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Abstract
Neutrino mixing is caused by the fact that neutrino flavors are not eigenstates of the free Hamiltonian.
This causes oscillations among different neutrino flavors. When neutrinos pass through a medium, weak
interactions produce different effective masses for neutrinos of different flavors, leading to a modification
of the mixing parameters. In curved spacetime, there is an additional contribution to neutrino Hamiltonian
from a torsion-induced four-fermion interaction, which also causes neutrino mixing while propagating
through fermionic matter. We provide an outline of the calculation of this effect on neutrino oscillation.
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1. INTRODUCTION
The Standard Model says that neutrinos are massless and
purely left-handed, described by two component Weyl spinors.
On the other hand, the disappearance or appearance of fla-
vors among neutrinos from various sources—top of the at-
mosphere [1], the Sun [2], reactors [3], accelerators [4], and in
many other experiments [5, 6]—point to neutrino flavor mixing
and oscillation, which is explained by the existence of neutrino
masses. This clearly indicates the presence of physics beyond
the Standard Model. There are many ways to extend the Stan-
dard Model to include massive neutrinos [7]. Different mech-
anisms will have different consequences for neutrino oscilla-
tions [8, 9].

One kind of BSM physics that is not usually considered is
the interaction of fermions with spacetime geometry. Fermions
in a curved spacetime generate a spacetime torsion, which is
non-dynamical and can thus be integrated out, leaving a quar-
tic interaction term [10, 11]. Although gravity is a very weak
force, the freedom to choose coupling constants means that
the contribution of spacetime geometry on neutrino oscillations
may not be negligible. In what follows, we present a brief out-
line of a calculation for three flavors of neutrinos.1

The layout of the paper is as follows. In Section 2, we pro-
vide a very brief review of how fermions behave in spacetime
and then write how an effective quartic interaction arises. In
Section 3, we calculate the modified mixing matrix for two neu-
trino flavors, and then, we do the same calculations for three
neutrino flavors in Section 4.

2. FERMIONS IN SPACETIME
Usually, the geometry of spacetime is affected in the presence
of matter. The effect of matter on bosons can be neglected for
small curvature, as in most physical phenomena. But the case is
different for a fermionic field. When a fermion passes through a
fermionic matter, a four-fermi interaction happens there, which
couples with fermions with different coupling constants which
are fixed by experiments.

1Based on talk delivered by Riya Barick at the International Conference
on Neutrinos and Dark Matter (NuDM-2022), Sharm El-Sheikh, Egypt, 25–28
September, 2022.

Torsion Λµ
ab is added to the Levi-Civita connection ωµ

ab in
the 1st order formulation of Gravity, which uses tetrad fields,
through the following relation [12, 13]:

Aµ
ab = ωµ

ab + Λµ
ab, (1)

where Aµ
ab is called a spin connection. If we assume that Λ

couples chirally to fermions, the equation of motion for Λ is

Λµ
ab =

κ

4
ϵabcdecµ ∑

i

(
−λi

Lψ̄iLγdψiL + λi
Rψ̄iRγdψiR

)
, (2)

which is clearly also its solution. Here, κ = 8πG, while ea
µ

are the tetrad fields and eµ
a are their inverse fields, defined by

ηabea
µeb

ν = gµν. The tetrads can be combined into one 4 × 4 ma-
trix, which has a determinant equal to the square root of the
metric determinant, |e| =

√
|g|. Then, we can put Λ back into

the action to get an effective quartic interaction term [10]

−1
2

(
∑

i

(
−λi

Lψ̄i
Lγaψi

L + λi
Rψ̄i

Rγaψi
R

))2

, (3)

where the sum is over all species of fermions, and we have also

redefined the λ by absorbing
√

3κ
8 . We identify this term as

the torsional interaction term, which is usually independent
of the background metric, but can modify it through Einstein
equations. This results in a curvature which is generally small
enough so that we can take it as a flat spacetime and do normal
QFT calculations. We emphasize that we do not get this term by
extending or modifying GR, but this is how ordinary fermions
behave in a spacetime that is not flat. Along with this inter-
action, Standard Model interactions are always present—both
will contribute to the calculations of neutrino mixing.

