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Abstract
A model of a two-component van der Waals gas is proposed to describe the hadronic stages of nuclear
fireball evolution during the cooling phase. During the initial stage of hadronization, when mesons are
dominant, a two-component meson model (π0 and π+ mesons) with an effective two-particle interaction
potential in the form of a rectangular well is suggested. In the later stages of hadronization, when almost all
mesons have decayed, a two-component nucleon model consisting of protons and neutrons is proposed,
incorporating the corresponding effective rectangular nucleon potential. The saddle point method has been
utilized for analytical computations of the partition function. This approach has facilitated the consistent
derivation of analytical expressions for both pressure and density, considering the finite dimensions of the
system, as well as analytical expressions for chemical potentials. It is envisaged that the proposed mod-
els and resulting equations can be employed for analyzing experimental data related to the quantitative
attributes of particle yields of various types in the final state arising from the hadronic stages of nuclear
fireball evolution. Additionally, these models can aid in determining the critical parameters of the system
during high-energy nucleus-nucleus collisions. It is demonstrated that in the single-component case, the
model’s results for the baryonic chemical potential correlate with calculations by other authors.
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1. INTRODUCTION
Experimental observations of elliptical flow in noncentral colli-
sions of heavy nuclei at high energies provide substantial evi-
dence that a state of quark-gluon plasma appears and thermal-
ization occurs. This phenomenon is associated with the fact that
particles collide with each other multiple times. For this state,
one can introduce the concept of temperature, viscosity, den-
sity, and other thermodynamic quantities that characterize the
substance. In these terms, one can describe and study the phe-
nomena that occur during the cooling of a hadron gas formed
after a phase transition from the state of a quark-gluon plasma.
It is believed that at a critical temperature (T > 150 MeV, the
so-called Hagedorn temperature), hadrons “melt”, and a phase
transition of the hadron gas (hadron matter) into the quark-
gluon phase occurs. Therefore, a reverse transition from the
quark-gluon phase to the hadron phase is also possible. There-
fore, in recent decades, statistical models of hadron gas have
been actively used to describe the data of the Large Hadron
Collider (LHC), the Relativistic Heavy Ion Collider (RHIC), and
even earlier to describe the data of the Alternating Gradient
Synchrotron (AGS) and the Super Proton Synchrotron (SPS) on
the particle yields in relativistic nuclear-nuclear (A + A) colli-
sions at high energies [1, 2].

The van der Waals (vdW) model, which takes into account
hadron-hadron interactions at short distances, is especially use-
ful in this description [3, 4, 5, 6, 7, 8, 9, 10]. This is due to the
fact that considering the effect of repulsion (excluded volumes)
prevents an undesirably high density at high temperatures, a
problem that arises in ideal gas models [11]. Additionally, col-
lisions of heavy high-energy ions in the LHC produce a large

number of different particle types. The count of these particles
is not fixed. Therefore, the formalism of the Grand Canonical
Ensemble (GCE) is an adequate mathematical framework for
these phenomena. In this case, thermodynamic quantities do
not depend on the number of particles but on the chemical po-
tentials. For many years, researchers have proposed and ap-
plied different versions of the vdW models. These models have
been primarily used to describe experimental data on the num-
ber of particles at high energies, where tens or even hundreds
of hadrons of different types can be generated. Naturally, this
generation process is limited only by the energy of collisions.

Among these models, the model proposed in [11] should be
noted. In this model, phenomenological parameters of the radii
of the hard core, Rii and Rij, are introduced. These parameters
significantly change the number of yielded particles with dif-
ferent types Ni (where i is the particle type) and are mainly con-
firmed by experimental data. To describe more subtle effects in
the dependence of the hadronic gas pressure on density, var-
ious authors (e.g., [12, 13]) proposed the development of this
model [11]. Here, the effects of attraction between hadrons at
a large distance have been taken into account, leading to the
appearance of a corresponding contribution to the pressure as
Pattr ∼ −an2 (n is the density). For a multicomponent gas, the
parameter a, corresponding to attraction, transforms into pa-
rameters aij, and the repulsive parameter b transforms into pa-
rameters bij. At the same time, the parameters of the effective
potential corresponding to attraction and repulsion depend on
the effective radii of repulsion R0

i and attraction Ri, as follows:

aij ∼ u(ij)
0 (cij − bij), bij = 2

3 π(R0
i + R0

j )
3, cij = 2

3 π(Ri + Rj)
3,

where u(ij)
0 is the depth of the effective potential well [12].

However, even this vdW model cannot be properly de-
veloped when considering a finite nuclear system. So, in the
case of nuclear collisions, a nuclear fireball with dimensions
⟨r⟩ ∼ 7–10 fm is observed. In a fairly general case, this problem
(without considering the effects of reflection from the system
wall) has been solved for a two-component system. In this case,
the GCE formalism leads to the use of a double sum, which, in
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FIGURE 1: Successive stages of nuclear fireball evolution (the figure is taken from [15]).

turn, can be transformed into a multidimensional integral. This
integral can be integrated using the saddle point method in the
vicinity of a saddle point with coordinates N∗

1 and N∗
2 [12].

