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Abstract
We consider the membrane viewpoint a là Parikh-Wilczek on the Kerr solution for a rotating black hole.
Computing the stress-energy tensor of a close-to-the-horizon stretched membrane and comparing it to the
stress tensor of a viscous fluid, we recover transport coefficients in terms of the Kerr geometry. Viscosities
of the dual fluid remain constant, while the rest of the transport coefficients become complex functions
of radial and angle coordinates. We study the qualitative behavior of the pressure, expansion, and en-
ergy/momentum densities for two specific black holes: the slowly rotating black hole, with the angular
momentum of one percent of the black hole mass squared, and the extremal Kerr black hole. For the Kerr
solution in the Boyer-Lindquist coordinates, these transport coefficients generally have poles at different
values of the radial coordinate in the range between the horizon and the Schwarzschild radius of the black
hole, in dependence on the fixed angle direction. We briefly discuss our findings in the context of a rela-
tion between the Membrane Paradigm and the AdS/CFT correspondence, the KSS bound violation, the
coordinate choice, and a nonstationary extension of the Kerr solution.
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1. INTRODUCTION
This work is aimed at the application of the Membrane
Paradigm within the Parikh-Wilczek approach to rotating black
holes. Developing pioneering researches on Electrodynamics
and Gravitodynamics near black hole horizons [1, 2], the Mem-
brane Paradigm [3, 4, 5, 6, 7] appeals to the effective dynamics
of a viscous fluid, simulated characteristics of a stretched mem-
brane located at the horizon. Later on, the Duality between
the hydrodynamic limit of a strongly coupled Gauge Theory
and weakly coupled Gravity with the matter was used for
computing transport coefficients of the Gauge Theory on the
Gravity side [8]. Surprisingly, some of the results of the “old”
Membrane Paradigm and of the “new” Gauge/Gravity Dual-
ity matched in the early development of the latter (see, e.g.,
[10, 9, 11]). Notwithstanding, the Membrane Paradigm does
not refer anyway to conformal symmetry, which plays a sig-
nificant role in the original AdS/CFT correspondence, as well
as in its “light” version, known as the Gauge/Gravity Duality.

To date, the strong differentiation between the results
of computation of shear viscosity on both—the Membrane
Paradigm and the Gauge/Gravity Duality—sides was not de-
termined. Considering this rationale as a guideline, before do-
ing nontrivial computations in the Gauge/Gravity Duality on
the Kerr spacetime, we applied technically more simple Mem-
brane Paradigm to compute this and other transport coeffi-
cients of the dual fluid. In the course of our studies, we re-
covered old results for the shear and bulk viscosities, which
are constants in the Kerr geometry, and got new upshots on
the functional dependence on the radial and angle coordinates
for other transport coefficients. The shear viscosity value coin-
cides with that of the Schwarzschild geometry, which, in par-
ticular, holds up the “shear viscosity/entropy density” bound
η/s = h̄/4πkB, known as the KSS bound [8]. The dual fluid
pressure, expansion, energy, and momentum densities, being

functions of radial and polar angle coordinates, show different
properties in dependence on the considered case. For a slowly
rotating black hole, these quantities may be regular in the range
from the location of circular photon orbits to spatial infinity, as
it happens in the case of the black hole whose angular momen-
tum value is one percent of the mass squared. For the extremal
Kerr black hole solution in the Boyer-Lindquist coordinates, the
mentioned quantities display complex behavior. In particular,
all of them have poles, which in specific cases cause the flipping
of the sign in the vicinity of the singular point.

To set up the stage for such conclusions, in Section 2, we
consider the 1+1+2 split of the Kerr metric similar to that of
[6, 7], early developed for nonrotating black holes. Note that
the standard 1+3 separation of coordinates has been employed
to rotating black holes as in the framework of the Membrane
Paradigm and in the fluid/gravity correspondence as well (see,
e.g., [12, 13, 14, 15, 16, 17, 18, 19]). The explicit 1+1+2 decompo-
sition of metric for rotating black holes a là Parikh-Wilczek has
not been considered in the literature, to the extent we know.

Computing the external curvature of a 3D stretched mem-
brane hypersurface in the vicinity of the black hole horizon, we
form the membrane stress-energy tensor. Next, comparing this
tensor to that of a viscous fluid, we derive the correspondence
between gravitational geometric quantities and transport coef-
ficients of the dual fluid. We recover in this way the energy den-
sity, pressure, expansion, and momentum density of the dual
medium in terms of the geometric characteristics of the Kerr
solution. Specifically, we find that the effects of rotation do not
impact the shear and bulk viscosity, the values of which for the
Kerr black hole coincide, within the Membrane Paradigm, with
that of a static neutral black hole of the same mass. What con-
cerns the other transport coefficients is that they, as we have
mentioned, become functions of radial and angular coordinates
that we explicitly obtain.

In Section 3, we analyze the functional dependence of the
corresponding quantities on the radial coordinate by fixing the
angle direction in the equatorial/pole planes of either extremal
(fast rotating) or nonextremal slowly rotating Kerr black hole.
Here, we establish the previously announced properties of the
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pressure, expansion, and energy/momentum densities of the
dual fluid: they are smooth functions in the range of the ra-
dial coordinate from the circular photon orbits in the equatorial
plane (as the reference point) to spatial infinity for the slowly
rotating black hole of the mass M and of the angular momen-
tum J = M2/100. For other relations between J and M2 and
for other polar angle planes, these quantities generally have
poles. This feature becomes manifest in the extremal Kerr black
hole case, where all the mentioned characteristics of the dual
fluid are divergent at the Schwarzschild radius in the equato-
rial plane.

