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Abstract
As astronomical observations and their interpretation improve, the case for cold dark matter (CDM) be-
comes increasingly persuasive. A particularly appealing version of CDM is a weakly interacting massive
particle (WIMP) with a mass near the electroweak scale, which can naturally have the observed relic abun-
dance after annihilation in the early universe. But in order for a WIMP to be consistent with the cur-
rently stringent experimental constraints it must have relatively small cross-sections for indirect, direct,
and collider detection. Using our calculations and estimates of these cross-sections, we discuss the poten-
tial for discovery of a recently proposed dark matter WIMP which has a mass of about 70 GeV/c2 and only
second-order couplings to W and Z bosons. There is evidence that indirect detection may already have
been achieved, since analyses of the gamma rays detected by Fermi-LAT and the antiprotons observed by
AMS-02 are consistent with 70 GeV dark matter having our calculated ⟨σannv⟩ ≈ 1.2 × 10−26 cm3/s. The
estimated sensitivities for LZ and XENONnT indicate that these experiments may achieve direct detec-
tion within the next few years, since we estimate the relevant cross-section to be slightly above 10−48 cm2.
Other experiments such as PandaX, SuperCDMS, and especially DARWIN should be able to confirm on a
longer time scale. The high-luminosity LHC might achieve collider detection within about 15 years, since
we estimate a collider cross-section slightly below 1 femtobarn. Definitive confirmation should come from
still more powerful planned collider experiments (such as a future circular collider) within 15–35 years.
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There are many aspects of the dark matter problem [1, 2] and a
vast number of dark matter candidates [3, 4], with masses and
couplings spanning many orders of magnitude. The cold dark
matter (CDM) paradigm has, however, become increasingly
compelling during the past quarter century, because of the
growing sophistication of astronomical observations and their
interpretation [4, 5]. A particularly appealing version of CDM
continues to be weakly interacting massive particles (WIMPs),
since a weakly interacting particle with a mass near the elec-
troweak scale can naturally emerge from the early universe
with about the observed relic abundance.

There are, however, stringent limits on the cross-sections
for direct, indirect, and collider detection. Figure 1 shows the
remarkable sensitivity achieved in direct detection experiments
during the past few decades [6], which demonstrates that a
viable dark matter candidate must have a very small cross-
section for scattering off an atomic nucleus.

As can be seen in Figure 2, there are also strong bounds on
the cross-section for annihilation in the present universe, deter-
mined by observations of dwarf spheroidal galaxies [7].

Finally, the hopes for collider detection at the LHC have
not been realized, and strong limits have been placed on new
particles of any kind, including dark matter particles [8, 9].

Here we will focus on the potential for detection of a new
dark matter particle which is consistent with all experimen-
tal and observational limits, and which additionally appears
to be the only viable candidate with a well-defined mass and
well-defined couplings [10, 11, 12]. Since there are no free pa-
rameters, it is possible to determine the cross-sections for indi-
rect, direct, and collider detection, providing clean experimen-
tal tests of the theory.

This candidate is a WIMP with a mass of about 70 GeV/c2

and an annihilation cross section in the present universe given
by ⟨σannv⟩ ≈ 1.2 × 10−26 cm3/s, according to the calculations
described below, if it is assumed to constitute 100% of the dark
matter. It should be mentioned, however, that the present the-
ory also predicts supersymmetry (susy) at some energy scale,
and that the lightest superpartner [1, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23] can be a subdominant component in a multicompo-
nent scenario.

The results above were obtained with MicrOMEGAs [24].
If we assume that the dark matter fraction ΩDM is 0.27, that the
present candidate constitutes all of the dark matter, and that
the reduced Hubble constant h is 0.73 [25], we obtain ΩDMh2 =
0.144. If it is instead assumed that a few percent of the dark
matter consists of other components, making ΩDM ≈ 0.26
for the present candidate, and that h = 0.68 [26], one obtains
ΩDMh2 ≈ 0.120. (This value is equal to that obtained by Planck
for all dark matter in an analysis that confirms the consistency
of standard ΛCDM cosmology [26].) Finally, as an extreme,
we can consider ΩDM = 0.22 (for the present candidate) with
h = 0.68, giving ΩDMh2 = 0.102.

Our calculations with MicrOMEGAs yield: ΩDMh2 = 0.162,
0.147, 0.134, 0.121, 0.098 and ⟨σannv⟩ = 1.08, 1.19, 1.30, 1.43,
1.73 × 10−26 cm3/s, respectively, for mh = 69.5, 70.0, 70.5, 71.0,
72.0 GeV/c2.

We can conclude that mh = 70–72 GeV/c2 and that
⟨σannv⟩ = 1.2–1.7 × 10−26 cm3/s. It is then reasonable to say
that mh is about 70 GeV/c2 and that correspondingly (with
some bias toward the measured value of h = 0.73 over the the-
oretical value of h = 0.68 in the context of the present universe)
⟨σannv⟩ ≈ 1.2 × 10−26 cm3/s.

It can be seen that our calculated ⟨σannv⟩ with an approxi-
mately 70 GeV mass is well below the upper bounds of Figure 2
for any of the above values of ΩDMh2.

