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Abstract
The standard flavour-blind DFSZ axion model for solving the strong-CP problem has in the past been
extended to account for nonzero neutrino masses and baryogenesis-via-leptogenesis through the Type-I
seesaw mechanism, in addition to having viable axion dark matter. Constructing a full and viable cosmo-
logical history, however, requires dealing with the cosmological domain wall problem posed by standard
DFSZ. In this paper, I report on work with A. Sopov where this challenge is addressed through a flavour-
variant model called VISHν that removes the domain wall problem and incorporates successful Higgs-
Peccei-Quinn scalar inflation. As part of this, we ensure that the required new high-scale physics does not
add to the electroweak naturalness problem.
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1. THE STRONG-CP PROBLEM
QCD permits the term

Lθ = θ̄
g2

32π2 GµνG̃µν (1)

in the Lagrangian, where θ̄ is a dimensionless parameter, g
is the strong gauge coupling constant, Gµν is the gluon field-
strength tensor, and G̃µν is its dual. This term, however, vio-
lates both CP and P conservation and induces a neutron elec-
tric dipole moment. Experimental constraints on that quantity
require that θ̄ ≲ 10−10. The “strong-CP problem” is the mystery
of why this parameter must be so small. Note that the θ̄ → 0
limit is not technically natural in the P- and CP-violating stan-
dard model (SM).

A solution to this problem is provided through Peccei-
Quinn (PQ) axion models, where a U(1)PQ symmetry is im-
posed at the classical level such that its current has a colour
anomaly, ∂µ Jµ

PQ ∝ GµνG̃µν, at the quantum level [1]. The ef-
fective Lagrangian now contains an extended GG̃ term of the
form

Lθ =

(
a(x)

fa
+ θ̄

)
g2

32π2 GµνG̃µν, (2)

where a(x) is a pseudoscalar field whose quanta are very light
particles called “axions” [2, 3]. The axion potential is minimised
when ⟨a⟩ = −θ̄ fa, thus removing the CP-violating effects.

2. THE INVISIBLE DFSZ AXION AND
TECHNICAL NATURALNESS

One way to extend the SM to incorporate a U(1)PQ anomalous
symmetry is to utilise two Higgs doublets, the option taken in
Dine-Fischler-Srednicki-Zhitnitskii (DFSZ) type models [4, 5].
To make such models phenomenologically viable, the axion
must be made “invisible”, meaning very weakly coupled to
SM particles. This is achieved by introducing a scalar field S
that has a nonzero PQ charge but is a singlet under the SM

gauge group. When it develops a nonzero vacuum expecta-
tion value (VEV) which is much larger than the electroweak
(EW) scale, it becomes the dominant source of spontaneous PQ
symmetry breaking. This implies that the axion, which is the
pseudo-Nambu-Goldstone boson of U(1)PQ, has its admixture
dominated by the phase field of S which by construction cou-
ples very weakly to SM particles. For cosmological reasons (see
later), we favour ⟨S⟩ ∼ 1010-11 GeV.

In the standard DFSZ model, one of the Higgs doublets
Φ̃1 ≡ iσ2Φ∗

1 Yukawa couples to right-handed (RH) up-type
quarks, while the second doublet Φ2 couples to RH down-
type quarks. Depending on how one chooses to Yukawa couple
these doublets to leptons, one obtains either a Type-II or flipped
two-Higgs-doublet model type of structure. The phenomeno-
logical advantage of this flavour-blind choice is, of course,
that tree-level Higgs-induced flavour-changing interactions are
avoided. We will see later, however, that relaxing this require-
ment permits an elegant solution of the cosmological domain-
wall problem of the standard DFSZ model. But for now, let us
continue with a review of this model.

The scalar potential is given by

V = M2
11Φ†

1Φ1 + M2
22Φ†

2Φ2 + M2
SSS∗S

+
λ1
2

(
Φ†

1Φ1

)2
+

λ2
2

(
Φ†

2Φ2

)2
+

λS
2

(S∗S)2

+ λ3

(
Φ†

1Φ1

) (
Φ†

2Φ2

)
+ λ4

(
Φ†

1Φ2

) (
Φ†

2Φ1

)
+ λ1S

(
Φ†

1Φ1

)
(S∗S) + λ2S

(
Φ†

2Φ2

)
(S∗S)

+

{
κΦ†

1Φ2S + h.c. [VISHν]

ϵΦ†
1Φ2S2 + h.c. [νDFSZ].