The summary of the results, their discussion, and our con-
clusions are collected in the last section. We also include, for
the sake of completeness, two technical Appendices. There, we
reproduce the relevant to the Schwarzschild black hole compu-
tations of characteristics of the dual to the stretched membrane
viscous fluid, as well as the dimensional analysis of quantities
we deal with.

Notation and Conventions
Here, we use the “mostly plus” signature of the metric
and c = 1 units. The black hole’s effective mass is scaled
with the gravitational constant: M = mG, where m is the
usual mass of the object. Indices of small letters of the
Latin alphabet—a, b, c, . . .—run from 0 to 3; indices of capital
letters—A, B, C, . . .—are two-dimensional ones (of the angular
subspace of the Kerr spacetime). BH is used as the shortening
of a “black hole”.

2. VISCOUS FLUID DESCRIPTION OF THE
KERR STRETCHED HORIZON

We begin with the standard form of the Kerr metric [20] in the
Boyer-Lindquist coordinates [21]:

ds2 = −F2
t dt2 − 2ωFt dt dφ + F2

r dr2 + ρ2(r, θ)dθ2 + F2
φdφ2, (1)

where we have introduced the following functions of (r, θ):

F2
t =

(
1 − 2Mr

ρ2(r, θ)

)
, ρ2(r, θ) = r2 + a2 cos2 θ, (2)

ω = − 2Mr
ρ2(r, θ)Ft

a sin2 θ, ∆ = r2 − 2Mr + a2, (3)

Fr =
ρ(r, θ)

∆1/2 , F2
φ =

((
r2 + a2

)
sin2 θ +

2Mr
ρ2(r, θ)

a2 sin4 θ

)
.

(4)

To employ the 1+1+2 Parikh-Wilczek [6] decomposition of
the metric, we present the line element (1) in the following
equivalent form:

ds2 = − (Ftdt + ωdφ)2 + F2
r dr2 + ρ2(r, θ)dθ2 +

(
F2

φ + ω2
)

dφ2,
(5)

so that ds2 = (−uaub + nanb + γab)dxadxb is realized by 1-
forms

uadxa = Ftdt + ωdφ, nadxa = Frdr, (6)

and by the metric of a 2D subspace of angular coordinates

γabdxadxb = ρ2(r, θ)dθ2 +
(

F2
φ + ω2

)
dφ2, (7)

γab = gab − nanb + uaub. (8)

In dual basis, vectors ua and na have the components

ua = −F−1
t ∂t, na = F−1

r ∂r, (9)

and the norm of ua and na is −1 and +1, respectively.
The na field acceleration nb∇bna becomes nontrivial in the

case. (Indirectly, it means the presence of a nontrivial Hájiček
field [22]; see below.) However, one can still use the standard
expression of [6] for a stretched membrane stress tensor

8πGtab = Khab − Kab, hab = gab − nanb, (10)

even in this case (see Appendix A for details). The 3D extrinsic
curvature tensor of the orthogonal to na hypersurface is

Kab = ha
c∇cnb =

1
2Fr


−∂rF2

t 0 0 −∂r (ωFt)
0 0 0 0
0 0 ∂rρ2 0

−∂r (ωFt) 0 0 ∂rF2
φ

 .

(11)
The trace of this tensor comes to

K ≡ Tr Kab =
1

2Fr
∂r ln

[
ρ2(r, θ)F2

t

(
ω2 + F2

φ

)]
, (12)

or, in terms of the standard for the Kerr solution variables,

K =
1

∆1/2ρ3(r, θ)

(
ρ2(r, θ)(r − M) + r∆

)
. (13)

Now, following [6], we have to decouple the time-like di-
rection and to present the 3D extrinsic curvature Kab in terms
of 2D extrinsic curvature kAB of the normal to ua hypersurface.
Clearly, the metric on this hypersurface is a 4 × 4 matrix γab,
the only nontrivial part of which is the 2 × 2 block γAB, deter-
mined by equation (7). Details on the relation between 3D and
2D extrinsic curvatures can be found in Appendix A. Here, we
just recall that Kab = α−1(kab − gHuaub) +Ωaub +Ωbua, where
α is the renormalization factor making divergent quantities fi-
nite on the event horizon. Ωa is the Hájiček field and gH is the
surface gravity. (Actually, we will not use this relation for Kab
in what follows, so the explicit form of the Hájiček field does
not matter.)

In our case, we choose the renormalization factor α = F−1
r

with Fr(r, θ) from equation (3), which makes it possible to
form the null vector la = F−1

r na. (The norm of this vector is
lala = F−2

r = ∆/ρ2(r, θ), and it is equal to zero on the BH hori-
zon rh, defined by ∆(rh) = 0.) Then, we can compute the 2D
extrinsic curvature tensor as the Lie derivative of the 2D metric
γAB along the null vector la. We get

kAB =
1

2F2
r

(
∂rρ2(r, θ) 0

0 ∂r

(
ω2 + F2

φ

)) . (14)

Separating the traceless part of kAB, we write the 2D extrinsic
curvature as the combination of the 2D shear tensor σAB and
the expansion Θ: kAB = σAB + 1/2ΘγAB, Tr σAB = 0.

On account of the diagonal structure of the 2D metric (cf.
equation (7)) we have 3 equations to identify σAB and Θ:

kθθ = σθθ +
1
2

Θγθθ ,

kφφ = σφφ +
1
2

Θγφφ

(15)
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and γθθσθθ + γφφσφφ = 0. Therefore, the expansion is defined
by

Θ = γABkAB =
1

2F2
r

∂r ln
(

ρ2(r, θ)
(

ω2 + F2
φ

))
, (16)

or, in terms of the standard for the Kerr spacetime variables,

Θ =
∆

ρ4(r, θ)
r +

4a2 M2r sin2 θ

ρ4(r, θ)(ρ2(r, θ)− 2Mr)

(
1 − Mr

ρ2(r, θ)

)
×
(

1 − 2r2

ρ2(r, θ)

)
+

1
ρ2(r, θ)

(
1 − 2Mr

ρ2(r, θ)

)
×
(

r +
a2 M sin2 θ

ρ2(r, θ)

(
1 − 2r2

ρ2(r, θ)

))
.