Undoubtedly, it would be beneficial to apply this model to
the analysis of experimental data obtained from collisions of
heavy nuclei at CERN. One version of such a model was con-
cisely presented in [14]. It was believed that the collision en-
ergies were not high enough, and one could limit oneself to
only two particle types: protons and neutrons. It was assumed
that characteristic temperatures did not exceed the thresholds
at which new particles could form. Therefore, the model itself
should transparently possess a nonrelativistic limit, while ad-
hering to the conservation law of the total number of nucleons
without generating new particles (kinetic freeze-out, cessation
of elastic collisions).

The successive stages of the evolution of a nuclear fireball
are schematically shown in Figure 1: moving from left to right:
the initial stage with two touching ultrarelativistic nuclei; the
state of a hot and superdense nuclear system; gluon and quark-
pair creation; quark-gluon phase, representing deconfined nu-
clear matter expanding hydrodynamically; hadronization and
chemical freeze-out (inelastic collisions cease); kinetic freeze-
out (elastic collisions cease).

However, at the penultimate stage, after transitioning to the
hadronic gas phase, the temperature of the nuclear fireball is
approximately T > 135 MeV in units where kB = 1 (this corre-
sponds to the stage of hadronization and chemical freeze-out,
characterized by inelastic collisions, as depicted in Figure 1).

A more detailed and comprehensive description of the
mathematical framework of the model [11, 12, 13, 14] is pre-
sented in this article. Some finer effects are estimated, includ-
ing additional corrections for pressure, density, and root-mean-
square (RMS) fluctuations. For situations where temperatures
exceed the production threshold (T > 135 MeV) and the num-
ber of mesons is not conserved, a new two-component meson
model [16] has been proposed.

As the investigation of the hadron fireball and, conse-
quently, the quark-gluon plasma, is expected to be connected
with a deeper comprehension of the early universe’s evolution,
this also underscores the significance of the presented study.

2. ONE-COMPONENT vDW GAS
According to various estimates, the duration of the nuclear fire-
ball’s existence (t > 10−22 s, see Figure 1) exceeds the char-
acteristic time of nuclear interaction t′ ∼ 10−23–10−24 s. This
duration of the fireball’s existence is compared with the relax-
ation time τ ∼ 10−21–10−22 s for sufficiently small local vol-
umes (subsystems) into which the fireball can be divided.

Therefore, it can be assumed that at each moment in time
exceeding the relaxation time, a local statistical equilibrium
has had time to establish in the subsystem. In other words,
such a local focal area is quasi-stationary, allowing the appli-
cation of methods from statistical physics. Since all thermo-
dynamic potentials, along with entropy and volume, are pos-
itive (extensive) quantities, the corresponding potentials (val-
ues) of the entire system (fireball) can be determined as the
sum of the corresponding thermodynamic potentials of quasi-
closed subsystems [17]. Accordingly, at each moment in time,
a standard representation of the distribution function of a di-
luted quasi-ideal van der Waals gas in the canonical ensem-
ble (CE) for such quasi-closed subsystems can be provided. In
the approximation of pair interactions and under the condition
B(T)N/V ≪ 1, this quantity takes the following form [17]:

Z(V, T, N) =
1

N!
ϕ(m, T)N(V − B(T)N)N , (1)

where, respectively, N and m are the number and mass of par-
ticles, and V and T are the volume and temperature of the gas.
Formula (1) uses the following notation [11]:

ϕ(m, T) =
1

2π2

∫ ∞

0
p2 exp

(
−
√

m2 + p2

T

)
dp

=
m2T
2π2 K2(m/T),

(2)

where K2(z) is the modified Bessel function, and the second
virial coefficient in (1) has the following form:

B(T) =
1
2

∫ ∞

0
(1 − exp(−U/T))dV (3)

and includes pairwise interaction of particles, U = Uij, (i ̸= j).
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In nonrelativistic limit m ≫ T one can easily obtain, given
the asymptotes of the Bessel function:

ϕ(m, T) ∼
(

mT
2π

)3/2
exp

(
−m

T

)
. (4)

The pressure in the system is easy to find from the partition
function:

P(V, T, N) = T
∂

∂V
ln[Z(V, T, N)] =

TN
V − B(T)N

. (5)

Note that if the Stirling formula is used in the partition function
for the factorial:

N! ≈
√

2πN(N/e)N , (6)

then the final pressure formula (5) will not change.

Model
In accordance with the above, all computations for subsystems
will be conducted utilizing methods from statistical physics.
This encompasses not only local statistical equilibrium but also
the fulfillment of a condition of statistical (thermodynamic)
constraint: (N → NA), where NA denotes Avogadro’s number.

In such a scenario, the final formulas can be applied to the
nuclear fireball due to the mentioned additivity of thermody-
namic potentials and volume. Given that the number of par-
ticles generated within the fireball reaches around 3–5 thou-
sand during high-energy nuclear interactions, this assumption
is reasonably grounded during the initial stages of its evolu-
tion.