In this paper, we mainly concern ourselves about how neu-
trino oscillations will be affected in the presence of torsional
four-fermion interaction. We generally believe that matter ef-
fects suppress the effects of curvature on neutrino oscillations,
even in regions of strong gravity such as supernovae [14]. Our
approach here is completely different from ordinary gravita-
tional effect because of the dimensionful coupling constants
λi

L,R which are not universal but can be fixed only from exper-
imental observations.

3. TWO FLAVORS OF NEUTRINO
Let us first begin with two species of neutrinos passing through
normal matter of uniform density. It is the field in the mass ba-
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sis that couples to torsion, since torsion appears with the ge-
ometric connection. Interaction of neutrinos with background
is

−
(

∑
i=1,2

(
−λL

i ν̄iγaLνi + λR
i ν̄iγaRνi

))

×

 ∑
f=e,p,n

(
λV

f f̄ γa f + λA
f f̄ γaγ5 f

) .

(4)

The sum includes only e ,p, and n because other fermions have
negligible presence in the atmosphere or the Sun. In most sit-
uations, the density of matter is not sufficient to cause high
curvature, so we can neglect the ωµ

ab term and do the calcu-
lations as in case of a flat background. Like weak interactions,
the background factor can be replaced by its average value by
considering the forward scattering of neutrinos:

∑
f=e,p,n

〈
λV

f f̄ γa f + λA
f f̄ γaγ5 f

〉
. (5)

If the background consists of nonrelativistic fermions, the av-
erage becomes the number density. Thus, the interaction term
is

−
(

∑
i=1,2

(
−λL

i ν̄iγ0Lνi + λR
i ν̄iγ0Rνi

))
ñ, (6)

where ñ is the weighted number density of the background
matter, ñ = ∑ λV

f n f . We also consider maximal chirality vio-

lation, so λR
i = 0 for neutrinos. Then, the contribution to the

effective Hamiltonian is

∑
i=1,2

(
λiν

†
i Lνi

)
ñ. (7)

The flavor eigenstates |να⟩ can be written in terms of the mass
eigenstates |νi⟩ as

|να⟩ = ∑
i

U∗
αi |νi⟩ , (8)

where the mixing matrix U =

(
cos θ sin θ
− sin θ cos θ

)
. Following

[15], we can now write the Schrödinger equation for the neu-
trinos:

i
d

dx

(
ν1
ν2

)
=

[
EI +

1
2E

(
m2

1 0
0 m2

2

)
+

(
λ1 0
0 λ2

)
ñ

− GF√
2
(nn − ne) +

GF√
2

UT
(

ne 0
0 −ne

)
U∗
](

ν1
ν2

)
,

(9)

where the effect of weak interaction has also been included. Let
us define a torsionally modified mass-squared difference ∆m2

s
as

∆m2
s = ∆m2 + 2ñE∆λ, (10)

where ∆m2 = m2
2 − m2

1 and ∆λ = λ2 − λ1. It can be shown
easily that the mixing angle in matter, modified by the torsional
four-fermion interaction, is given by [16]

tan 2θM =
tan 2θ

1 − D
∆m2

s cos 2θ

, (11)

where D = 2
√

2GFneE. By diagonalizing equation (9), we can
find the νe → νµ conversion probability

Pνe→νµ = sin2 (2θM) sin2

(
∆m2

M
4E

L

)
, (12)

and the νe survival probability

Pνe→νe = 1 − sin2 (2θM) sin2

(
∆m2

M
4E

L

)
, (13)

where for convenience we have written

∆m2
M =

√(
∆m2

s cos 2θ − D
)2

+
(
∆m2

s sin 2θ
)2. (14)

Therefore, we see that spacetime geometry modifies the mass-
squared differences via equation (10) and mixing angle via
equation (11) and thus modifies the oscillation probabilities
through equations (12) and (13).

4. THREE FLAVORS OF NEUTRINO
In nature, we have three species of neutrinos. Let us now con-
sider the effect of spacetime geometry, and thus torsional four-
fermion interaction, on mixing between three flavors of neu-
trinos. It is known that if more than two families of neutrino
exist, CP and T can be broken via complex elements of mix-
ing matrix [17, 18]. We follow the conventions of Particle Data
Group (PDG) and write the mixing matrix as [19]

U =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 , (15)

where cij = cos θij and sij = sin θij, where θij are the mixing
angles, δ is the CP-violating phase, and we have ignored Majo-
rana phases as we are dealing with Dirac neutrinos. The angles
θij are in the first quadrant and the CP-violation phase δ is taken
to be between 0 and 2π. Then, U is conveniently expressed as
a product of rotation matrices Oij for rotation in the ij-plane
as [20]