(17)

Next, taking equations (14)–(16) into account, we obtain the
following nontrivial components of the shear tensor σAB:

σθθ =
ρ2(r, θ)

4F2
r

∂r ln

(
ρ2(r, θ)

ω2 + F2
φ

)
= − a2 sin2 θ(M − r)

2 (ρ2(r, θ)− 2Mr)
, (18)

σφφ =
ω2 + F2

φ

4F2
r

∂r ln

(
ω2 + F2

φ

ρ2(r, θ)

)
=

a2 sin4 θ∆(M − r)

2 (ρ2(r, θ)− 2Mr)2 . (19)

Now, we are ready to move on to solving the main task:
to derive transport coefficients of the dual fluid in terms of the
Kerr geometry variables. Let us turn to the stretched membrane
stress tensor 8πGtab = Khab − Kab, the nontrivial components
of which are (cf. equations (11) and (12))

ttt =
1

8πG

(
−KF2

t +
1

2Fr
∂rF2

t

)
,

ttφ = tφt =
1

8πG

(
−KωFt +

1
2Fr

∂r (ωFt)

)
,

tθθ =
1

8πG

(
Kρ2(r, θ)− 1

2Fr
∂rρ2(r, θ)

)
,

tφφ =
1

8πG

(
KF2

φ − 1
2Fr

∂rF2
φ

)
.

(20)

To derive the transport coefficients, we have to compare the
stress tensor (20) to the stress tensor of a viscous fluid. The latter
has the following general form (see, e.g., [23, 24]):

tab =
1
α

ρuaub +
1
α

γaAγbB

(
pγAB − 2ησAB − ζΘγAB

)
+ πA (γaAub + γbAua) .

(21)

Recall that indices a, b are indices of the 4-dimensional space-
time; indices A, B are two-dimensional indices of a surface pa-
rameterized by angles {θ, φ}. ρ is the energy density, p is the
fluid pressure, and σAB and Θ are the shear tensor and the ex-
pansion of the null geodesics near the event horizon. Also, η
is the shear viscosity, ζ is the bulk viscosity, and πA is the mo-
mentum density. As we have noticed, the regularization factor
is chosen to be α = 1/Fr.

Comparing two stress tensors from equations (20) and (21),
we derive the corresponding dynamical characteristics of the
fluid in terms of the Kerr geometry. For tt components of both
stress tensors, we have

ttt =
1
α

ρutut ;
∣∣∣α = F−1

r , ut = Ft

∣∣∣;
ρ =

1
8πG

(
− K

Fr
+

1
2F2

r
∂r ln F2

t

)
. (22)

Equivalently,

ρ =
1

8πGρ4(r, θ)

×
[

M∆
(
r2 − a2 cos2 θ

)
ρ2(r, θ)− 2Mr

−
(

ρ2(r, θ)(r − M) + r∆
)]

.
(23)

Next, we have to recover the momentum density πA in
the dual viscous fluid from the nondiagonal elements of the
stretched membrane stress-energy tensor. Clearly, comparing
(20) and (21), we get πθ = 0 and

πφ =
1

8πG
1

Ft
(
ω2 + F2

φ

) (−KωFt +
1

2Fr
∂r (ωFt)

)
− Frω

ω2 + F2
φ

ρ.
(24)

With the energy density (22), it becomes

πφ =
1

16πG
ω

Fr
(
ω2 + F2

φ

) ∂r ln
ω

Ft
. (25)

Therefore, the 2D momentum density vector is πA =
(πθ , πφ) = (0, πφ) with

πφ =
1

8πG
aM

(
r2 − a2 cos2 θ

)
ρ4∆1/2 (ρ2(r, θ)− 2Mr)1/2 . (26)

The next components of (20) we focus on are:

tθθ =
1

8πG

(
Kρ2(r, θ)− 1

2Fr
∂rρ2(r, θ)

)
, (27)

tφφ =
1

8πG

(
KF2

φ − 1
2Fr

∂rF2
φ

)
. (28)

On the other hand, see equation (21),

tθθ =
1
α

γθθ (p − ζΘ)− 1
α

2ησθθ , (29)

tφφ =
1
α

γφφ (p − ζΘ)− 1
α

2ησφφ +
1
α

ρuφuφ + 2πφγφφuφ.

(30)

Extracting the (p − ζΘ) combination from equations (29) and
(30) and equating the results, we get

2η =
1

Fr
(
σθθγφφ − σφφγθθ

)
×
(

tφφγθθ − tθθγφφ − ρFru2
φγθθ − 2πφγφφγθθuφ

)
.

(31)

Or, by use of equations (6), (7), (18), (19), (22), (25), (27), and
(28),

η =
1

16πG

[
1 +

∂rω2 − 2Kω2Fr − 2ω2∂r ln ω
Ft(

ω2 + F2
φ

)
∂r ln

(
ρ2(r, θ)/

(
ω2 + F2

φ

)) ]

− ρω2F2
r(

ω2 + F2
φ

)
∂r ln

(
ρ2(r, θ)/

(
ω2 + F2

φ

)) .

(32)

With equation (12), one simplifies the shear viscosity to

η =
1

16πG
. (33)
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Hence, we recover the standard classical result [2, 3, 4]: the
shear viscosity of the dual to a Kerr BH effective fluid is con-
stant, and it is the same as for the Schwarzschild BH (see Ap-
pendix A).