Of course, at later stages of evolution, this assumption be-
comes somewhat dubious, as the number of nucleons N within
the nonrelativistic threshold is constrained by the law of baryon
number conservation and equals N ∼ 200 (heavy element nu-
clei collide with mass number A ∼ 200). However, in later
stages, the duration of the fireball’s existence increases, result-
ing in an extended relaxation time. Considering these factors,
as well as the fact that we can always confine ourselves to the
initial stage (see Section 4), it can be considered that the approx-
imation of this model is reasonably justified. It is well known
that practical applications of the van der Waals equation often
go beyond the conditions under which the virial approxima-
tion was derived, as supported by experience. Therefore, de-
spite the fact that computations in the model are performed us-
ing the saddle point method under the condition B(T) < 0, the
final formulas extend to a region where the second virial coef-
ficient B(T) is not necessarily negative.

From the partition function Z(V, T, N) one can also get: free
energy F(V, T, N) = −T ln[Z(V, T, N)], chemical potential

µ =

(
∂F(V, T, N)

∂N

)
= T

[
ln(N/V)− ln(ϕ(m, T)) +

2B(T)N
V

]
,

(7)

and the derivative of the chemical potential which in the statis-
tical limit has the following form:

(∂µ/∂N) = −(∂P/∂V)(V/N)2

= lim
N→NA

(
T
N

+
2B(T)T

V

)
→ 2B(T)T

V
.

(8)

Then, we obtain the Grand partition function (GPF) Z(V, T, µ)
from the partition function Z(V, T, N) taking into account the
above physical considerations (see, e.g., [18, 19]):

Z(V, T, µ) = ∑
N

exp
(

µN
T

)
Z(V, T, N). (9)

At high temperatures (which, for example, are realized during
collisions of heavy ions in the GCE, and △N/T → dN′), one
can turn from the sum to the integral using the Euler-Maclaurin
formula. In this case, the first integral term remains and the
logarithm of the statistical sum is introduced into the exponent.
Let’s denote this indicator by Φ(N′):

Z(V, T, µ) = T
∫ ∞

0
dN′ exp

(
µN′ + ln[Z(V, N′(T))]

)
= T

∫ ∞

0
dN′ exp

(
Φ(N′)

)
.

(10)

Further integration is performed by the saddle point
method [20], since at high temperatures the integrand has a
strongly pronounced maximum. We obtain the following ex-
pression for finding the maximum point (N∗) for the integrand
from the extremum condition imposed on the saddle point:

µ∗ (N∗) = −
(

T
∂

∂N
ln[Z(V, T, N)]

)
N=N∗

− N∗(∂µ/∂N)N=N∗

(11)

≈ T [ln (N∗/V)− ln(ϕ(m, T))] , (12)

where µ∗ is the chemical potential at the saddle point.
As a result, we obtain

Z(V, T, µ) =

√
π

2 (|∂2Φ/∂N2|)N=N∗

ϕ(m, T)N∗
VN∗

√
2πN∗ (N∗/e)N∗

× exp
(

µ∗N∗

T

)(
1 − B(T)N∗

V

)N∗

,

(13)

where the second derivative of the exponent Φ at the saddle
point is defined as follows:(

∂2Φ/∂N2
)

N=N∗

=
N∗

T

(
∂2µ/∂N2

)
N=N∗

+
2
T
(∂µ/∂N)N=N∗ +

(
∂2ln Z/∂N2

)
N=N∗

= (N∗/T)
(

∂2µ/∂N2
)

N=N∗
+ (1/T) (∂µ/∂N)N=N∗

= − 1
N∗ +

1
N∗ +

2B(T)
V

=
2B(T)

V
< 0,

(14)

because (N∗/T)∂2µ/∂N2)N=N∗ = −1/N∗ and (∂µ/∂N)N=N∗

= −T(∂2ln Z(V, T, N)/∂N2)N=N∗ .
The pressure in the GCE is defined as follows in terms of

the temperature and the logarithm of the GPF (see, e.g., [18]):

P(T, µ) = T
lnZ(V, T, µ)

V
. (15)

It is easy to show that pressure (15), taking into account (13)
and (7), can be rewritten as follows:

P (T, µ∗) ≈ Tξ
[
1 − B(T)ξ − ln

(
∂2Φ∗/∂N2

)
N=N∗

/(2Vξ)
]

≈ Tξ [1 − B(T)ξ − ln [B(T)ξ]/(2Vξ)] ,
(16)
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where the saddle point, ξ = N∗(V, T, µ∗)/V, is defined accord-
ing to (12) and (7) as ξ = ϕ(m, T) exp (µ∗(ξ)/T). The parameter
ξ can be eliminated from equation (16) using the definition of
density, which in the thermodynamic limit turns into the well-
known formula [17]:

n =
∂P(T, µ)

∂µ
= ξ[1 − 2B(T)ξ]− 1

2V
→ ξ[1 − 2B(T)ξ]. (17)

In the thermodynamic limit (N → NA, V → ∞), the chemi-
cal potential of the saddle point µ∗ from equation (12) when
N∗ = N/(1 − 2B(T)N/V) turns into the chemical potential µ
(µ∗ → µ), which is determined by the well-known thermody-
namic equation (7).