(3)

There is a choice for the last term of either a cubic or a quar-
tic nontrivial interaction between the doublets and S, which
serves to relate the PQ charges of all three scalar multiplets. As
indicated above, for the νDFSZ variant to be reviewed in the
next section, the quartic option is exercised, while for the later
VISHν implementation, the cubic choice will be necessary.

For the moment, however, let us adopt the quartic case
for definiteness. There is a simple but important observation
that needs to be made about the phenomenologically necessary
VEV hierarchy vS ≡ ⟨S⟩ ≫ v1,2 ≡ ⟨Φ1,2⟩ and technical natural-
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ness [6]. The critical points of the above potential satisfy

M2
11 = −1

2
t1v2

S − λ1v2
1 −

1
2
(λ3 + λ4) v2

2,

M2
22 = −1

2
t2v2

S − λ2v2
2 −

1
2
(λ3 + λ4) v2

1,

M2
SS = −1

2
t1v2

1 −
1
2

t2v2
2 − λSv2

S,

(4)

where
t1 ≡ ϵ

v2
v1

+ λ1S, t2 ≡ ϵ
v1
v2

+ λ2S. (5)

To achieve vS ∼ 1010-11 GeV ≫ v1,2 ∼ 100 GeV we set MSS ≫
M11, M22 which then requires

t1,2 ≲
v2

1,2

v2
S

(6)

which in turn is assured if

λ1S, λ2S, ϵ ≪ 1. (7)

The really nice thing is that this parameter region is technically
natural, for an interesting reason. In the limit that λ1S,2S and
ϵ vanish, S is decoupled from all the SM fields (it becomes a
hidden sector) and the flat-space action is separated into the
sum of two independent integrals:

S =
∫

d4x LSM(x) +
∫

d4x′LS(x′) (8)

with the SM Lagrangian and the S-Lagrangian as the inte-
grands. This action admits independent Poincaré transforma-
tions with respect to x and x′, thus increasing the symmetry of
the theory [6, 7]. Hence, the limit of equation (7) is technically
natural.

Some comments about the effects of gravity are now per-
tinent. Any two sectors that are hidden from each other with
respect to nongravitational forces will, of course, interact via
gravity. This explicitly breaks the Poincaré-squared enhanced
symmetry, and may induce Planck-suppressed contributions
to, for example, the λ1S,2S terms. We may parameterise the coef-
ficients as cM2

SS/M2
P where MP is the Planck mass. This poten-

tial contribution will endanger technical naturalness if c ≳ 0.01.
In addition, there is the usual prospect that Planck-scale effects
might directly destabilise the EW scale in the SM itself. What
the observations in the preceding paragraphs amount to is that
a sector that is hidden from the SM by sufficiently weak non-
gravitational couplings does not provide an additional source
of EW-scale destabilisation. That is a very worthwhile feature
in my opinion, even if concerns about Planck-scale effects re-
main.1

3. THE νDFSZ MODEL: SUCCESSES AND
COSMOLOGICAL CHALLENGES

The successes of the DFSZ model are that it solves the strong-
CP problem, and when the PQ breaking scale is 1010-11 GeV it
also provides a viable axion dark matter candidate. Given that

1We note also that Planck-suppressed effects may explicitly break U(1)PQ

leading to the “axion quality problem” [8].

energy scale, an obvious extension is to identify it also with
the Type-I seesaw [9] scale and thus explain nonzero neutrino
masses as well. To do this, heavy neutral leptons N (also called
RH neutrinos νR) are added to the DFSZ particle content. As
a further nice feature, the out-of-equilibrium and CP-violating
decays of those heavy neutral leptons can provide baryogenesis
via leptogenesis [10]. All of these possibilities were pointed out
in the 1980s [11, 12]. The νDFSZ model [13] is a detailed incar-
nation of these ideas that also addresses a naturalness problem
within standard hierarchical, thermal leptogenesis.