Next, multiplying both sides of (29) and (30) with γθθ and
γφφ, respectively, and using the traceless of the shear tensor
σAB, we get

p − ζΘ = −1
2

ργφφu2
φ − 1

Fr
πφuφ +

1
2Fr

(
γθθ tθθ + γφφtφφ

)
.

(34)
As a matter of fact, the last term on the r.h.s. of (34) turns into

1
2Fr

(
γθθ tθθ + γφφtφφ

)
= − 1

16πG
Θ +

1
16πGFr

(
2K − Kω2

ω2 + F2
φ
+

∂rω2

2Fr
(
ω2 + F2

φ

))
(35)

with the expansion Θ of (16), so that

p =
1

8πG
K
Fr

+

(
ζ − 1

16πG

)
Θ. (36)

To fix the value of the bulk viscosity, we will require the equal-
ity of the fluid pressure (36), in the limit a → 0, to the pressure
of the dual to the corresponding Schwarzschild BH fluid (cf.
equations (A.17) and (A.19) in Appendix A). Taking this limit
on account of equations (12) and (16), one should get

lim
a→0

p =
1

8πG

(
1
2

∂r f +
2 f
r

)
+

(
ζ − 1

16πG

)
2 f
r

=
1

16πG
∂r f ,

(37)
where f = 1 − 2M/r. It becomes possible for

ζ = − 1
16πG

. (38)

Therefore, the bulk viscosity of the dual to a Kerr BH fluid is
constant, and it coincides with the corresponding quantity in
the Schwarzschild geometry [2, 3, 4] (see also Appendix A).

With this choice of bulk viscosity, pressure, equation (36), is
reduced to

p =
1

8πG

(
K
Fr

− Θ
)
=

1
8πG

1
F2

r
∂r ln Ft, (39)

or

p =
1

8πG
M∆

(
r2 − a2 cos2 θ

)
ρ4(r, θ) (ρ2(r, θ)− 2Mr)

. (40)

This is the last transport coefficient in a viscous fluid stress ten-
sor (21).

To summarize the intermediate results of the work, we
have established the correspondence between the Kerr geom-
etry and transport coefficients of the dual to the event horizon
stretched membrane viscous fluid. We have recovered the stan-
dard for the Membrane Paradigm results for the shear and bulk
viscosities and have explicitly obtained the functional depen-
dence of the other transport coefficients on the radial and po-
lar angle coordinates. In the next section, we make an analysis
of these functions for two cases: fast and slowly rotating black
holes.

3. COMMENTS ON PRESSURE,
EXPANSION, AND ENERGY/
MOMENTUM DENSITIES OF
THE DUAL FLUID

Now let us review the behavior of the transport coefficients
which are functions of coordinates. We begin with the fluid
pressure determined by equation (40). This expression is conve-
nient to analyze in terms of the Schwarzschild radius rs = 2M:

p(r, θ) =
1

16πG
rs
(
r2 − rsr + a2) (r2 − a2 cos2 θ

)
(r2 − rsr + a2 cos2 θ) (r2 + a2 cos2 θ)

2 . (41)

Next, we recall that the horizons of a Kerr BH are located at

r+H =
1
2

(
rs +

√
r2

s − 4a2
)

, r−H =
1
2

(
rs −

√
r2

s − 4a2
)

.

(42)
Apparently, the parameter a, related to the BH angular momen-
tum, falls into the range

0 ≤ a
M

≤ 1. (43)

Introducing C ≡ a/M, the BH horizons are determined by

r±H =
rs

2

(
1 ±

√
1 − C2

)
. (44)

From now on, we have to specify the type of black hole
from the point of view of the intensity of its rotation. We start
from the high end of the C range, corresponding to the so-called
extremal Kerr black hole, when the two horizons coincide: C =
1 and rextr.

H = rs/2 = M. Also, we have two different circular
photon orbits in the equatorial plane of the Kerr black hole,
which are located at [25, 26]

r1 = rs

[
1 + cos

(
2
3

arccos
(
−|a|

M

))]
, (45)

r2 = rs

[
1 + cos

(
2
3

arccos
(
|a|
M

))]
. (46)

These radii coincide at C = |a|/M = 0 and obey r1 ≤ r2. Ac-
cording to the direction of their rotation, these two photon rings
are divided into prograde (in the same rotation direction as the
black hole; for r1) and retrograde (in the opposite direction; for
r2). Fixing C = 1 (which corresponds to the case of a fast rotat-
ing BH), we find r1 = M and r2 = 4M. We attract the reader’s
attention to the fact that equations (45) and (46) describe stable
photon orbits in the equatorial plane; in any other plane, the lo-
cation of photon orbits is not determined by (45) and (46), and
these orbits are generally unstable (see [26]). We will use r1,2
values as the reference points in our discussion of quantities in
nonequatorial planes, in particular, in the (north) pole plane.

Fixing the polar angle θ = π/2 and the Schwarzschild ra-
dius rs = 1, we get the following dependence of the rescaled by
16πG pressure on the radial coordinate for the extremal Kerr
BH (Figure 1). In this case, the radial location of the prograde
photon orbits coincides with the BH horizon, r1 = rs/2 =
rextr.
H . We note that near the double extremal horizon location,

equal to the Schwarzschild radius rs, the pressure diverges and
undergoes the sign flip. On both sides of the singular point
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FIGURE 1: The functional dependence of the pressure rescaled
by 16πG: from the prograde circular photon orbits in the equa-
torial plane to the radial infinity (the extremal Kerr BH). The
orbits are located on the BH horizon rextr.

H = rs/2 = 1/2, where
the pressure is equal to zero. The pressure diverges near the
double extremal horizon rs and undergoes the sign flip.

16πGp(r, π/2) is a decaying function. For the retrograde pho-
ton orbits, located far from the point of singularity, the pres-
sure is a smooth decaying function: from 9/32 × 1/16πG at
r2 = 4rextr.