Both equations (16) and (17) in parametric form (the saddle
point ξ acts as a parameter) determine the relationship between
pressure P, temperature T, and density n. We obtain the state
equation in GCE by excluding explicitly this parameter from
the system of equations (16) and (17):

P(T, n) ≈ Tn[1 + B(T)n] + dP. (18)

Of course, the resulting state equation is implicitly a parametric
equation, since the saddle point ξ (and, hence, n) determines
the chemical potential µ according to equations (7) and (12), as
follows:

n = ϕ(m, T) exp(µ/T − 2B(T)n). (19)

It is crucial that the resulting formula considers the impact
of the finite volume of the system, denoted as Vs, on pressure.
However, the exact nature of this contribution remains unclear
to the author. There’s a possibility that this might be an unphys-
ical outcome, which could potentially be mitigated by account-
ing for subsequent terms in the expansion through the sad-
dle point method. Nevertheless, until a comprehensive analy-
sis is conducted and a quantitative assessment is performed,
we will treat this contribution as genuine. It’s important to
note that this contribution becomes negligible in the thermo-
dynamic limit, where the distinction between CE and GCE dis-
appears.

dP = lim
V→Vs

T
2V

(1 + B(T)n − ln[B(T)n]) →

dP = −T ln[B(T)n]
2Vs

.
(20)

If we disregard the correction obtained from the volume of dP
and assume that B(T)n ≪ 1, then by making the following sub-
stitution on the right-hand side of equation (18): (1+ B(T)n) ∼
exp(B(T)n), taking into account equation (19), it will become
the following:

P(T, µ) ≈ Tϕ(m, T) exp(µ/T − B(T)n)

= Tϕ(m, T) exp
(

µint/T
)
= Pid

(
T, µint

)
.

(21)

Thus, the equation of state with interaction can be obtained by
making the substitution µ → µint = µ − B(T)n in the equation
of state of the ideal gas [11, 23]. These equations are density
functionals, which, according to (7), at a fixed chemical poten-
tial, are found from the solution of a transcendental equation
n = ϕ(m, T) exp(µ/T − 2B(T)n). Assuming B(T)n ≪ 1, this

formula can be replaced with (17) where, according to (12), ξ is
expressed in terms of µ:

n = ϕ(m, T) exp(µ/T)[1 − 2B(T)ϕ(m, T) exp(µ/T)]. (22)

The RMS fluctuations of pressure and density calculated by
known formulas (see, e.g., [17, 22]) give estimates of the found
corrections to the corresponding quantities:〈

(△P)2
〉
=

Tn
V

(∂P/∂n)S ∼ (Tn/V)T[1 + 2B(T)n], (23)〈
(△n)2

〉
=

T
(∂µ/∂N)N=N∗V2 ∼ 1

nV3 [1 − 2B(T)n]. (24)

3. TWO-COMPONENT vDW GAS
Let us examine the procedure for incorporating excluded vol-
ume and attraction in the van der Waals model for a two-
component hadron gas consisting of two types of particles la-
beled as “i” and “j”, with N1 and N2 being the quantities of
particles of the first and second types. In this scenario, the par-
tition function takes the following form [11]:

Z (V, T, N1, N2)

=
1

N1!N2!

∫ N1

∏
l=1

d3 p(1)l d3r(1)l
(2π)3 exp

−

√(
m(1)

)2
+
(

p(1)l

)2

T



×
∫ N2

∏
k=1

d3 p(2)k d3r(2)k
(2π)3 exp

−

√(
m(2)

)2
+
(

p(2)k

)2

T


× exp

(
−U(1,2)/T

)
,

(25)

where m(1) and N1(m(2), N2) are, respectively, the masses and
number of particles of the 1st (2nd) sorts, and the two-particle
potential has the following form:

U(1,2) =
N1

∑
1≤m<l≤N1

u11

(∣∣∣⃗r(1)m − r⃗(1)l

∣∣∣)
+

N2

∑
1≤k<s≤N2

u22

(∣∣∣⃗r(2)k − r⃗(2)s

∣∣∣)
+

N1

∑
m=1

N2

∑
k=1

u12

(∣∣∣⃗r(1)m − r⃗(2)k

∣∣∣) .

(26)

After a trivial integration over momenta, this expression takes
the following form:

Z (V, T, N1, N2)

=
1

N1!N2!

[
ϕ
(

m(1), T
)]N1

[
ϕ
(

m(2), T
)]N2

×
∫ N1

∏
l=1

d3r(1)l ×
∫ N2

∏
k=1

d3r(2)k × exp
(
−U(12)/T

)
,

(27)

where the notation introduced is the same as in the first section.
This expression for the pair-interaction approximation

(U(123) ≪ U(12)) and a weakly ideal gas (2NB/V ≪ 1) can
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be rewritten as follows (see [11, 12]):

Z (V, T, N1, N2)

∼ 1
N1!N2!