When the heavy neutral lepton masses are hierarchical, suc-
cessful leptogenesis implies that the lightest of these fermions
must have its mass MN1 obey

MN1 > 5 × 108–2 × 109 GeV, (9)

where the range is due to different assumptions about the ini-
tial abundance of N1. This is usually called the “Davidson-
Ibarra (DI) bound” [14, 15]. The reason for a lower bound can
be readily explained. The seesaw formula for the light neutrino
masses mν ∼ (λν⟨Φ⟩)2/MN shows that the maintenance of a
given neutrino mass scale when MN is made smaller requires
correspondingly smaller values for the neutrino Dirac Yukawa
coupling constant λν. But the magnitude of the CP violation
that plays into the leptogenesis outcome decreases with de-
creasing λν and eventually becomes too small. Detailed anal-
yses show that the resulting lower bound on the seesaw scale
is equation (9).

But this is in tension with an upper bound, first derived by
Vissani, from naturalness [16]. The heavy neutral lepton masses
contribute at 1-loop to the self-energy of the Higgs doublet in
the SM:

δµ2 =
1

4π2
1

⟨Φ⟩2 mν M3
N , (10)

where µ2 is the coefficient of Φ†Φ in the Higgs potential. As-
suming N1 dominance, setting mν ∼ 0.05 eV, and demanding
that this contribution be smaller than the nominal figure of
1 TeV2 implies that

MN1 < 3 × 107 GeV, (11)

which is smaller than the DI lower bound. Later work estab-
lished that this tension cannot be removed by considering the
full three-family case involving N1, N2, and N3 [17].

To remove the tension, some possibilities are to go super-
symmetric, have nonhierarchical MN , or utilise at least two
Higgs doublets. Since the DFSZ model has two Higgs doublets
anyway, we follow this third route [18]. Let Φ2 be the Higgs
doublet that Yukawa couples LH lepton doublets to the singlet
fermions N. It is the VEV of that Higgs doublet that determines
the DI and Vissani bounds. The point is that these bounds scale
differently with v2, as per

Vissani bound: MN1 < 3 × 107 GeV
( v2

246 GeV

)2/3
,

DI bound: MN1 > 5 × 108 GeV
( v2

246 GeV

)2
.

(12)

The Vissani upper bound is above the DI lower bound for v2 ≲
30 GeV, as illustrated by the blue and purple regions in Figure 1.
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FIGURE 1: The allowed parameter space (white) of the νDFSZ
model in the v2-MN plane. In addition to the DI and Vissani
bounds, the constraint from ∆L = 2 asymmetry washout pro-
cesses is indicated, as well as the region excluded because of
the existence of a low-scale Landau pole. Figure from [13].

The PQ charges of the fermion and scalar fields in the
νDFSZ model are

qL ∼ 0, uR ∼ cos2 β, dR ∼ sin2 β,

ℓL ∼ 3
4 − cos2 β, νR ∼ − 1

4 , eR ∼
(

7
4 or 3

4

)
− 2 cos2 β,

Φ1 ∼ cos2 β, Φ2 ∼ − sin2 β, S ∼ 1
2

,

(13)

where we have renamed N as νR and tan β ≡ v1
v2

with v2
1 + v2

2 ≃
(246 GeV)2. The two possibilities for eR correspond to the Type-
II and Flipped cases, respectively. The seemingly peculiar na-
ture of these charge assignments comes from the requirement
to make the PQ current decoupled from the Nambu-Goldstone
mode eaten by the Z boson. The Yukawa Lagrangian is

−LY = yuqLΦ̃1uR + ydqLΦ2dR + yelLΦJeR

+ yνlLΦ̃2νR +
1
2

yN(νR)
cSνR + h.c.,

(14)

where J = 2 (1) gives a Type-II (Flipped) two-Higgs-doublet
model structure. Notice that the PQ scalar S couples to
Majorana-type νR bilinears, so its large VEV generates large νR
Majorana masses MN = yNvS, implementing a Type-I seesaw
mechanism.