H to 1/r2 at the spatial infinity.
Let us take a look at the pressure as the radial coordinate

function at θ = 0 (the north pole). Here, we fix the “pro-
grade” and “retrograde” photon orbits (45) and (46) as refer-
ence points. For r ∈ [r1, ∞[, we get Figure 2, so that 16πGp(r, 0)
is a smooth function of the radial direction: from zero on the
horizon, having the maximum at rs, and further falling as 1/r2.
The same qualitative behavior 1/r2 is observed for the pressure
from the “retrograde” photon orbits reference point r2 = 4rextr.

H
(p = 60/289 × 1/16πG there) to the spatial infinity.

For a slowly rotating black hole, when, say, C = 0.01, the
circular photon orbit radii in the equatorial plane are almost the
same. For rs = 1, we get r1 = 1.49422 and r2 = 1.50576. These
values are around r = 3/2rs which corresponds to the circular
photon orbit of the Schwarzschild black hole of the same mass.
Plotting the dependence of 16πGp on the radial coordinate in
this case, we observe that for the equatorial/pole planes 16πGp
come to be almost the same: from 16πGp ≈ 0.45 at the reference
point, falling as 1/r2 to the spatial infinity (see Figure 3).

Out[�]=
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0.4

0.5

16πG p

FIGURE 2: The rescaled by 16πG pressure in the north pole
plane (the extremal Kerr BH). The reference point is the BH
horizon rextr.

H = rs/2 = 1/2, where the pressure is equal to
zero.

Now, we turn to the analysis of the expansion (17), which
is useful to present as a function of the Schwarzschild radius

Out[�]=
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FIGURE 3: The plot of 16πGp from the prograde circular photon
orbits in the equatorial/pole planes of a slowly rotating black
hole (C ≡ a/M = 0.01). In both cases, the reference point is
r1 = 1.49422 ≈ 3rs/2.

rs = 2M, C ≡ a/M and radial/angle coordinates. It becomes

Θ =
r∆

ρ4(r, θ)
+

C2r4
s r sin2 θ

4ρ4(r, θ) (ρ2(r, θ)− rsr)

(
1 − rsr

2ρ2(r, θ)

)
×
(

1 − 2r2

ρ2(r, θ)

)
+

1
ρ2(r, θ)

(
1 − rsr

ρ2(r, θ)

)
×
(

r +
C2r3

s sin2 θ

8ρ2(r, θ)

(
1 − 2r2

ρ2(r, θ)

))
,

(47)

where

∆ = r2 − rsr +
1
4

C2r2
s , ρ2(r, θ) = r2 +

1
4

C2r2
s cos2 θ. (48)

The expansion in the equatorial plane of the extremal Kerr BH
diverges at the Schwarzschild radius rs (cf. Figure 4) and un-
dergoes the sign flip at this point. Its behavior is even more in-
teresting at r > rs since the maximum of the expansion in this
domain is reached at r = 2rs; after this point, the expansion falls
as 1/r (cf. Figure 5). On the north pole, the expansion becomes
a smooth function, reaching the same maximum Θ = 1/2 as in
the previously considered case, and in the same point, r = 2rs.
It also falls to the spatial infinity as 1/r (see Figure 6).

Out[�]=

2 4 6 8 10
r

-0.2

0.2

0.4

0.6

0.8

Θ

FIGURE 4: The expansion Θ in the equatorial plane of the ex-
tremal Kerr BH.

In the case of the nonextremal Kerr BH with C = 0.01, we
get almost the same functional dependence of the expansion in
both—equatorial and north pole—planes, when the maximum
of Θ is at r = 2rs, and it falls to the spatial infinity as 1/r (see
Figure 7).
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FIGURE 5: The expansion in the equatorial plane of the extremal
Kerr BH in an extended domain of the radial coordinate.
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FIGURE 6: The expansion in the north pole plane of the extremal
Kerr BH. The reference point is the BH horizon.

For the momentum density πφ, equation (26), written in
terms of rs and C = a/M,

πφ(r, θ) =
1

8πG

Cr2
s

(
r2 − 1

4 C2r2
s cos2 θ

)
4∆1/2ρ4(r, θ) (ρ2(r, θ)− rsr)1/2 , (49)

we obtain the following behavior in both equatorial/pole
planes of the extremal Kerr BH (Figure 8). The momentum den-
sity diverges at the BH horizon in the pole plane and at the
double BH horizon in the equatorial plane. In both cases, πφ

decays as 1/r4. For a slowly rotating BH, πφ is a regular func-
tion, falling in both planes to the spatial infinity also as 1/r4

(see Figure 9).
Finally, the energy density (23) has the following equivalent

representation:

ρ =
1

8πGρ4(r, θ)

 rs∆
(

r2 − 1
4 C2r2

s cos2 θ
)

2 (ρ2(r, θ)− rsr)

−
(

ρ2(r, θ)

(
r − 1

2
rs

)
+ r∆

) .

(50)

In the case of the extremal Kerr BH, the functional dependence
of the energy density in the equatorial/pole planes is plotted in
Figure 10, with the singular point at the Schwarzschild radius
in the equatorial plane. For the considered here nonextremal
BH (with C = 0.01), we get almost coincided regular curves in
both planes; see Figure 11.

