗2L (r, T) f (m)
2L (r, T)

)]
.

(35)

a1 meson ∆ baryon coupling constant arises from the bulk
gauge coupling constant [26], and the minimal interaction La-
grangian terms have the following form:

La1∆∆ = Ψ̄M
1 eM

A ΓM AMΨ1M − Ψ̄M
2 eM

A ΓM AMΨ2M, (36)

and the magnetic gauge interaction or Pauli terms La1∆∆ is as
follows:

La1∆∆ = k1Ψ̄M
1 eAeN

B ΓMN FMNΨ1M − Ψ̄M
2 eM

A eN
B ΓMN FMNΨ2M.

(37)
Thus, after making certain simplifications, we obtain from the
minimum interaction Lagrangian terms a1 meson ∆ baryon

minimal coupling constant g(0)nm
a1∆∆ (T) in the framework of the

soft-wall framework which can be written as

g(0)nm
a1∆∆ (T) =

∫ ∞

0

dr
r2 M0(r, T)

(
f (n)1R (r, T)2 − f (m)

1L (r, T)2
)

. (38)

M0(r, T) is the expression of the profile function or wave func-
tion of the a1 meson in the ground state. The additional contri-

butions to g(1)nm
a1∆∆ (T) coupling constant can arise from the mag-

netic type of interaction in the bulk of AdS space-time as the
following form:

g(1)nm
a1∆∆ (T) =

k1
2

∫ ∞

0

dr
r2 M

′
0(r, T)

(
f (n)1L (r, T)2 + f (n)1L (r, T)2

)
.

(39)
The π meson transition coupling constant has been obtained
from the gauge-invariant coupling constant of gauge fields
with ∆ resonances and nucleons at finite temperatures. The La-
grangian for these fields is given by

LFN∆ =
[
α1

(
Ψ̄M

1 ΓN (FL)MN N1 − (1 ↔ 2, L ↔ R)
)]

, (40)

where α1 is a parameter [18]. The terms contribute to the 4D
ρ meson thermal coupling constant. By KK reduction of 5D

spinors as ΨiL,R(p, r) = ∑n f (n)iL,R(p, r)ψ(n)
L,R(p) for nucleons and

ΨL,R(p, r) = ∑n F(n)
L,R(p, r)ψ(n)

L,R(p) for ∆ resonances, one can
write the pion-nucleon-∆ couplings as

gnm
πN∆(T)

= − fπ

∫ ∞

0
dr

[
M0(r, T)

r2

(
κ
(

F(n)∗
1L (r, T) f (m)

1R (r, T)

+ F(n)∗
2L (r, T) f (m)

2R (r, T)
))]

,

(41)

and similarly the rho-nucleon-∆ couplings at finite tempera-
tures as

gnm
ρN∆(T)

=
∫ ∞

0
dr

[
M0(r, T)

r2

(
κ
(

F(n)∗
1L (r, T) f (m)

1R (r, T)

− F(n)∗
2L (r, T) f (m)

2R (r, T)
))]

.

(42)

7. NUMERICAL RESULTS
The coupling constants at finite temperatures gρ∆∆(T), ga1∆∆(T),
and gρN∆(T) consist in the numerical calculation of the in-
tegrals and in numerically plotting their temperature depen-
dencies by means of the Mathematical package. The author
presents numerical results for the parameters N f = 2, F =
87 MeV, N f = 3, F = 100 MeV, N f = 4, F = 130 MeV, and
flovour N f = 5, F = 140 MeV. These sets of parameters were
taken from [18]. There are free parameters k, k1, mq, and Σ in
this work. The value of parameter k = 383 MeV [15] and pa-
rameter k = −733 [18]. The parameters k1 are fixed at the val-
ues k1 = −0.78 GeV3 in the [26]. The Σ = 0.3683 MeV3 value
and the mq = 0.0023 GeV value of these parameters were found
from the fitting of the π meson mass [27]. Having an idea of the
relative contributions of different flavors of hadrons, the author
presents results for the temperature dependencies of the vari-
ous numbers separately.

FIGURE 1: The temperature dependence of g0
ρ∆∆(T) for N f = 2,

F = 87 MeV, N f = 3, F = 100 MeV, N f = 4, F = 130 MeV,
N f = 5, F = 140 MeV.

The ρ meson ∆ baryon coupling constant g0
ρ∆∆(T) (shown

in Figure 1), the a1 meson ∆ baryon coupling constant g0
a1∆∆(T)

(shown in Figure 2), and the ρ meson-nucleon-∆ -transition
coupling constant gρN∆(T) (shown in Figure 4) were plotted
at the parameter N f = 2, F = 87 MeV, N f = 3, F = 100 MeV,
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FIGURE 2: The temperature dependence of g0
a1∆∆(T) for N f =

2, F = 87 MeV, N f = 3, F = 100 MeV, N f = 4, F = 130 MeV,
N f = 5, F = 140 MeV.

FIGURE 3: The temperature dependence of g1
a1∆∆(T) for N f =

2, F = 87 MeV, N f = 3, F = 100 MeV, N f = 4, F = 130 MeV,
N f = 5, F = 140 MeV.

FIGURE 4: The temperature dependence of gρN∆(T) for N f = 2,
F = 87 MeV, N f = 3, F = 100 MeV, N f = 4, F = 130 MeV,
N f = 5, F = 140 MeV.

N f = 4, F = 130 MeV, and N f = 5, F = 140 MeV. In Fig-
ure 3, the author also has considered these dependencies for
g1

a1∆∆(T) of the nucleons and drawing graphs for the differ-
ent number of flavors. The purple graph curve represents two
N f = 2, F = 87 MeV, the green curve shows the three N f = 3,
F = 100 MeV, the orange curve shows the four N f = 4,
F = 130 MeV, and blue one shows the five flavors N f = 5,
F = 140 MeV of thermal minimal coupling constants in the fig-

ures. This analysis shows a weak dependence on the parameter
N f of the coupling constants [29].

8. SUMMARY
In the present work, the author studies the temperature depen-
dency of minimal coupling constants of meson-∆ baryon and
meson-nucleon to ∆ baryon transition in the framework of the
soft-wall model of holographic QCD. It has been observed that
the value of all terms becomes zero at the same point near the
Hawking temperature by increasing temperature. The mini-
mal coupling constants of meson-∆ baryon and meson-nucleon
to ∆ baryon transition may be of use in the deeper study of
the nucleon-delta baryon transition and in understanding pro-
cesses of the early Universe.
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