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Abstract
In this conference paper, we consider effective field theories of nonrelativistic dark matter particles inter-
acting with a light force mediator in the early expanding universe. We present a general framework, where
to account in a systematic way for the relevant processes that may affect the dynamics during thermal
freeze-out. In the temperature regime where near-threshold effects, most notably the formation of bound
states and Sommerfeld enhancement, have a large impact on the dark matter relic density, we scrutinize
possible contributions from higher excited states and radiative corrections in the annihilations and decays
of dark matter pairs.
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1. INTRODUCTION
Complementary astrophysical observations strongly support
the evidence that 80% of the present matter consists of dark
matter (DM), and anisotropy measurements in the CMB deter-
mine precisely its relic density to be ΩDMh2 = 0.1200 ± 0.0012
[1]. Despite its nature being elusive, an extensive work has been
put forward and a variety of models have been constrained to
reproduce this density [2, 3]. A prominent class of models in-
volve heavy thermal DM particles, often referred to as Weakly
Interacting Massive Particles (WIMPs), appearing in a typical
thermal freeze-out scenario. In this proceeding, we focus on
fermionic DM that experiences self-interactions through a long-
range mediator within the dark sector. In particular, we con-
sider a QED-like model and study the interactions within a
thermal bath of dark photons. The proceeding is based on [4].
In Section 2, we show how to construct the DM nonrelativistic
effective field theories (EFTs). In Section 3, we compute, in the
EFTs, near-threshold observables. We give the DM abundance
by solving the rate equations in Section 4 upon including the
relevant processes. Finally, conclusions and outlook are in Sec-
tion 5.

2. NREFTDM
The Lagrangian density of a dark Dirac fermion X charged un-
der an abelian gauge group reads

L = X̄(i /D − M)X − 1
4

FµνFµν + Lportal, (1)

where the covariant derivative is Dµ = ∂µ + igAµ, with Aµ be-
ing the dark photon field and Fµν = ∂µ Aν − ∂ν Aµ. The dark fine
structure constant is α ≡ g2/(4π). Additional interactions cou-
pling the dark photon with the SM degrees of freedom (d.o.f.),
such as kinetic mixing [5, 6], are comprised in Lportal, which are
beyond the scope of this work and thus are omitted.

We are interested in processes close to the threshold, i.e.,
processes involving pairs of nonrelativistic dark fermions with
relative velocities vrel ∼ α ≪ 1. The dark photons form a ther-
mal bath of temperature T that is weakly coupled to the DM.

If the latter is thermalized, then the DM momenta scale like
p ∼

√
MT. The scales are assumed to be hierarchically ordered

as
M ≫ Mα ≫ Mα2 ≳ T. (2)

In a typical freeze-out scenario, the decoupling from chemical
equilibrium happens around M/T ≈ 25. The clear separation
of different scales in equation (2) allows building a tower of
EFTs starting from equation (1) and extracting the relevant in-
teractions and corresponding observables around the decou-
pling time. Near-threshold effects comprise the annihilation of
DM pairs as well as electric transitions within the pairs. Higher
multipole transitions will be suppressed at later times, i.e.,
smaller T. These processes play an important role in a quan-
titative treatment of the dynamics of the relevant d.o.f. in the
early universe, and the corresponding observables appear in
the evolution equations.

Integrating out hard modes leads to a nonrelativistic EFT,
here dubbed NRQEDDM [7]. Hard processes such as annihila-
tions, happening at a scale ∼ M, are encoded at leading order
in the nonrelativistic expansion in the matching coefficients of
dimension-6 four-fermion operators that overlap only with S-
waves.1 At order α3, their imaginary parts read [8, 9]

Im (ds) = πα2
[

1 +
α

π

(
π2

4
− 5

)]
, (3)

Im (dv) =
4
9

(
π2 − 9

)
α3. (4)

They originate from S-wave spin-singlet (XX̄ → γγ) and spin-
triplet (XX̄ → γγγ) annihilations, respectively.