To summarize, the transport coefficients of the dual fluid
p, Θ, ρ, and πφ are complex functions of radial and angle vari-
ables. In accordance with the structure of all these functions (cf.
equations (41), (47), (49), and (50)), they possess the poles de-
fined by r2 + C2r2

s cos2 θ/4 − rsr = 0. These poles may be hid-
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8πG πφ(r, π/2)

8πG πφ(r, 0)

FIGURE 7: The expansion in the equatorial plane of the nonex-
tremal slowly rotating Kerr BH with C ≡ a/M = 0.01 from the
prograde photon orbits location to infinity.
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FIGURE 8: The momentum density in the equatorial/pole
planes of the extremal Kerr BH.

den in specific requirements, an example of which is the trans-
fer of a reference point beyond a singular point. Then, one may
find a set of parameters of the Kerr solution (defining the rel-
evant reference point) at which the mentioned coefficients are
regular. Generally, we have to take into account the irregularity
of these functions.

4. SUMMARY, DISCUSSION, AND FINAL
REMARKS

In this paper, we have applied the Membrane Paradigm to
neutral rotating black holes. Following the Parikh-Wilczek ap-
proach, well-developed for nonrotating black holes [6, 7], we
have constructed the stress tensor of a stretched membrane,
located near the black hole horizon, and to compare it to the
stress-tensor of a relativistic viscous fluid. In the nomencla-
ture of the Gauge/Gravity Duality, this effective fluid is dual
to the stretched membrane. So Physics on (or in the vicinity of)
the black hole horizon is equivalently determined by the corre-
sponding hydrodynamic transport coefficients and susceptibil-
ities of the dual fluid.

In the course of our studies, we have made the following
major findings.

First, all but two main characteristics of the dual viscous
fluid, expressed in terms of geometric variables of the Kerr
spacetime, become functions of two variables: the radial coor-
dinate and the polar angle. We have obtained the qualitative
behavior of the pressure, expansion, and energy/momentum
densities for two specific black holes: the slowly rotating Kerr
BH, whose angular momentum is one percent of the black hole
mass squared, and the extremal (fast rotating) Kerr BH. Gener-
ally, these transport coefficients have poles at different values
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FIGURE 9: The momentum density in the equatorial/pole
planes of a nonextremal Kerr BH. (C ≡ a/M = 0.01; r starts
from the “prograde” photon orbits.)
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FIGURE 10: The energy density in the equatorial/pole planes
of the extremal Kerr BH.

of the radial coordinate—in the range between the horizon and
the Schwarzschild radius of the black hole—in dependence on
the fixed angle direction. However, if the point of observation
is located far from the Schwarzschild radius (this, in particular,
happens in the considered here case of the slowly rotating BH
with J = M2/100, when the reference point has been chosen
to be the photon orbits in the equatorial plane), these functions
become smooth in all polar angle planes. It would be interest-
ing to trace back a correspondence of regularity/nonregularity
of the transport coefficients on the dual side of the Kerr black
hole to the stability of this object, recently proved in [27] and
further developed in [28].

And second, the transport coefficients—-the shear and bulk
viscosities—remain constants, and we have recovered their val-
ues as before (see, e.g., [2, 3, 4]). That, in particular, means the
famous η/s ratio, computed for the most black holes and black
branes of String Theory in AdS spacetimes to be η/s ≤ h̄/4πkB
[29], holds in the case; no violation of the KSS bound [8] occurs.
(Recall that the issue of violation of this bound was under the
focus since establishing this result (see, e.g., [30, 31, 32, 33, 34]
for details).) Nevertheless, the presence of a negative bulk vis-
cosity still becomes a problem: as it has been noted even in the
early works on the Membrane Paradigm (cf. [3]), it requires
noncausal teleological boundary conditions (see [35] for a re-
view) which means that the horizon fluid is anticausal in a re-
sponse [36]. It does not concern isolated and dynamical hori-
zons [37, 38], where the response is causal; hence, the bulk vis-
cosity is positive. However, dynamical horizons exist rather
for time-dependent solutions than for static/stationary ones.
Time-dependent extensions of the Kerr solution developed and
studied in [39, 40] look perspective to this end.

As we have noted at the beginning of the paper, our moti-
vation was to compute the main characteristics of the dual vis-
cous fluid within the Membrane Paradigm before starting sim-
ilar computations on the Gauge/Gravity Duality side. Mainly,
our focus was on the computation of the shear viscosity due
to importance of this quantity for the Gauge/Gravity Duality.
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FIGURE 11: The energy density in the equatorial/pole planes of
the nonextremal Kerr BH with C ≡ a/M = 0.01. r starts from
the “prograde” photon orbits.

Though we have recovered the classical result of the old Mem-
brane Paradigm, which coincides with the KSS bound coming
from the AdS/CFT correspondence, it still looks enigmatic how
these different approaches, strictly speaking, unrelated to each
other (see [41, 42] for details), may lead to the same answer.
For example, results for 4D bulk viscosity do not look so un-
ambiguous anymore. The AdS/CFT leads to [43, 44]

ζ

η
≥ 2

(
1
3
− c2

s

)
. (51)

Since the physical intuition requires a positive value of the
speed of sound square c2

s , possible values of the bulk viscos-
ity are restricted by

ζ

η
≤ 2

3
; ζ ≤ 1

24πG

(
for η =

1
16πG

)
, (52)

which does not exclude positive values of the bulk viscosity in
a holographic fluid.

We have reported that the transport coefficients of the ex-
tremal Kerr black hole are divergent functions in the radial di-
rection. This result for “internal” degrees of freedom of the BH
horizon seems to be in contradiction with the early obtained
claims on the regularity of external, with respect to the hori-
zon, matter fields for static/stationary solutions of the Einstein
equations (see [39, 40] and early papers [45, 46, 47]). However,
we have to note that the obtained here results are referred to the
Boyer-Lindquist parametrization of the Kerr metric. To avoid
truly unphysical singularities, one needs to use the Eddington-
Finkelstein parametrization, which is beyond the scope of the
paper and the study of which we postpone for future investi-
gations.