Referring to the potential (3), we note that to achieve vS ≫
v1,2 we require that M2

SS is of the order (1010-11 GeV)2 and neg-
ative, while M2

11 and M2
22 are much smaller. An interesting fea-

ture of the νDFSZ model is that its potential can furnish a good
reason for why v2 ≪ v1. We choose M2

11 near its SM value
of −(88 GeV)2, but we make M2

22 larger and positive, about
(1 TeV)2 or a little larger. On its own, the positive sign for the
latter makes v2 tend towards zero. However, the ϵ term induces
a term that is linear in Φ2 once S and Φ1 gain nonzero VEVs.
This causes v2 to be nonzero but much smaller than v1. Implicit
is the parameter region of equations (6) and (7) so that technical
naturalness holds despite the large hierarchy between the PQ
and EW scales.

Figures 1 and 2 illustrate the allowed (white) region of pa-
rameter space, the latter depicting the v2-M22 plane. Bounds
from collider processes and the absence of a Landau pole and
∆L = 2 asymmetry washout processes are indicated. As M22
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FIGURE 2: The allowed parameter region of the νDFSZ model
in the v2-M22 plane. The white region is allowed by collider
constraints, naturalness, and the absence of a Landau pole. Fig-
ure from [13].

increases, it too becomes gradually less natural, so our phi-
losophy requires that it be no larger than a few TeV. The suc-
cesses of the νDFSZ model are (i) solving the strong-CP prob-
lem and providing viable axion DM for vS ∼ 1010-11 GeV (in-
herited from DFSZ), and (ii) nonzero light neutrino masses
with successful hierarchical thermal leptogenesis with all the
new physics being technically natural.

4. VISHν: TOWARDS MEETING THE
COSMOLOGICAL CHALLENGES

However, as foreshadowed above, both the original DFSZ
model and its νDFSZ extension pose a cosmological domain
wall (DW) problem. This problem has to be solved to produce
a variant or variants that have full and viable cosmological his-
tories.

We begin by first reviewing the DW problem, which was
pointed out by Sikivie [19]. The picture is that QCD instantons
explicitly break the anomalous U(1)PQ symmetry, with a DW
problem arising if there is a ZN subgroup of U(1)PQ that never-
theless remains unbroken at the quantum level. Its eventual dy-
namical breaking through QCD condensates then causes DWs
to form which interpolate between the degenerate and discrete
vacua. Sikivie showed that the original DFSZ model has a Z6
unbroken subgroup. The existence of an unbroken discrete sub-
group depends on the size of the colour anomaly, which in turn
depends on which coloured fermions contribute and thus the
PQ charge assignment.

Among all the ways that have been proposed to remove
the DW problem, one stands out for its simplicity: We con-
sider flavour-dependent Yukawa interactions in such a way that
the colour anomaly/instantons completely break U(1)PQ, so
there is no unbroken discrete subgroup at the quantum level.
This possibility was analysed in some pioneering works in the
1980s [20, 21]. For the sake of simplicity and definiteness, we
adopt the most studied of the DW-problem-free DFSZ vari-
ants: the “top-specific” model, whose phenomenology has been
studied in [22] (see also [23, 24]). In this variant, Higgs doublet
Φ1 is taken to be the only one that couples to the RH top quark,
while Φ2 couples to all other quark and lepton bilinears. As in
the νDFSZ model, we arrange for v1 ≫ v2 to obtain, in this new
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context, a welcome bonus: a rationale for why the top mass is
so large.

The top-specific DFSZ model is extended to VISHν (Variant
axIon Seesaw Higgs νtrino) [25] by adding three RH neutrinos,
Yukawa coupling them to S is the same way as in νDFSZ and
for the purpose of inflationary cosmology including nonmini-
mal couplings of the scalar fields to gravity, which is discussed
in more detail below. The PQ charge assignment distinguishes
the RH top quark u3

R from the other two RH charge-2/3 quarks
u1,2

R , and all other fermions have flavour-blind PQ charges, as
per

qL ∼ 0, u3
R ∼ cos2 β, u1,2

R ∼ − sin2 β, dR ∼ sin2 β,

ℓL ∼ 1
2 − cos2 β, νR ∼ − 1

2 , eR ∼ 3
2 − 2 cos2 β,

Φ1 ∼ cos2 β, Φ2 ∼ − sin2 β, S ∼ 1.