Next, we integrate out modes associated with the soft scale
Mα. In order to enforce that the photon fields do not depend
on the soft scale anymore, they are multipole expanded in the
relative coordinate r ≡ x1 − x2 of the pair, i.e., the distance
between a fermion located at x1 and an antifermion located at
x2. The effective field theory has the form of potential NRQED
(pNRQED) [10, 11], and we denote it by pNRQEDDM. Its La-

1P-wave annihilations start contributing from dimension-8 four-fermion op-
erators and therefore are suppressed at low energies.
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grangian is given by

LpNRQEDDM
=

∫
d3rϕ†(t, r, R)

× [i∂0 − H (r, p, P, S1, S2) + gr · E(t, R)]ϕ(t, r, R)

− 1
4

FµνFµν,
(5)

where

H (r, p, P, S1, S2) = 2M +
p2

M
+

P2

4M
− p4

4M3

+ V (r, p, P, S1, S2) + . . . ,
(6)

V (r, p, P, S1, S2) = V(0) +
V(1)

M
+

V(2)

M2 + . . . , (7)

and S1 = σ1/2 and S2 = σ2/2 are the spin operators acting on
the fermion and antifermion, respectively. At leading order, the
static potential is the Coulomb potential V(0) = −α/r. While
the photon field depends only on the center-of-mass (c.o.m.)
position R ≡ (x1 + x2)/2, the bilocal field of the dark pair de-
pends on both r and R and can be decomposed into a scattering
and bound state part [12]

ϕij(t, r, R)

=
∫ d3P

(2π)3

[
∑
n

e−iEnt+iP·RΨn(r)Sijϕn(P)

+
∫ d3 p

(2π)3 e−iEpt+iP·RΨp(r)Sijϕp(P)

]
.

(8)

DM annihilations, inherited from the imaginary parts of the
NRQEDDM matching coefficients, induce the following local
potential

δVann(r)

= − iδ3(r)
M2

[
2Im (ds)− S2 (Im (ds)− Im (dv))

]
+ . . . ,

(9)

where S = S1 + S2 is the total spin of the pair and the dots
comprise annihilations with nonvanishing orbital angular mo-
mentum. The case of pNRQED at finite temperature has been
studied in [13, 14], whereas an application to DM models with
scalar mediators can be found in [15, 16]. The matching is done
in the weakly coupled regime order by order in α, although the
EFT is suited to accommodate a nonperturbative framework as
well [17, 18]. The dynamics at the soft scale is encoded in the
matching coefficients of pNRQEDDM which are the potentials.
The equations of motion are of the Schrödinger type, where
the potentials distort the free wavefunctions into bound-state
wavefunctions Ψn(r) Sij with discrete energies En or into scat-
tering wavefunctions Ψp(r) Sij with positive energies Ep.2

By exploiting EFT techniques to separate the various scales
being initially intertwined in equation (1), we arrive at a ther-
mal field theory that describes dark fermion-antifermion pairs
and dark photons of energy of the order of or below the
Coulomb binding energy.

2The spin wavefunction Sij accounts for the pairs being in either a spin-
singlet or spin-triplet configuration, En = 2M − Mα2/(4n2) + . . . and Ep =
2M + p2/M + . . . = 2M + Mv2

rel/4 + . . . .

3. NEAR-THRESHOLD PROCESSES
Though pair annihilation is a process appearing at the hard
momentum scale, it encompasses near-threshold effects in-
duced by repeated soft dark photon exchanges. Resumming
such multiple rescatterings for dark fermion-antifermion pairs
above the threshold, i.e., when they form a scattering state, re-
sults in a Sommerfeld-enhanced spin-averaged S-wave annihi-
lation cross section

(σannvrel) (p) =
Im (ds) + 3Im (dv)

M2

∣∣Ψp(0)
∣∣2

= (σNR
annvrel) Sann(ζ),

(10)

in the c.o.m. frame. The velocity-independent contribution
from the hard scale is separated from the soft-scale-dependent
Sommerfeld factor (for S-waves) [19, 20]

Sann(ζ) =
∣∣Ψp(0)

∣∣2 =
2πζ

1 − e−2πζ
, (11)

with ζ ≡ α/vrel and p = Mvrel/2. On the other hand, for pairs
below the threshold, the relevant observables for annihilation
are the decay widths given by

Γn,para
ann =

4Im (ds)

M2 |Ψn(0)|2 , (12)

Γn,ortho
ann =

4Im (dv)

M2 |Ψn(0)|2 , (13)

for spin-singlet and spin-triplet S-wave bound states. We call
them paradarkonium and orthodarkonium, respectively. We
remark that the soft dark photon resummation effects are em-
bedded already at the level of the Lagrangian equation (5), and
that the annihilation rates follow directly from (−2) times the
imaginary parts of the expectation values of equation (9).