To sum up, the obtained results, which have shown differ-
ences from the case of nonrotating black holes where outcomes
of both approaches partially coincide, call for extra theoretical
work in figuring out the power of the Membrane Paradigm and
its actual correspondence to and differences with the AdS/CFT.
Answering this and other questions will be handy in more
deep understanding of microscopic degrees of freedom of a
black hole, and what they really are: a condensate of gravi-
tons [48, 49, 50, 51], strings/D-branes [52, 53, 54], or other
“molecules”.
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Appendix A. THE SCHWARZSCHILD BH
According to the Membrane Paradigm [3, 4, 5], the membrane
stress tensor in 1+1+2 coordinate split comes as follows [6]:

tab =
1

8πG
(Khab − Kab) , hab = γab − uaub, (A.1)

where hab is the metric tensor of a 3D hypersurface orthog-
onal to the space-like unit vector na (radial direction for the
Schwarzschild); γab is the metric of a 2D hypersurface orthog-
onal as to na, as well as to the time-like vector ua. Kab is the
extrinsic curvature of the 3D hypersurface; K is the trace of Kab.

The stretched membrane stress tensor (A.1) can be equiva-
lently represented by the stress tensor of a viscous fluid [24]:

tab =
1
α

ρuaub +
1
α

γaAγbB

(
pγAB − 2ησAB − ζΘγAB

)
+ πA (γaAub + γbAua) .

(A.2)

Recall that indices a, b are 4-dimensional indices; indices A, B
are two-dimensional indices of a surface parameterized by an-
gles {θ, φ}. In (A.2), ρ is the energy density, p is the fluid pres-
sure, σab, and Θ are the shear tensor and the expansion of the
null geodesics near the event horizon. Also, η is the shear vis-
cosity, ζ is the bulk viscosity, and πA is the momentum density.
In particular, note the presence of the renormalization param-
eter α, the role of which is to make the divergent on the true
horizon quantities finite (see [6] and further discussion for de-
tails).

Let us review how equation (A.1) can be used to read off
various characteristics of effective fluid dynamics from equa-
tion (A.2) for the Schwarzschild solution.

The Schwarzschild geometry is determined by

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (A.3)

f (r) = 1 − 2M/r. We are aimed at splitting this metric into
1 + 1 + 2 form by the use of time-like and space-like vectors ua

and na near the horizon, turning into the same null vector la on
the horizon. This split takes the form

ds2 = −uaubdxadxb + nanbdxadxb + γabdxadxb, (A.4)

where

uadxa = f 1/2dt → ua = f 1/2δt
a,

nadxa = f−1/2dr → na = f−1/2δr
a,

γabdxadxb = r2dθ2 + r2 sin2 θdφ2 −→

γAB =

(
r2 0
0 r2 sin2 θ

)
, A, B = {θ, φ}.

(A.5)

Therefore, in the dual to 1-forms basis,

ua = − f−1/2∂t, na = f 1/2∂r, (A.6)

so that uaua = −1, nana = 1, uana = 0, and nb∇bna = 0. The
latter relation justifies the form of the stress tensor (A.1) (see
details in [6]).

To recover (A.1) in the background (A.3), we have to
compute the extrinsic curvature of a stretched horizon (a 3-
dimensional surface orthogonal to na) and its trace. For the ex-
trinsic curvature tensor, we have

Kab = ∇anb = − f 1/2


1
2 ∂r f 0 0 0

0 0 0 0
0 0 −r 0
0 0 0 −r sin2 θ


= −1

2
f−1/2∂r f uaub +

f 1/2

r
γab,

(A.7)

and the trace becomes

K = Ka
a =

1
2

f−1/2∂r f +
2 f 1/2

r
. (A.8)

Within the Parikh-Wilczek approach [6], the extrinsic cur-
vature of the stretched horizon is replaced accordingly with

Kab → α−1kab − α−1gHuaub. (A.9)

Technically, in (A.9), we further split Kab onto a two-
dimensional surface (orthogonal to ua of (A.5)) extrinsic cur-
vature kAB (then kab = γaAγbBkAB) and the surface gravity
gH. At this point, one may wonder how the extrinsic curva-
ture of the orthogonal to ua 2D hypersurface, lying completely
inside the 3D hypersurface, is related to the extrinsic curvature
tensor Kab, defining the geometry of the hypersurface normal
to a vector (na in the case) directed outside. This match happens
due to a coincidence of ua and na vectors in the null limit, when
αua → la and αna → la at α → 0. Here, α is the renormalization
factor, needed to keep the finiteness of Kab components on the
horizon, and la is the null vector normal and tangential to the
horizon. The renormalization factor α is chosen as α = f 1/2 in
the case.1

Indeed, in the limit α → 0, when the stretched membrane
turns into the true event horizon surface (null hypersurface),
the trace of Kab (cf. (A.8)) diverges due to the simple pole from
f (r) at r = rH. In this limit,

lim
α→0

K =
1
2

f−1/2∂r f
∣∣∣∣
r=rH

∼ Tr
(

α−1kab − α−1gHuaub

) ∣∣∣∣
r=rH

,

(A.10)
hence choosing α ∼ f 1/2 makes geometric quantities regular on
the horizon. The same concerns components of Kab (see (A.7)).
Ktt = Kabuaub clearly diverges in the null limit:

lim
α→0

Ktt = −1
2

f−1/2∂r f
∣∣∣∣
r=rH

−→ −α−1gH

∣∣∣∣
r=rH

, (A.11)

but fixing the renormalization parameter α ∼ f 1/2 results in
the correct expression for the surface gravity on the horizon
(see equation (A.19) below).