(15)

The Yukawa Lagrangian is

−LY = qj
Lyj3

u1Φ̃1u3
R + qj

Lyja
u2Φ̃2ua

R + qj
Lyjk

d Φ2dk
R + ℓ

j
Lyjk

e Φ2ek
R

+ ℓ
j
Lyjk

ν Φ̃2νk
R +

1
2

(
ν

j
R

)c
yjk

NSνk
R + h.c.,

(16)

where a = 1, 2 and i, j, k = 1, 2, 3. The scalar potential is given
by equation (3) using the cubic term option with coupling
constant κ. Note that this setup features the tree-level Higgs-
induced flavour-changing neutral current processes t → hc and
t → hu, where h is the SM-like physical Higgs boson [22].

By construction, VISHν inherits the successes of νDFSZ
which, as stated earlier, in turn inherited the successes of stan-
dard DFSZ: all up we have a solution to the strong-CP problem,
viable axion DM, the generation of small Majorana neutrino
masses, and good hierarchical thermal leptogenesis, all with no
(nongravitational) naturalness concerns.

But now that the cosmological DW problem has been re-
moved, we may contemplate completing the cosmological his-
tory by incorporating a period of inflation. If successful, this
would solve the homogeneity and flatness fine-tuning prob-
lems of the standard hot big bang while also providing the
seeds for large-scale structure formation.

For this, we need an inflaton field. While this could be an
additional degree of freedom, we choose to stick with the eco-
nomical choice of the existing scalar field system of Φ1, Φ2, and
S and instead employ nonminimal couplings to gravity of the
form

LJ√
−gJ

⊃
(

M2
P

2
+ ξ1Φ†

1Φ1 + ξ2Φ†
2Φ2 + ξSS†S

)
RJ . (17)

This approach is in the spirit of “Higgs inflation” [26] and
its utilisation in the SMASH extension [27] of the KSVZ ax-
ion model [28]. In the above equation, J denotes the Jordan
frame, with RJ being the Ricci scalar and gJ the determinant
of the metric tensor in that frame. The dimensionless parame-
ters ξ1,2,S quantify the strengths of the nonminimal interactions
between the scalar multiplets and gravity.

It is convenient to adopt modulus and phase decomposi-
tion for the complex fields Φ0

1, Φ0
2, and S as per

Φ0
i =

ρi√
2

eiϑi/vi , S =
σ√
2

eiϑS/vS . (18)

The phase fields do not enter into the nonminimal coupling
terms and will thus not admix into the inflaton field.

The utility for inflationary cosmology is revealed by trans-
forming to the Einstein frame E using a Weyl rescaling of the
Jordan-frame metric tensor:

gJµν → gEµν

= Ω2 (ρ1, ρ2, σ) gJµν, where Ω2 ≡ 1 +
ξ1ρ2

1 + ξ2ρ2
2 + ξSσ2

M2
P

,

(19)

which restores minimal coupling to gravity and flattens the
scalar potential at large values of the modulus fields, at the cost
of introducing noncanonical kinetic terms. These features are
described by the Einstein frame Lagrangian:

LE√
−gE

⊃
M2

P
2

RE − 1
2 ∑

I,J
GE

I J∂µ φI∂µ φJ − VE
(

φI
)

, (20)

where φI = (ρ1, ρ2, σ) and GE
I J is the nontrivial metric induced

by equation (19) on the scalar field space. It is

GE
I J =

δI J

Ω2 +
3M2

P
2

∂ ln Ω2

∂φI
∂ ln Ω2

∂φJ . (21)

In the large modulus regime (Ω2 ≫ 1), the Einstein frame
scalar potential is given by

VE (φI) = Ω−4
(

φI
)

VJ
(

φI
)

=
M4

P
8

λiρ
4
i + 2λ34ρ2

1ρ2
2 + 2λiSρ2

i σ2 + λSσ4(
ξiρ

2
i + ξSσ2

)2

×
[

1 −O
(

M2
P

ξiρ
2
i + ξSσ2

)]2

,

(22)

where λ34 = λ3 + λ4 and summing over i is implied. The flat-
ness of this potential, a necessary condition for successful infla-
tion, is obvious.