1



Letters in High Energy Physics LHEP-342, 2023

FIGURE 1: Reach of previous direct detection experiments.
From [6], used with permission. The present dark matter candi-
date has couplings to only W and Z bosons, and these are only
second-order. It consequently has only a small cross-section
for scattering off atomic nuclei, estimated to be slightly above
10−48 cm2 in the case of Xe [12], so it lies below the sensitivi-
ties of earlier experiments. With a mass of about 70 GeV/c2, it
should barely be detectable by the LZ and XENONnT exper-
iments, both of which estimate a reach down to about 1.4 ×
10−48 cm2 for a dark matter particle with a mass ∼50 GeV/c2.
The current and projected sensitivities of LZ and XENONnT,
shown in Figures 3–6, demonstrate the grounds for this predic-
tion in more detail.

FIGURE 2: Upper bounds on ⟨σannv⟩ from Fermi-LAT gamma-
ray observations of dwarf spheroidal galaxies near the Milky
Way. The solid and dashed curves are two limiting cases which
“should bracket somewhat the real energy correlation”. The
dashed gray line indicates the thermal relic cross section in-
ferred for generic WIMP models [13]. From [7], used with per-
mission.

FIGURE 3: Reach of LZ in July 2022. From [27], used with per-
mission.

FIGURE 4: Reach of LZ with 1000 days of data. From [28], used
with permission.

Our calculated mass and ⟨σannv⟩ are also consistent with
analyses of the Galactic center gamma ray excess observed by
Fermi-LAT [30, 31, 32, 33, 34, 35] and the antiproton excess ob-
served by AMS-02 [36, 37, 38, 39, 40].

Reference [33] concludes that “The center of the Milky Way
is predicted to be the brightest region of γ-rays generated by
self-annihilating dark matter particles. Excess emission about
the Galactic center above predictions made for standard astro-
physical processes has been observed in γ-ray data collected
by the Fermi Large Area Telescope. It is well described by the
square of a Navarro, Frenk, and White dark matter density
distribution. Although other interpretations for the excess are
plausible, the possibility that it arises from annihilating dark
matter is valid.... Its spectral characteristics favor a dark mat-
ter particle with a mass in the range approximately from 50 to
190 (10 to 90) GeV and annihilation cross section approximately
from 1 × 10−26 to 4 × 10−25 (6 × 10−27 to 2 × 10−25) cm3/s for
pseudoscalar (vector) interactions.”

Reference [39] finds that “An excess of ∼10–20 GeV cosmic-
ray antiprotons has been identified in the spectrum reported

2



Letters in High Energy Physics LHEP-342, 2023

FIGURE 5: Reach of XENONnT with 5 years of data. From [29],
used with permission.

FIGURE 6: Reach of XENONnT for a 50 GeV WIMP in ton-years,
with 4 tons fiducial mass. From [29], used with permission.

by the AMS-02 Collaboration.... After accounting for these un-
certainties, we confirm the presence of a 4.7σ antiproton ex-
cess, consistent with that arising from a mχ ≈ 64–88 GeV
dark matter particle annihilating to bb̄ with a cross section of
σv = (0.8–5.2) × 10−26 cm3/s.”

Other analyses have yielded similar results, which are not
very sensitive to the specific annihilation channel.

At one time it may have appeared that a positron excess
from AMS-02 and other experiments was evidence for a dom-
inant dark matter particle at an energy of ∼800 GeV or above.
However, this interpretation has been ruled out by Planck,1 as
shown in Figure 7, and the excess has been attributed to pul-
sars [41].

1See Figure 46 of [26].

FIGURE 7: A high-mass dark matter candidate with high anni-
hilation cross-section, which might have explained a positron
excess observed by AMS-02 and other experiments, is excluded
by the Planck data. The present candidate has a mass and cross-
section consistent with this data. Figure credit: reference [26],
Figure 46, reprinted with permission from ESO.

FIGURE 8: Representative diagram for annihilation of the
present dark matter candidate via creation of Z bosons.

The present dark matter candidate, with a mass of about
70 GeV and roughly a thermal cross-section, is fully consistent
with the observations and conclusions represented by Figure 7.

The present candidate results from an extended Higgs sec-
tor, which is an inevitable consequence of a broader fundamen-
tal theory [42, 43]. This candidate is one member of a class of
particles which we have called “higgsons” [10, 11, 12], repre-
sented by h, to distinguish them from Higgs bosons H and hig-
ginos h̃.

We recall that there are three kinds of particles in the Stan-
dard Model. After the first spin 1/2 fermion was discovered
in 1897 (by J. J. Thompson), and the first spin 1 gauge boson
was postulated in 1905 (by Einstein), many surprises lay ahead
with major extensions of these two sectors. It is reasonable that
similar surprises and extensions may lie ahead after the 2012
discovery of a scalar boson (by the CMS and ATLAS collabora-
tions).

In the present theory, there are both complex scalar Higgs
fields, having their standard interactions, and real scalar higg-
son fields, each of which interacts only with itself and gauge
bosons, via second-order interactions like those of equation
(A.4).