U = O23UδO13U †
δ O12, (16)

where Uδ = diag(1, 1, eiδ). The Schrödinger equation is written
in the mass basis, similar to equation (9),

i
d

dx

ν1
ν2
ν3

 =

E +
1

2E

m2
1 0 0

0 m2
2 0

0 0 m2
3

+

λ1 0 0
0 λ2 0
0 0 λ3

 ñ

− GF√
2

nn + UT

A 0 0
0 0 0
0 0 0

U∗

ν1
ν2
ν3

 ,

(17)

where A =
√

2GFne. For uniform matter density or slowly
varying matter, we can write on the flavor basis

i

 ν̇e
ν̇µ

ν̇τ


=

E′
0I +

1
2E

U∗

0 0 0
0 ∆m̃2

21 0
0 0 ∆m̃2

31

UT +

A 0 0
0 0 0
0 0 0

νe
νµ

ντ

 .

(18)
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We have used the definition

E′
0 = E +

m2
1 + 2λ1ñE

2E
− GF√

2
nn. (19)

In order to find the eigenvalues of the resulting Hamiltonian,
we take the help of perturbation theory using a small parame-
ter. For this, we first define

∆m̃2
ij := ∆m2

ij + 2ñE∆λij, (20)

where ∆m2
ij = m2

i − m2
j and ∆λij = λi − λj. Then, equation (18)

takes the form

i
d
dt

νe
νµ

ντ

 =
∆m̃2

31
2E

O23U ∗
δ MUT

δ O
T
23

νe
νµ

ντ

 . (21)

Here, the matrices proportional to the identity matrix have
been suppressed as they will contribute to a common phase for
all neutrinos and thus have no effect on oscillation probabili-
ties. We have also written

M = O13O12

0 0 0
0 α 0
0 0 1

OT
12OT

13 +

Â 0 0
0 0 0
0 0 0

 . (22)

In these expressions, Â = 2AE/∆m̃2
31 and α = ∆m̃2

21/∆m̃2
31 are

dimensionless quantities. Now, our main focus is to find out
the eigenvalues and eigenvectors of the resulting Hamiltonian.
Exactly diagonalizing a 3 × 3 matrix is quite difficult and thus
we need to use some approximations at this point [20, 21, 22].
We will assume that s13 and α are small parameters and then
find the transition probabilities in the second order of these pa-
rameters.

In order to find the mixing matrix, we will diagonalize M
by finding the eigenvalues and eigenvectors using perturbation
theory. Let us first decompose M into three parts containing
different powers of the small parameters α and s13:

M(0) =

Â 0 0
0 0 0
0 0 1

 ,

M(1) =

 αs2
12 αs12c12 s13

αs12c12 αc2
12 0

s13 0 0

 ,

M(2) =

 s2
13 0 −αs13s2

12
0 0 −αs13s12c12

−αs13s2
12 −αs13s12c12 −s2

13

 .

(23)

Using perturbation theory, it is straightforward to calculate the
eigenvalues µ and the eigenvectors v. Keeping terms up to the
second order in the small parameters α and s13, we find the
eigenvalues

µ1 = Â + αs2
12 + s2

13
Â

Â − 1
+

α2 sin2 (2θ12)

4Â
, (24)

µ2 = αc2
12 −

α2 sin2 (2θ12)

4Â
, (25)

µ3 = 1 − s2
13

Â
Â − 1

. (26)

The Hamiltonian in equation (18) is related to M by a uni-
tary transformation as seen in equation (21). Hence, the energy
eigenvalues of the Hamiltonian are

Ei =
∆m̃2

31
2E

µi. (27)

The zeroth-order eigenvectors are the basis vectors êi =1
0
0

 ,

0
1
0

 ,

0
0
1

. By using perturbation theory, we can cal-

culate the higher-order corrections to the eigenvectors as

v(1)i = ∑
i ̸=j

M(1)
ij

µ
(0)
i − µ

(0)
j

êj,

v(2)i = ∑
j ̸=i

1

µ
(0)
i − µ

(0)
j

(
M(2)

ij +
(

M(1)v(1)i

)
j
− µ

(1)
i

(
v(1)i

)
j

)
êj.