The analysis of the inflationary dynamics begins through
the identification of the valleys of equation (22) in the large
modulus regime. These valleys act as attractors for a broad
range of initial trajectories, thus rendering the dynamics effec-
tively single-field [29, 30]. Before taking account of the param-
eter space adopted in the VISHν model, one may derive seven
such valleys, and thus seven a priori possible single-field infla-
ton directions. The field-space trajectories are in the following
general directions:

ρ1 only, ρ2 only, σ only, in the (ρ1, ρ2) plane, (23)

in the (ρ1, σ) plane, in the (ρ2, σ) plane, (24)

a general direction in (ρ1, ρ2, σ) space. (25)

Each of these valleys exists in certain regions of parameter
space. However, it turns out that for the specific parameter
space needed in VISHν only the three trajectories of the type
specified by equations (24) and (25) produce single-field infla-
tion that is both amenable to analysis and in obvious agreement
with the data. In addition to them being inevitable for a large
region of parameter space, we are also interested in the single-
field scenarios because then there are no concerns over large
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isocurvature fluctuations and non-Gaussianities. This is not to
say that all of the multifield possibilities are ruled out, but con-
siderably more work would be needed to analyse those cases.

In general, the analysis of inflation in this model is com-
plicated because of the nondiagonal 3 × 3 field-space metric in
equations (20) and (21). However, there are relevant regimes
where this complicated metric simplifies into either a diagonal
form or a block diagonal form comprising a nontrivial 2 × 2
block only. One regime where the analysis simplifies is at large
values of ξ1,2,S, a parameter space that is analogous to that of
the original Higgs inflation model. The other is where only one
of the ξ parameters is significantly different from zero, in which
case it need not be large; it may be of order one or smaller [25].

The large-ξ regime has been the subject of concern in re-
gard to the breakdown of unitarity. For self-consistency, unitar-
ity should be preserved at least until the energy scale of infla-
tion, so that the calculations can be trusted. It has been argued
that initial claims about the failure of unitarity in Higgs infla-
tion [31, 32] were overstated, because one has to take into ac-
count the field-dependence of the unitarity violation scale [33].
We have nothing to add to this debate and shall provision-
ally assume that there is in fact no real concern. Neverthe-
less, it would be reassuring if small values of the ξ parameters
were permitted, about which there will be further discussion
presently.

A detailed analysis produces the following results [25]:

(1) In the large-ξ regime, successful single-field inflation can
occur along three trajectories: within the (ρ1, σ) plane,
within the (ρ2, σ) plane, and along a general direction
in (ρ1, ρ2, σ) space, as stated above.

(2) In the large-ξ regime, trajectories in the (ρ1, ρ2) plane,
and along each of the individual axes ρ1, ρ2, and σ, fea-
ture complications due to the naturalness requirement
that λiS ≪ 0. This parameter space restriction causes the
critical trajectories to be either on local maxima (ridges)
or saddle points, not valleys, for the generic case of three
large-ξ parameters. Setting one or two of the ξ to zero can
produce shallow valleys, but then fluctuations orthogo-
nal to the world-be single-field inflaton trajectories have
effective masses that are not larger than the Hubble scale.
Thus, the evolution is not purely single-field, and further
work would be needed to see if there was an acceptable
parameter space that was compatible with constraints on
isocurvature fluctuations and non-Gaussianities.

(3) In the small-ξ regime where ξs ≲ 1 and ξ1,2 ≃ 0, the
(ρ1, σ), (ρ2, σ), and (ρ1, ρ2, σ) trajectories degenerate into
a direction that is very close to being purely along the σ-
axis. When the naturalness stipulations λiS < 10−16,−18

are imposed, then there may be concerns that orthogonal
fluctuations are not sufficiently damped to avoid isocur-
vature and non-Gaussianity bounds, a topic that requires
further analysis. Of course, with ξ1,2 ≃ 0, there is no pos-
sibility of inflation along any EW Higgs direction.

(4) The small-ξ regimes where either ξ1 or ξ2 is nonzero and
the other two ξ parameters effectively vanish are incom-
patible with naturalness. It turns out that ξi ̸= 0 requires
λi < 10−8 at the inflation scale, which is unnatural.

