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Abstract
In this paper, I point out that the hadronic mono-Z/W signal can give significant constraints on the hig-
gsinos at the LHC. The higgsinos at O(100 GeV) are well motivated to explain the size of the electroweak
(EW) scale in the minimal supersymmetric (SUSY) standard model. The higgsinos up to 110 (210) GeV can
be excluded by the 139 (300) fb−1 data, and the 3000 fb−1 data will discover (exclude) the higgsinos up to
280 (520) GeV, assuming that the higgsino states are effectively invisible in the detector. This strategy could
be applicable to other dark matter (DM) particles.
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1. INTRODUCTION
The higgsinos, SUSY partners of the Higgs bosons, are impor-
tant to understand the size of the EW scale. In addition, the
lightest higgsino is a good candidate for the DM [2].† Such light
higgsinos are realized in certain SUSY-breaking scenarios [3, 4].
Despite these importances, the current limit of the higgsinos
at the collider experiment is about 90 GeV obtained in the LEP
experiment [5]. In this paper, I point out that the limit can be
improved by using the mono-V (V = Z, W) boson signal at the
Large Hadron Collider (LHC).

It is known that the monojet searches at the LHC can
not constrain the higgsinos because of the large backgrounds.
There are two strategies that can ameliorate this situation de-
pending on the mass differences among the higgsino states,
i.e., ∆mχ̃±

1
:= mχ̃±

1
− mχ̃0

1
and ∆mχ̃0

2
:= mχ̃0

2
− mχ̃0

1
. Here, χ̃0

1

(χ̃0
2) is the (second) lightest neutral higgsino, and χ̃±

1 are the
charged higgsinos. For ∆mχ̃0

2
≳ 5 GeV, the soft leptons pro-

duced from χ̃0
2 → χ̃0

1ℓℓ (ℓ = e, µ) can be detected, and thus,
the 1j + 2ℓ+ ̸ ET searches give bounds on the higgsinos [6, 7].
However, for ∆mχ̃±

1
< 1 GeV, the heavier higgsinos are long-

lived and may decay inside the detectors [8, 9, 10]. This fea-
ture allows us to probe higgsinos by exploiting disappearing
tracks and/or displaced vertices. There remains, however, the
gap around ∆mχ̃±

1
∼ 1 GeV which can not be probed by either

channel.
In this paper, we consider the hadronic mono-V signal in-

stead of mono-jet, so that the gap is filled and the limit is im-
proved up to about 500 GeV.

2. MONO-Z/W SEARCH
In this work, we consider the higgsino pair production in asso-
ciation with an electroweak (EW) gauge boson V, i.e., pp →

*This paper represents a talk at the NuDM-202 conference based on [1].
†Precisely, the higgsinos are not mass eigenstates due to the mixing with the

gauginos, and the mass eigenstates are the higgsino-like neutralinos/charginos.
Nonetheless, we name the mass eigenstates as higgsinos for simplicity, assuming
that the relevant states are mostly higgsino-like due to gauginos heavier than
sub-TeV. See the original paper [1] for a more detailed discussion.

χ̃χ̃V with χ̃ = χ̃0
1,2, χ̃±

1 . We assume that the decays of the
heavier states are effectively invisible, i.e., not counted as lep-
tons or jets. The production cross section of the process is
shown in the left panel of Figure 1. In this plot, the associ-
ated productions with a jet and an SM Higgs boson are also
shown for comparison. Cross sections are calculated by us-
ing MadGraph-5.2.8.2 [11], and pT > 150 GeV is imposed for
a parton in the jet-associated production. We see that the W
boson-associated production is the dominant one.

We simulate events pp → χ̃χ̃V(→ qq), with q light-
flavor quarks, using MadGraph5, and then the events are show-
ered/hadronized by Pythia8 [12]. The generated events are
run through the fast detector simulator Delphes3.4.2 [13]. We
used the default ATLAS card for the detector simulation, but
we added the large-R jet with R = 1.0 on top of the small-R jet
with R = 0.4 using the anti-kT jet clustering algorithm [14, 15].
The trimming algorithm [16] is applied, and subjets with ra-
dius parameter R = 0.2 whose transverse momentum (pT) is
below 5% of the original jet pT are removed from the large-
R jet in order to remove the energy deposits from the pile-
up. The pT thresholds to reconstruction efficiencies of electrons
and muons are replaced to be 7 GeV following the experimen-
tal analysis. Further, the energy fractions of the higgsino-like
chargino tracks to both ECAL and HCAL are set to zero, since
the charginos decay before encountering the tracker.

We recast the ATLAS data [17] searching for the hadronic
mono-V signal. Among the signal regions (SRs), the one with
0b-tagged jet and high purity (HP) is the most relevant for
the higgsino signal. The SRs with b-tagged jets are not so effi-
cient because the production is dominated by Wχ̃χ̃ which does
not include a bottom quark. We assume that the large-R jet is
counted as HP with a 50% probability because the ATLAS anal-
ysis uses the Z/W tagger whose efficiency is constantly 50%.

The right panel of Figure 1 shows the ̸ ET distributions
of the SM backgrounds and the higgsino signals. The red
(blue) histogram is the signals with the µ parameter to be 200
(500) GeV. We see that the number of events decreases more
slowly for heavier higgsinos.

3. RESULTS
The efficiencies in the ̸ET bins of the production pp → χ̃χ̃V are
shown in the left panel of Figure 2. The black line is the total
number of events divided by 5. We see that the efficiencies in-
crease as the higgsino mass increases, especially for those in the
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FIGURE 1: The production cross sections for higgsino pair production in association with an EW gauge boson or a jet at
√

s = 13 TeV
(left). The ̸ET distribution after the cut in the SR 0b-HP when µ = 200 and 500 GeV (right).
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FIGURE 2: The efficiencies of χ̃χ̃V production of each bin of ̸ET in the SR 0b-HP (left) and the future sensitivities at the LHC (right).

large ̸ ET bins. The right panel of Figure 2 shows the expected
significance of the future LHC data. The green, yellow, and
brown lines are the values with 139, 300, and 3000 fb−1 data,
respectively. The 139 (300) fb−1 data will exclude the higgsino
mass up to 110 (210) GeV. With the full 3000 fb−1 data, the hig-
gsinos up to 280 (520) will be discovered (excluded). The black
line is the value with the inclusive ̸ET bins, and without using
the ̸ ET bin data. The discovery (exclusion) potential is about
150 (300) GeV, so it is important to use the high ̸ET bins to raise
the sensitivity.

4. CONCLUSION
In this paper, we pointed out that the mono-Z/W signal at
the LHC can give significant constraints on the higgsinos with
∆mχ̃±

1
∼ 1 GeV. This mass parameter range has not been ex-

cluded by the LHC data. The obtained limits are stronger than
those from the monojet-based searches. We emphasize that the

signal is based on the invisibility of the higgsinos, and thus, the
strategy could be applied to the other DM candidates.
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