1The requirement for α comes as follows [6, 7]. In the α → 0 limit, αua → la

and αna → la , where la is a null vector (la la = 0) which is tangential and normal
to the horizon simultaneously. Clearly, the specific representation of such a null
vector depends on the choice. The norm of αua and αna of (A.6) with α = f 1/2 is
equal to f which becomes zero on the horizon.
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Next, we can divide the 2-dimensional extrinsic curvature
kAB = kBA onto the traceless part and the corresponding trace
Θ = γABkAB:

kAB = σAB +
1
2

ΘγAB, TrσAB = 0. (A.12)

Hence, inserting (A.9) and (A.12) into the stress tensor (A.1),
we arrive at

tab =
1

8πG

((
α−1Θ + α−1gH

)
(γab − uaub)

+ α−1gHuaub − α−1
(

σab +
1
2

Θγab

))
.

(A.13)

And after some algebra, we get

tab =
1

8πGα

[
−Θ uaub − σab +

(
1
2

Θ + gH

)
γab

]
. (A.14)

Now, we can compare stress tensors (A.14) and (A.2) with
the following outcome:

ρ = − 1
8πG

Θ, 2η =
1

8πG
,

p − ζΘ =
1

8πG

(
1
2

Θ + gH

)
.

(A.15)

So we get the following correspondence between characteris-
tics of the dual fluid and properties of the stretched membrane
in the specific geometric background:

ρ = − 1
8πG

Θ, η =
1

16πG
, (A.16)

p =
gH

8πG
, ζ = − 1

16πG
. (A.17)

Also, the momentum density in angular directions is πA = 0.
The other task is to relate Θ, gH and σAB to the geometric

configuration of the space-time in hands. We have to compare
the stress tensor (A.14) to tab = (Khab −Kab)/8πG, which is (cf.
(A.7) and (A.8))

tab =
1

8πG

[(
1

2 f 1/2 ∂r f +
f 1/2

r

)
γab −

2 f 1/2

r
uaub

]
. (A.18)

We obtain

Θ =
2 f (r)

r
, σAB = 0, gH =

∂r f (r)
2

. (A.19)

Hence, the shear tensor and the expansion are trivial on the
black hole horizon, and the surface gravity is finite there and is
equal to gH = (4M)−1 as it should be.2

Additionally, one may check the relevance of (A.19) com-
puting the 2-dimensional extrinsic curvature kAB. By defini-
tion,

kAB =
1
2
LlγAB, (A.20)

where la is the null vector on the horizon, determined by la =
αna (recall, α = f 1/2), and Ll is the Lie derivative along the

2The fact of the finiteness of the stress tensor components near the horizon
of static and stationary black holes even on account of quantum corrections to
gravity action was pointed out in [45, 46, 47, 39, 40].

null vector. Then, the 2 × 2 angular part of the full Kab tensor
becomes

kAB =

(
r f 0
0 r f sin2 θ

)
=

1
2

(
2 f
r

)
γAB. (A.21)

Comparing this result to the general structure of kAB, equation
(A.12), we arrive at

σAB = 0, Θ =
2 f
r

(A.22)

again.
For the Schwarzschild geometry, we get the trivial (every-

where in the acceptable domain of coordinates) value of the
shear tensor. One may wonder how we have got the value of
the shear viscosity (A.16) if σab is presented in (A.14) just for-
mally. The value of the shear viscosity can not be fixed from
ησab = 0 equation in this case, which requires taking additional
arguments. For instance, it could be (projected) Einstein equa-
tions, which can be written in the form of Navier-Stokes-like
equations (Damour-Navier-Stokes (DNS) equations) [2, 55, 56].
Then, the effective shear viscosity can be extracted from the
structure of the DNS equations.

Now, briefly describe the reason for using the standard
stress tensor (A.1) (or equation (10) in the main text) in the case
of nontrivial acceleration of na defined by ac = nb∇bnc. Here,
we follow [57] and slightly correct the result mentioned therein.
The relevant part of the gravitational action variation that in-
cludes the na field acceleration is (cf. equation (A1) of [6])

δSout

∣∣∣
ac ̸=0

=
∫

d3x
√
−h
[(

aanahbc + ncab + nbac
)

δhbc

−hbcacnaδhab − naabδhab

]
.

(A.23)

The difference in (A.23) and equation (A1) of [57] is in the term
aanahbcδhbc which is equal to zero, due to naaa = 0. Then, fol-
lowing directly [57], we can use the symmetry of δhab and fur-
ther write (A.23) as

δSout

∣∣∣
ac ̸=0

=
∫

d3x
√
−h
(

naab − hbcacna
)

δhab

=
∫

d3x
√
−h
(

gbc − hbc
)

naacδhab

=
∫

d3x
√
−hnanbncacδhab.

(A.24)

The variation is equal to zero due to ncac = 0 again.

Appendix B. DIMENSION ANALYSIS
To control the correctness of different quantities, it is useful to
make the dimension analysis of variables. Since the metric ten-
sor is chosen to be dimensionless, different quantities entering
line elements have different dimensions in length. The line el-
ement by itself has the dimension l2. Then, [dt2] = l2 = [dr2],
spherical angles are dimensionless—[dθ2] = l0 = [dφ2]—so
that the entities in the Kerr metric (1) get received

[Ft] = l0, [Fr] = l0, [ f ] = l,
[
ρ2(r, θ)

]
= l2,

[
Fφ
]
= l.
(B.1)
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As a result, the BH mass has the dimension of length: [M] = l.
And different components of the 3D extrinsic curvature tensor
Kab have different dimensions:

[Ktt] = l−1,
[
Ktφ
]
= l0, [Kθθ ] = l,

[
Kφφ

]
= l. (B.2)

The latter in particulr means that

[σθθ ] =
[
σφφ

]
= l, [Θ] = l−1, [γAB] = l2. (B.3)

From the exact form of ρ2(r, θ), it is clear that [a] = l; hence, the
dimension of J = Ma is [J] = l2.
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