ϕ
(

m(1), T
)N1

ϕ
(

m(2), T
)N2

×
(
V − B11N1 − B̃21N2

)N1
(
V − B22N2 − B̃12N1

)N2 .

(28)

Here, the notation B̃ij = 2 Bii Bij
Bii+Bjj

has been introduced. The two-
particle partition function Z(V, T, µ1, µ2) in GCE is expressed
in terms of the two-particle partition function Z(V, T, N1, N2)
in CE [12, 17], as

Z (V, T, µ1, µ2) = ∑
N1,N2

exp
(

µ1N1 + µ2N2
T

)
Z (V, T, N1, N2) .

(29)

Here, as in the one-dimensional case, when T ≫ U and Ni →
NA, the sum over the number of particles approximately be-
comes an integral, since △N/T → dN′:

Z (V, T, µ1, µ2)

= T2
∫ ∞

0
dN′

1

∫ ∞

0
dN′

2 exp
(
µ1N′

1 + µ2N′
2
)

Z
(
V, T, N′

1, N′
2
)

= T2
∫ ∞

0
dN′

1

∫ ∞

0
dN′

2 exp
(
Φ
(

N′
1, N′

2
))

.

(30)

Integration of (30) by the saddle point method [20] leads us to
the following result:

Z∼ π

2
√∣∣Φ′′ (N′∗

1 , N′∗
2
)∣∣ exp

(
µ∗

1 N∗
1 + µ∗

2 N∗
2

T

)
Z (V, T, N∗

1 , N∗
2 ) ,

(31)
where the coordinates of the saddle point N∗

i (i = 1, 2) are
found from the extremum conditions: ∂Φ

(
N′

i , N′
j

)
∂N′

i

 = 0,

Φ′′ (N′∗
1 , N′∗

2
)
= det

∣∣∣∣c11 c12
c21 c22

∣∣∣∣ ,

cij =

 ∂2Φ
(

N′
i , N′

j

)
∂N′

i ∂N′
j

∣∣∣∣∣∣
N′=N′∗

.

(32)

Substituting the value of the partition function into the def-
inition of pressure in the GCE [18], we obtain the following ex-
pression [12]:

P (T, µ1, µ2)

= T
lnZ

(
V, T, µ∗

1 , µ∗
2
)

V

∼ T
[

ξ1 + ξ2 − ξ2
1B11 − ξ2

2B22 −
(

B̃12 + B̃21
)

ξ1ξ2 −
ln C
2V

]
,

(33)

where C = |ξ1B11ξ2B22 − ξ1B̃12ξ2B̃21|.
Using such a mathematical apparatus, one can organically

introduce the law of conservation of chemical potentials. The

latter are related to the condition imposed on the integrand
when finding the saddle point. In the thermodynamic limit, the
chemical potential determined by the extremum condition co-
incides with the definition of the chemical potential itself:

P(T) → T
[
ξ1 + ξ2 − ξ2

1B11 − ξ2
2B22 −

(
B̃12 + B̃21

)
ξ1ξ2

]
,

µ∗
i → µi =

 ∂F
(

V, T, Ni, Nj

)
∂Ni

 ,
(34)

where F(V, T, N1, N2) = −T ln[Z(V, T, N1, N2)] is the defini-
tion of free energy (12).

We get from the definition of density

ni = ∂P
(

T, µi, µj

)
/∂µi ∼ ξi

[
1 −

(
2ξiBii + ξ j

(
B̃ij + B̃ji

))]
.

(35)
The virial expansion (33) can be rewritten, taking into ac-

count equation (35), as a two-component vdW equation in the
approximation bij Ni/V ≪ 1 and aij/Tbij ≪ 1:

P (T, µ1, µ2) =
Tn1

1 − b11n1 − b̃21n2
+

Tn2

1 − b22n2 − b̃12n1

− n1 (a11n1 + ã21n2)− n2 (a22n2 + ã12n1) + dP,

(36)

where dP, according to equation (33), takes into account the
finite size of the fireball.

When formula (36) was derived, the expression B̃ij ≈ b̃ij −
ãij/T was used (see, e.g., [12]), and for each type of particles,
the corresponding parameters of attraction and repulsion were

introduced: aij, ãij ≈ 2γaijaii/(aii + ajj), bij, b̃ij = 2 biibij
bii+bjj

, and
γ is a phenomenological parameter reflecting the complexity
of the problem. We introduce quantities ãij constrained by the
condition ãij + ãji = 2γaij.