So, the parameter space that clearly works involves large val-
ues of the ξ nonminimal coupling constants. However, viable
small ξ inflation is not yet ruled out, because the cases where
ξ1 ∼ ξ2 ∼ ξS or one ξ parameter is effectively zero and the

FIGURE 3: The scalar spectral index ns as a function of the num-
ber of e-folds N∗. The green band is the allowed range for ns. A
good fit is obtained for e-folds in the 50–60 range. Figure from
[25].

FIGURE 4: The tensor-to-scalar ratio r as a function of the num-
ber of e-folds. The upper bound given by the top of the green
band is easily accommodated. Figure from [25].

other two are of similar magnitudes have not been analysed
due to the nontrivial kinetic-mixing complication.

To fit the three single-field large-ξ possibilities to the cos-
mological data, we first note that the amplitude of scalar per-
turbations at the horizon exit is set by the magnitude of the
Einstein frame potential equation (22) along each trajectory. For
(ρi, σ) inflation, the relevant quantity has been shown to be [25]

λeff

ξ2
eff

=
λSλi

λSξ2
i + λiξ

2
S

, (26)

while for (ρ1, ρ2, σ) inflation, it is

λeff

ξ2
eff

=
λSL

λS
(
λ2ξ2

1 − 2λ34ξ1ξ2 + λ1ξ2
2
)
+ ξ2

SL
, (27)

where λ34 ≡ λ3 + λ4 and L ≡ λ1λ2 − λ2
34. Observationally, we

know that
λeff

ξ2
eff

≃ 8.9 × 10−10, (28)

which can be easily fitted in the allowed parameter space of
the theory for all three cases. The scalar spectral index ns ≃
1 − 2/N∗ and the tensor-to-scalar ratio r ≃ 12/N2

∗ are shown
in Figures 3 and 4, respectively, as a function of the number of e-
folds of inflation N∗. As standard for Higgs-inflation scenarios,
very good fits are obtained for N∗ in the range of 50–60.

We now turn to predictions for axion DM. The details de-
pend on whether or not the PQ symmetry is restored either dur-
ing preheating or through reheating. These aspects of VISHν
have yet to be quantitatively analysed. The nicest situation
arises when PQ symmetry is restored after inflation, because
then the axion DM density does not depend on the misalign-
ment angle. Assuming PQ restoration, and incorporating the

5
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results of simulations on the contribution of unstable defect
networks to axion density [34, 35, 36], we conclude that the ob-
served DM mass density will be reproduced for an axion mass
mA somewhere in the range [25]

mA ∼ (40–500) µeV (29)

which corresponds to an axion decay constant (PQ breaking
scale) in the range 1.1 × 1010–1.4 × 1011 GeV. The existence of
a range of masses is due to uncertainties in the cosmological
simulations. Bounds from energy loss constraints for red gi-
ant stars [37, 38] provide an upper limit on mA, which is about
2 meV in the case of VISHν. This figure uses tan β ≳ 8 from the
requirement that leptogenesis avoids the tension between the
DI and Vissani bounds. The mass range 40 µeV–2 meV is being
probed by a number of axion search experiments; see, for ex-
ample, [39, 40, 41, 42, 43, 44].

5. CLOSING REMARKS
VISHν and its KSVZ analogue SMASH are interesting, econom-
ical models that solve five important problems: strong-CP, dark
matter, neutrino masses, baryogenesis, and inflation. In the case
of VISHν, an interesting flavour structure for the PQ symme-
try is used to avoid a cosmological domain wall problem. The
existence of two Higgs doublets is exploited to avoid any ten-
sion between the Davidson-Ibarra and Vissani bounds for lep-
togenesis. In the top-specific model considered here, there is the
added bonus of an explanation for why the top-quark mass is
so much larger than the masses of the other charged fermions.
By extending Higgs inflation to also include the PQ scalar, vi-
able inflation was demonstrated in the regime where the non-
minimal couplings to gravity are large. A thorough analysis
of preheating and reheating is now required. It would also be
interesting to do a full analysis of the small nonminimal cou-
plings regime, because success in that parameter range would
robustly ensure the absence of any unitarity violation problem.
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