(28)

We will rewrite equation (21) in terms of the diagonal matrix M̂
and the diagonalizing matrix W, which diagonalizes M into M̂.

i
d

dx

νe
νµ

ντ

 =
∆m̃2

31
2E

O23U ∗
δ WM̂WTUT

δ O
T
23

νe
νµ

ντ


=

∆m̃2
31

2E
U′∗M̂U′T

νe
νµ

ντ

 =
∆m̃2

31
2E

U′∗HU′T

νe
νµ

ντ

 .

(29)

Here, U′, the new mixing matrix, is defined as U′ = O23UδW,
which is calculated to be

U′ =



1 − 1
2

α2

Â2 c2
12s2

12 − α
Â

s12c12

(
1 + α

Â
cos (2θ12)

)
− s13

Â−1

(
1 − αÂ

Â−1
s2

12

)
− 1

2
s2

13
(Â−1)2

α
Â

c12s12

(
1 + α

Â
cos (2θ12)

)
c23

(
1 − 1

2
α2

Â2 s2
12c2

12

)
c23 − αs13

Â−1
Âs12c12c23

+ s13
Â−1

(
1 − αÂ

Â−1
s2

12

)
eiδs23 +αs13s12c12

(
1 + 1

Â

)
eiδs23 +

(
1 − 1

2
s2

13
(Â−1)2

)
eiδs23

− α
Â

c12s12

(
1 + α

Â
cos (2θ12)

)
s23 −

(
1 − 1

2
α2

Â2 s2
12c2

12

)
s23 + αs13

Â−1
Âs12c12s23

+ s13
Â−1

(
1 − αÂ

Â−1
s2

12

)
eiδc23 +αs13s12c12

(
1 + 1

Â

)
eiδc23 +

(
1 − 1

2
s2

13
(Â−1)2

)
eiδc23


. (30)
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Using this mixing matrix, various transition probabilities can
be calculated quite easily. For example, the expression for the
amplitude of conversion of νe to νµ is

Aνe→νµ =
〈
νµ

∣∣ e−iHt |νe⟩

=

(
α

Â
s12c12

(
1 +

α

Â
cos (2θ12)

)
c23

+
s13

Â − 1

(
1 − αÂ

Â − 1
s2

12

)
eiδs23

)
e−iE1t

+

(
− α

Â
s12c12

(
1 +

α

Â
cos (2θ12)

)
c23

)
e−iE2t

+

(
− s13

Â − 1

(
1 − αÂ

Â − 1
s2

12

)
eiδs23

)
e−iE3t.

(31)

The conversion probability is given by Pνe→νµ = |Aνe→νµ |2.
Other conversion amplitudes (e.g., νe → ντ) can be similarly
calculated, leading to the corresponding conversion probabili-
ties as well as survival probability (Pνe→νe ). Our result exactly
matches those found in [23, 24] if the torsional interaction is set
to zero. The amplitudes and probabilities for νµ → νe, νµ → ντ ,
and νµ → νµ were shown elsewhere recently [25], along with
the difference from λ = 0 results. Fitting these results to neu-
trino data should produce an estimate of the coupling parame-
ters λ.

It is important to recognize that it is not possible to ob-
tain bounds on λ from purely theoretical considerations. Since
the four-fermion interaction appears from the spin connection,
it is enticing to think of it as fundamentally gravitational and
thus expect the couplings to be of size ∼ 1

Mp
. This is a red her-

ring. Four-fermion interactions arise in effective gauge theories
when the boson propagator ∼ 1

q2−M2 in an exchange process

is replaced by − 1
M2 in the low energy limit |q2| ≪ M2. This is

what happens in Fermi’s theory of weak interactions, for exam-
ple. Here, the geometrical interactions do not appear in the low
energy limit of any theory—the contorsion field Λ ab

µ , which
was eliminated to produce these interactions, is not dynamical
and does not have a propagator. We have not quantized grav-
ity or spacetime, so the scale of quantum gravity is not relevant
here. The couplings should not change even at very high en-
ergy scales. When the couplings λ were redefined to absorb a
factor of κ, it was only for bookkeeping purposes, there was no
reason to take them to be small dimensionless numbers before
that. This torsional interaction is one kind of Non-Standard In-
teraction (NSI), so known bounds on various NSI coupling pa-
rameters should be compared with the parameters which ap-
pear here.
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