4. TWO-COMPONENT ASYMMETRIC
vDW MODEL WITH
NONCONSERVATION OF PARTICLE
NUMBER

As experiments related to the formation of quark-gluon plasma
focus on heavy nucleus collisions (A + A) with very high en-
ergies exceeding 1 GeV per nucleon, it is assumed that at the
initial stages of freeze-out, mesons of different types dominate
(chemical freeze-out). Therefore, to describe nuclear interac-
tions during this freeze-out stage beyond the threshold for pro-
ducing new particles (T > 135 MeV), a generalization of the
van der Waals model is proposed for a medium-sized meson
fireball [16]: ⟨Vf ⟩ ∼ (Vmin

f + Vmax
f )/2 ∼ (4/3)π⟨a⟩⟨b⟩2 ∼

(4/3)πr3
o⟨A⟩ ∼ 600–1000 fm3. Here, r0 = 1.1–1.2 fm, ⟨a⟩, ⟨b⟩

represent the mean semiaxes of the ellipsoid, and ⟨A⟩ denotes
the mass number of nuclei remaining in the fireball after the
collision. The model assumes that the fireball is primarily com-
posed of mesons, considering that the number of nucleons is
much smaller than the number of mesons (Npn ∼ 200–300 ≪
Nπ,ρ,ω ∼ 3000–5000). Contributions from other particles are ne-
glected in the model. Thus, the following natural assumptions
are summarized in the model:

5
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FIGURE 2: Scalar part of the effective phenomenological meson-meson potential.

(1) The average energies of nucleon-nucleon interactions do
not exceed the threshold for producing heavy mesons.
Therefore, the model is limited to two types of particles
(“0” corresponds to π0-mesons, “+” corresponds to π+-
mesons).

(2) Since reactions producing π+-mesons are more likely
than reactions producing π0-mesons, it is assumed that
n0 = kn+ = n, where k < 1, n0 represents the den-
sity of π0-mesons, and n+ represents the density of π+-
mesons. For instance, this corresponds to a higher proba-
bility of π+-meson production in reactions like p + d →
d + n + π+ compared to π0-meson production in reac-
tions like p + d → d + p + π0 (also, the lifetime of π+-
mesons is longer than that of π0-mesons).

(3) An effective phenomenological potential of meson inter-
action U(1,2) = U(i,j) is introduced, where (i, j) = +, 0.
“(0+)” denotes the interaction of π0-mesons with π+-
mesons, “(++)” denotes the interaction of π+-mesons,
and “(00)” denotes the interaction of π0-mesons. For a
gas composed of multiple components, the parameter
denoted as a, which signifies attraction, undergoes trans-
formation into distinct parameters aij. Similarly, the re-
pulsive parameter b is replaced by parameters bij. This
transformation occurs concurrently with the dependence
of the effective potential’s attraction and repulsion pa-
rameters on the effective radii associated with repul-
sion (R0

i ) and attraction (Ri). Specifically, the relationship

can be expressed as follows: aij ∼ u(ij)
0 (cij − bij), where

bij is calculated as 2
3 π(R0

i + R0
j )

3 and cij is obtained as
2
3 π(Ri + Rj)

3. Here, γu(ij)
0 represents the depth of the ef-

fective potential well.

U(i,j) =


∞ if r < R0

i + R0
j ,

−γu(i,j)
0 if R0

i + R0
j ≤ r < Ri + Rj,

0 if Ri + Rj ≥ r.

(37)

As the parameters of the scalar component of the ef-
fective phenomenological rectangular well potential are
chosen in such a way as to approximately yield the same
pressure and density values as the effective mesonic po-
tential (see Figure 2, where, for instance, the interaction
of π0-mesons with π+-meson corresponds to U(+,0)), the
effective mesonic potential (a) can be substituted with a

similar effective phenomenological rectangular well po-
tential (b).

(4) It is assumed that the hard-core radius of the π0-meson
is much smaller than the hard-core radius of the π+-
meson: R0

0 ≪ R0
+. The hard-core radius of the π+-meson

is considered to be known.

Average pressure and density fluctuations are easily
found within the framework of the proposed model, sim-
ilarly to formulas (23) and (24):√

⟨(△n)2⟩ ∼ 1√
nVf Vf

[1 − B(T)n], (38)

√
⟨(△P)2⟩ ∼ T

√
n/Vf [1 + B(T)n]. (39)

The following results are obtained (Figures 3 and 4). Such
data have been used (Figure 3): T = 147 MeV, the effective
radius of the π+-meson, R0

+ = 0.46 fm, and π0-meson, R0
0 =

0.01 fm, the average value of the volume of the meson fireball
is taken as the value ⟨Vf ⟩ ∼ 600 fm3, k = 0.5, the parameter of

the potential depth, u(+,0)
0 ∼ 80–100 MeV. One can clearly see

(Figure 4) an increase in the correction dP/⟨P⟩ at low densities,
which is typical in the final stages of the freeze-out.