Besides local interactions, the Lagrangian equation (5) con-
tains an electric dipole term that allows for the formation of a
bound state through low-energy photon emission of a scatter-
ing state and vice versa, i.e., the dissociation of a bound state by
absorption of a dark photon from the thermal bath. We abbre-
viate the processes by bsf and bsd, respectively. Their thermal
rates may be computed, using the optical theorem, from the
self-energy diagrams in pNRQEDDM; see Figure 1.

Using the real-time formalism, we obtain for the bsf cross
section

(σbsfvrel) (p) =
g2

3π ∑
n

[
1 + nB

(
∆Ep

n

)]
[1 + nB (En)]

× |⟨n|r|p⟩|2
(

∆Ep
n

)3
,

(14)

where nB is the Bose-Einstein distribution and ∆Ep
n = Ep −

En = (Mv2
rel/4)[1 + α2/(n2v2

rel)] + . . .. The dots stand for
higher-order corrections in the energy spectrum. For the bsd
width, we get the convolution integral

Γn
bsd = 2

∫
|k|≥|En |

d3k
(2π)3 nB(|k|)

[
1 + nB

(
Ep

)]
σn

bsd(k), (15)

where 2 is the dark photon polarization and σn
bsd is the photo-

dissociation cross section averaged over the photon polariza-
tion, which reads

σn
bsd(k)

=
1
2

g2

3π

M3/2

2
|k|

√
|k|+ Eb

n × |⟨n|r|p⟩|2
∣∣∣∣
|p|=

√
M(|k|+Eb

n)

,

(16)
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FIGURE 1: (Left) One-loop self-energy diagram of a scattering
state (double solid line) in pNRQEDDM; the imaginary part is
related to the bound-state formation process (XX̄)p → γ +
(XX̄)n. (Right) One-loop self-energy diagram of a bound state
(solid line); the imaginary part is responsible for the bound-
state dissociation process γ + (XX̄)n → (XX̄)p. The cross cir-
cled vertex denotes the electric dipole interaction in equation
(5).

where Eb
n is the binding energy: Eb

n = En − 2M.
Further low-energy processes are the bound state-to-bound

state deexcitation transitions, whose thermal widths are

Γn
de-ex. = ∑

n′<n

g2

3π
(∆En

n′ )
3 [1 + nB (∆En

n′ )]

× [1 + nB (En′ )]
∣∣⟨n′|r|n⟩

∣∣2 ,

(17)

and similarly for excitations

Γn
ex. = ∑

n′>n

g2

3π
|∆En

n′ |3 nB (|∆En
n′ |)

× [1 + nB (En′ )]
∣∣⟨n′|r|n⟩

∣∣2 ,

(18)

with ∆En′
n = En′ − En = (Mα2/4)(1/n2 − 1/n′2) + . . .. We ob-

serve that each of the rates in equations (14), (15), (17), and (18)
factorizes into a thermal part and an in-vacuum part involving
the electric dipole matrix element squared. The thermal compo-
nent can be further simplified, since the distribution functions
nB(En) and nB(Ep) vanish exponentially for the temperature
region set by equation (2). In that limit, our result for the bsf
agrees with the outcomes in [21, 22] and for bsd with the ones
in [13] for the hydrogen atom in QED at finite T and in [23]
for the case of gluo-dissociation of heavy quarkonium in QCD.
Eventually, the determination of the thermal rates reduces to
evaluating the dipole matrix elements.

Finally, we comment on the coupling constant. Since in the
fundamental theory (1) the dark photons couple only to the
dark matter fermions, the coupling runs with one flavor at
scales larger than M, while it is frozen at the value α = α(M) at
scales below M. Thus, the coupling constant appearing in the
thermal rates discussed so far is in fact a constant.