The lightest higgson h0 is stable because of the form of the
interaction in equation (A.4): It can radiate gauge bosons, an-
nihilate into gauge bosons as in Figures 8 and 9, scatter via ex-
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change of gauge bosons as in Figures 10 and 11, and be created
in pairs as in Figure 12, but not decay, since a single initial h0

implies a final state containing h0 and two gauge bosons.
With R-parity conserved, the lightest superpartner (LSP) is

stable for a different reason, so the lightest higgson can coex-
ist with the LSP (and with other particles stable for other rea-
sons, such as axions [44, 45]). The present theory unavoidably
predicts (broken) susy at some energy scale, and is compatible
with well-motivated hypothetical particles such as axions.

However, the lightest higgson is assumed to be the dom-
inant constituent, because it is difficult to reconcile the LSP in
natural susy with the various experimental limits [19, 20, 21, 22,
23, 46, 47, 48] and the other candidates tend not to have well-
defined masses or couplings.

The present dark matter WIMP should be barely detectable
by existing experiments, but certainly detectable with planned
experiments such as DARWIN [49].

When a dark matter particle is discovered, rival claims to
its nature can ultimately be determined by its properties (prin-
cipally mass and interactions) and the general phenomenology
associated with it. For example, various ad hoc extended Higgs
models tend to predict processes that do not exist in the present
theory, with one example (the inert doublet model) discussed
in detail in [10].

To summarize the most important points: the present can-
didate is consistent with all current experimental and observa-
tional data.

The scattering processes of Figures 10 and 11 lead to a cross-
section for direct detection in Xe based experiments which we
estimate to be slightly above 10−48 cm2, placing it barely within
reach of LZ and XENONnT within about the next 5 years, and
definitely within reach of DARWIN.

The creation processes of Figure 12 lead to a cross-section
for collider detection which we estimate to be ∼1 femtobarn,
which may place it barely within reach of the high-luminosity
LHC within about 15 years, and definitely within reach of still
more powerful colliders on a longer time scale. The signature
in a proton collider is >140 GeV of missing transverse energy
with two quark jets.

The annihilation processes of Figures 8 and 9 have a cross-
section given by ⟨σannv⟩ ≈ 1.2 × 10−26 cm3/s. The mass and
annihilation cross-section inferred in careful analyses of the
gamma rays observed by Fermi-LAT and the antiprotons ob-
served by AMS-02 are consistent with those calculated here, so
indirect detection may already have been achieved.

Appendix A. ACTION FOR SCALAR
BOSONS AND AUXILIARY
FIELDS

In this appendix we quote some relevant results of [42] and [43],
where the action for scalar boson fields has the form

Smatter =
∫

d4xeLscalar (A.1)

Lscalar = ∑
R

ϕ†
R(x)

(
DµDµ − 1

4
R
)

ϕR(x) + ∑
R

F†
R(x)FR(x)

+ ∑
s

φs

(
∇µ∇µ − 1

4
R
)

φs + Lh-int

(A.2)

FIGURE 9: Representative diagram for annihilation of the
present dark matter candidate via creation of W bosons.

FIGURE 10: Representative diagram for direct detection of the
present dark matter candidate with scattering via exchange of
Z bosons.

FIGURE 11: Representative diagram for direct detection of the
present dark matter candidate with scattering via exchange of
W bosons.

in a general coordinate system, but before masses and further
interactions result from symmetry breakings and other effects.
The ϕR are complex one-component Higgs fields, the FR are the
one-component auxiliary fields of supersymmetry, and the φs
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FIGURE 12: Representative diagram for collider detection of the
present dark matter candidate via vector-boson fusion, with
>140 GeV of missing energy accompanied by two jets.

are real one-component higgson fields. Each higgson field can
be treated (and quantized) like a standard real scalar field, but
with no quantum numbers and only second-order interactions.

Here

Dµ = ∇µ − iAµ (A.3)

is the full covariant derivative, including the effects of both
gravitational and gauge curvature, R is the gravitational (Ricci)
curvature scalar, and e = |det eα

µ| = (−det gµν)1/2. The
second-order gauge interactions of the higgson fields have been
isolated in the last term, which can be written explicitly as

Lh-int =
g2

(2 cos θW)2 hsZµZµhs +
g2

2
hsWµ+W−

µ hs (A.4)

in the electroweak sector, where it is assumed that there is no
higgson condensate, so that φs = hs, with the convention that
hs is used to represent both a field and the particle which is an
excitation of that field.

The higgson fields have only second-order interactions be-
cause they are the amplitude modes for Majorana-like bosonic
fields that are constructed from primitive fields ΦS and their
charge conjugates Φc

S:

ΦS =
1√
2

(
ΦS
Φc

S

)
. (A.5)

The first-order terms then cancel [10]. In addition, Yukawa cou-
plings cannot exist and there is no mechanism for higgson-
Higgs couplings. As a result, the cross-sections for annihila-
tion, scattering, and creation are relatively small, making them
consistent with current experimental and observational limits,
while still within reach of experiments that have recently begun
taking data or else are planned for the foreseeable future.
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