5. TWO-COMPONENT ASYMMETRIC vDW
MODEL OF A NUCLEUS FIREBALL AT
THE FINAL STAGE OF FREEZE-OUT

The average lifetime of mesons that dominate in the initial
stages of freeze-out is quite short (τ ∼ 10−8–10−16 c). In the
hadronic medium, due to various reactions, this time is even
shorter. Hence, they decay rapidly. Consequently, at the final
stage of freeze-out, baryons, particularly protons and neutrons,
start to dominate. Additionally, as shown earlier, the effects
of finite volume become significant at sufficiently low density
values. This formally corresponds to the last stages of the fire-
ball’s evolution. Therefore, despite certain doubts about the ex-
istence of a fireball at such late stages, when the boundary be-
tween the gas and the aggregate of individual nucleons grad-
ually disappears (see the far right part of Figure 1), in order to
describe nucleus-nucleus interactions in the last stage of freeze-
out, which is below the threshold for producing new particles
(T < 135 MeV) (kinetic freeze-out), the work [14] proposed the

6
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FIGURE 3: Dependence of nucleon pressure P(T, µ1, µ2, n) (see
equation (36)) on the meson density n0 = kn+ = n for the
two-component asymmetric vdW model with correction (up-
per isotherm) and without correction (lower isotherm).

following generalization of the vdW model to the nucleus fire-
ball. By analogy with the previous section, the following sim-
plifications are suggested:

(1) The average energies of inter-nucleon collisions do
not exceed the threshold for producing other hadrons.
Therefore, for simplicity, the model is limited to two
types of baryons (“p”—proton, “n”—neutron).

(2) We use the relation between the densities of protons and
neutrons in the form of np + nn = n, in accordance with
the conservation law of baryon number, Z + N = A.

(3) It is assumed that the composition of colliding nuclei is
known, such that np = knn, where k < 1, since heavy
nuclei have an excess of neutrons.

(4) The effective potential of proton-neutron, proton-proton,
and neutron-neutron interactions, which leads to ap-
proximately the same pressure and density values as the
real potential (Figure 2), can be represented by analogy
to the model in Section 4 as U(i,j), where i, j = (p, n).

(5) The hard-core radius of the proton is considered known,
R

′0
p = 0.8 fm (but in this work, this radius is a phe-

nomenological parameter equal to R0
p = 0.5 fm). It is as-

sumed that the root-mean-square radius of the neutron is
much smaller than that of the proton: R0

n ≪ R0
p (the neu-

tron’s magnetic radius is approximately 0.864 fm, but the
mean square charge radius is negative and much smaller.
This is because the charge structure of the neutron only
becomes apparent at non-zero transferred momenta q
[24]).

From equation (36), the following can be derived:

P (T, µ1, µ2) =
Tn∗ (k + 1 − αn∗)

1 − βn∗ + δ (n∗)2 − a∗ (n∗)2 + dP, (40)

where dP ∼= −Tn∗ ln[C(T,n∗)]
2A , C(n∗, T) = |n∗B11n∗B22 −

n∗ B̃12n∗ B̃21|, n∗ = n/(1 + k), α = b11k + b̃12 + b̃21k2 + b22k,
β = b11k + b̃12 + b̃21k + b22, δ = kb11b22 + k2b11b̃12 + b22b̃21 +
b̃12b̃21k, a∗ = a11k2 + (ã12 + ã21)k + a22. It follows from the con-
dition R0

2 ≪ R0
1 ⇒ b22 ≪ b11, α ∼= β.

FIGURE 4: Ratio of the correction to pressure dP from the size of
the meson fireball to the value of the RMS pressure fluctuation
⟨P⟩ as a function of the meson density n0 = kn+ = n.

Similarly to equations (38) and (39), corresponding average
fluctuations of pressure and density are determined.

Functional dependencies for pressure, obtained by equa-
tion (36), and the ratio of dP to RMS pressure fluctuations are
shown in Figures 5 and 6.

It can be seen that the correction dP makes a nonzero contri-
bution to the total pressure also in this case. On the other hand,
it is negligibly small almost everywhere in comparison with the
contribution from fluctuations. The correction makes a contri-
bution comparable to fluctuations only in the region near zero
density that is nonphysical for a nuclear fireball. But it can be
neglected in this region, as can be seen from Figure 5.

6. MULTICOMPONENT vDW GAS
It is possible to extend the above analysis to the vdW gas with
multiple components, consisting of any number of different
particles. By integrating over the momentum of the particles
and making some modifications similar to those done in the
first example, one can obtain an expression for the multicom-
ponent (K-component) vdW gas in the canonical partition func-
tion:

Z (V, T, N1, . . . , NK)

∼
K

∏
p=1

1
Np!

ϕ
(
mp, T

)Np

V −
K

∑
(p ̸=q)=1

(
Bpp Np + B̃qp Nq

)Np

.

(41)

It is possible to calculate the pressure in the Grand Canon-
ical Ensemble for the vdW gas with multiple components by
integrating over the number of the particles and making ap-
propriate modifications to the formula derived for a single-
component gas.