4. RATE EQUATIONS
Having presented the relevant low-energy processes and the
corresponding thermal rates, we include them in the dynamical
rate equations to derive the DM thermal abundance. Here, we
rely on coupled semiclassical Boltzmann equations, which un-
der certain circumstances, namely, for Hubble rates H(T) much
smaller than the bound-state decays, may be written as a single
effective rate equation, given by [24]

(∂t + 3H) n = − ⟨σeffvrel⟩
(

n2 − n2
eq

)
. (19)

The effective cross section, thermally averaged over the veloci-
ties of the incoming unbound pair, is given by3

⟨σeffvrel⟩ = ⟨σannvrel⟩+ ∑
n

〈
σn

bsfvrel
〉 Γn

ann
Γn

ann + Γn
bsd

. (20)

Here, Γn
ann is meant to be replaced by equation (12) or equa-

tion (13) when performing the summation over S-wave bound
states. Equation (20) holds in the limit when bound state-to-
bound state transitions are much smaller than Γn

ann and Γn
bsd

and may be neglected, which is the so-called no-transition
limit. Otherwise, it has to be replaced by a more general ex-
pression presented in [25].

First, we solve the effective Boltzmann equation (19) nu-
merically with the effective cross section in equation (20) for the
DM pairs being in the ground state and with the decay width
at leading order (LO) in the matching coefficient (3), i.e., just
given by the paradarkonium width Γ1S,para

ann = Mα5/2. This pro-
vides our reference energy density. Then, we solve the Boltz-
mann equation when including the 2S state in the no-transition
limit, i.e., considering equation (20) up to n = 2S, but still with
the paradarkonium decay width at LO. The ratio of the two
energy densities is given in Figure 2 by the brown-dotted line.
Next, we include S-wave excited states up to 10S. In Figure 2,
we plot the ratio of the obtained energy density with respect to
the reference one as the orange-dotted line.

Furthermore, we consider the effective cross section be-
yond the no-transition limit approximation, i.e., as given in
[25], and solve the Boltzmann equation for the ground state in-
cluding up to n = 2 states, but neglecting P-wave annihilation
widths, and at order α2 in the matching coefficient (3). The ra-
tio with respect to the reference energy density is shown as the
brown-dashed curve in Figure 2, where we see that 2P-to-1S
transitions affect the energy density more drastically than just
including nS-states in the no-transition limit.

Finally, we evaluate the impact of O(α3) corrections on the
1S state. We include such corrections in the ground state anni-
hilation width and in ⟨σannvrel⟩. The black solid line in Figure 2
shows the ratio of the obtained energy density with respect to
our reference density. The O(α3) corrections in the matching
coefficients result in a much larger effective cross section due
to the additional annihilation channel in the orthodarkonium
states. It therefore decreases the DM abundance quite signifi-
cantly by about 15% for DM with a mass of 1 TeV and coupling
α = 0.1.

5. CONCLUSIONS AND OUTLOOK
In this proceeding, we have summarized the findings of the
recent work [4], where we use the language of NRQED and
pNRQED to describe the evolution of thermalized heavy DM
pairs in the early universe. Under the hierarchy of scales (2),
in the EFT dubbed pNRQEDDM (5), we compute the relevant
thermal rates appearing in the evolution equations. We observe
that for fermionic DM pairs the additional annihilation in the
spin-triplet channel, starting at order α3 in the matching coeffi-
cients, gives large contributions to the effective cross section.

3We perform a thermal average in terms of the Maxwell-
Boltzmann distribution of the dark fermions, fMB(vrel) =√

2/π(M/(2T))3/2v2
rel exp [−Mv2

rel/(4T)].
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FIGURE 2: Ratios of different DM energy densities with respect
to the energy density obtained from equations (19) and (20) for
n = 1 at O(α2) in the matching coefficient (3), plotted as a
function of the DM mass M. (Black line) The ratio for the ef-
fective cross section for n = 1 at O(α3). (Brown-dotted line)
The ratio for the effective cross section for n = 2S at order α2 in
the matching coefficient (3), in the no-transition limit. (Orange-
dotted line) The ratio for the effective cross section for n = 10S
and matching coefficient at O(α2), in the no-transition limit.
(Brown-dashed line) The ratio for the effective cross section for
n = 2, but neglecting P-wave annihilation widths, at O(α2)
in equation (9), beyond the no-transition limit approximation.
We recall that the uncertainty in the measured relic density is
1%. Results are given for α = 0.1.

Furthermore, also bound state-to-bound state transitions ap-
pear to play an important role when determining the relic den-
sity of DM. Finally, we remark that for large T the multipole
expansion may break down, an issue that should be addressed
in future works.
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