P (T, µ1, . . . , µK)

=
K

∑
p=1

[
Tnp

1 − ∑K
(p ̸=q)=1

(
bppnp + b̃pqnq

) ]

−
K

∑
(p ̸=q)=1

np
(
appnp + ãqpnq

)
+ dP (T, µ1, . . . , µK) ,

(42)

where µp = ( ∂F(V,T,N1,...,NK)
∂Np

) are the chemical potentials (p =

1, . . . , K).
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FIGURE 5: Dependence of nucleon pressure P (see equation
(40)) on nucleon density, np = knn = n, in the two-component
asymmetric vdW model with correction (upper isotherm) and
without correction (lower isotherm).

FIGURE 6: The ratio of correction from the size of the nucleon
fireball to pressure dP to the value of the RMS pressure fluctua-
tion ⟨P⟩ depending on the density of nucleons, np = knn = n.

The particle densities np = ∂P(T, µ1, . . . , µK)/∂µp along
with the pressure are obtained as the solutions of the system
of related equations depending on the parameter of the saddle
points ξp (p = 1, . . . , K).

The HG model in the grand canonical ensemble formula-
tion does not have fixed numbers for N1, . . . , NK due to in-
elastic reactions between the hadrons. However, the conserved
charges of baryonic number B, strangeness S (which is con-
served by neglecting weak decays), and electric charge Q have
fixed values. The value of B corresponds to the number of par-
ticipating nucleons in the reaction, while S is equal to zero. The
value of Q is 0.5eA for intermediate nuclei and 0.4eA for heavy
nuclei (Q = eA/(2 + 0.014A2/3)). The use of the grand canoni-
cal formulation is more advantageous in case of high tempera-
tures.

In this approach, the system properties are determined by
the pressure function (42). The chemical potentials µi (where
i = 1, . . . , K) are defined as a combination of the baryonic µB,
strange µS, and electric µQ chemical potentials, with coeffi-
cients of expansion (γB)i, (γS)i, and (γQ)i, respectively.

Interestingly, despite the crudeness of such a one-component
approximation for the real multi-component vdW gas of the
hadron fireball, as shown in Figures 7 and 8, a good qualita-

tive and quantitative agreement with the results of calculations
by other authors is obtained for the chemical potential (see, for
example, [25, 26, 27, 28, 29, 30]).

7. SUMMARY
The impact of considering the excluded volume and attraction
is analyzed in the case of a two-component gas: (i) π0- and π+-
mesons (model from Section 4) and (ii) protons and neutrons
(model from Section 5). The calculations were performed in the
Canonical and Grand Canonical ensembles using the saddle
point method for the two-component system. Particles inter-
act with hard-core potentials at short distances and relatively
high potentials at long distances (effective attraction radii). For
such effective interparticle interactions, an equation of state
with corrections that account for the finite dimensions of the
nuclear fireball, as well as the root-mean-square fluctuations of
pressure and density, has been derived. The pressure correction
vanishes in the thermodynamic limit, in accordance with sta-
tistical physics, where there is no distinction between different
statistical ensembles.

Formulas for pressure and density obtained through the
saddle point method can be employed to analyze experimental
data regarding the relative abundance of particles of different
types and critical parameters in high-energy nuclear-nuclear
collisions. As an example of such application for the chemi-
cal freeze-out stage (model from Section 4), a generalization
of the presented van der Waals model to the case of an asym-
metric two-component model (π0- and π+-mesons) with effec-
tive phenomenological hard-core and attractive parameters has
been proposed. The ratio of the pressure correction to the root-
mean-square value of pressure fluctuation is assessed for the
case of an asymmetric two-component meson fireball model.
An increase in the correction at low density values correspond-
ing to the final freezing stages has been identified.

It has been found that the contribution to pressure, con-
sidering different radii and the finiteness of the nuclear fire-
ball, in comparison to root-mean-square fluctuations, becomes
noticeable in the case of the meson model with particle non-
conservation (model from Section 4, corresponding to the
chemical freeze-out stage). However, this correction can be ne-
glected in the final stages of freeze-out when nucleons begin to
dominate (model from Section 5, corresponding to the kinetic
freeze-out stage).

The developed approach of integrating a large statistical
sum using the saddle point method allows for obtaining both
the equation of state and expressions for chemical potentials
uniquely, and it can be easily extended to the case of a multi-
component system (Section 6).

Interestingly, despite the simplicity of the single-component
approximation, the obtained behavior of the baryon chemi-
cal potential qualitatively, and sometimes quantitatively, repro-
duces the corresponding calculations of other authors made
under different QCD approximations.

Thus, it is anticipated that the developed model can be use-
ful in analyzing experimental data related to the study of vari-
ous stages of nuclear fireball evolution, which occurs, in partic-
ular, in experiments investigating the quark-gluon plasma.
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FIGURE 7: The result of our calculations [31] using formula (7) for the meson and nucleon stages of the evolution of the hadron
fireball.

FIGURE 8: Sketch of the QCD matter phase diagram in the
plane of temperature T and baryo-chemical potential µB (this
figure is taken from [25]). The parton-hadron phase transition
line from lattice QCD [26, 27, 28, 29] ends at a critical point E. A
cross-over transition occurs at smaller µB. Also shown are the
points of hadro-chemical freeze-out from the grand canonical
statistical model.
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