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Abstract
In this letter, we follow the hypothesis that the tangent bundle (TB) with the central extended little groups
of the SO(3, 1)⋊ T(1, 3) group as gauge group is the underlying geometric structure for a unified theory of
the fundamental physical interactions. Based on the geometry of the TB, recently, I presented a generalized
theory of electroweak interaction in [1]. The vertical (internal) Laplacian of the tangent bundle possesses
the same form as the Hamiltonian of a 2D semiconductor quantum Hall system. The three families of
leptons and quarks, unlike in the SM, are distinguished by a new quantum number. Here, it will be shown
that the SU(3) color symmetry for strong interaction arises as an emergent symmetry similar to Chern-
Simon gauge symmetries in multicomponent quantum Hall systems and fractional charge quantization of
quarks can be understood by a binding of two vortices to a quark, turning it into a composite quark. The
analogy with the anomalous quantum Hall effect could hint at the possible existence of exotic quark states
with a hypercharge of e/5. Note that based on translational transformations in the TB geometry previously
a gauge theoretical understanding of gravity has been achieved. Therefore, the TB can be considered as the
underlying geometry that could constitute a possible way for the unification of the known fundamental
forces.
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1. INTRODUCTION
The standard model (SM) of elementary particles is one of the
greatest successes of modern physics. Even though it proved to
be extremely successful in explaining a large number of exper-
iments, the SM is incomplete and contains several open prob-
lems that cannot be solved on the basis of this model. A funda-
mental problem is the question of the physical origin of inter-
nal symmetry groups. Several other unanswered questions are
the mysterious existence of three families of leptons and quarks
(also called generations) that differ only by their masses, the
lack of understanding of fractional quark charges and of the hi-
erarchy of fermion masses, and the missing explanation of dark
matter and dark energy and others.

There have been many attempts to formulate a unified the-
ory beyond the SM that could solve the above puzzles. In
Grand Unified Theories, the electroweak and strong interac-
tions are embedded in a larger gauge group, as the SU(5)
group first proposed by Georgi and Glashow [2] or in the
SO(10) group [3]. There have also been some attempts to un-
derstand the origin of families in the SM by using a so-called
family symmetry [4, 5]. Despite many subsequent attempts, no
unified model exists that is able to solve all these problems on a
unified basis and none of them are considered to be universally
accepted.

Recently, I proposed following another way to determine
the internal symmetries without phenomenological assump-
tions based on a synthesis of the principle of general relativity
and gauge transformations in the frame of a unit underlying
geometric structure [1]. The general type of such geometry has
been recognized since the 1960s by the discovery of a formal
equivalence of gauge theories with the mathematical formal-

ism of fiber bundles [6, 7, 8, 9, 10]. In the fiber bundle interpreta-
tion, gauge potentials are understood as a geometric entity (the
connection on the principal bundle) and matter fields are de-
scribed by the associated fiber bundles. In previous studies, the
transformation groups of the fibers were taken from the phe-
nomenologically determined gauge groups of the SM. There-
fore, the fiber bundle approach mainly delivered a geometriza-
tion and reinterpretation of the gauge potentials but could not
be used as a bridge to a theory beyond the SM. As a first step
in [1], I studied the hypothesis that electroweak interaction is
linked with geometric symmetries in the underlying geomet-
ric structure of the tangent bundle (TB) with the little groups
SU(2)⊗ Ec(2) of the nontransitive group SO(1, 3) as structure
groups (gauge groups) which includes hypothetical dark mat-
ter particles (Ec(2) is the central extended Euklidian group).

In this letter, I study the question of how the color SU(3)
symmetry of Quantum Chromodynamics (QCD) can arise in
the tangent bundle geometry. Here, the main results of this
study are briefly presented, and a full-length paper with ad-
ditional details and results is published elsewhere [11]. The
SU(3) symmetry can not be described as a geometric symme-
try of the TB. However, the eigenfunctions of the vertical (in-
ternal) Laplacian of the Ec(2) group have the same form as the
solution of the 2D Schrödinger equation in real space for elec-
trons in a perpendicular external magnetic field. Combining all
tangent fibers at all spacetime points and taking into account
the three isospin components of quarks I3 = 1/2, 0,−1/2, the
vertical Laplacian of the TB gets the analog form as the mul-
tiparticle Hamiltonian of a 2D three-component quantum Hall
system [12, 13, 14]. In this approach, emergent effective gauge
fields (denoted as Chern-Simon fields) with a local SU(3) sym-
metry arise in the vertical TB Laplacian in an internal way. An
emergent phenomenon is a collective effect of a large number
of particles that cannot be deduced from the microscopic the-
ory in a rigorous way. The fractional QHE is a prototype of such
phenomenon.
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2. FUNDAMENTALS OF THE TANGENT
BUNDLE GEOMETRY

A tangent bundle associates to every point x of the spacetime
manifold M a 4-dimensional tangent space Tx(M) which is the
set of all tangent vectors at point x. The union of all tangent
spaces at all points x of the spacetime manifold M is called the
tangent bundle TM. Tangent vectors in Tx(M) can be trans-
formed by the special affine group G = SO(3, 1) ⋊ T(3, 1).
Any point on the TB can be mapped to the base manifold
by a projection map π. In this coordinate description, a point
in the tangent bundle is given by the pairs X = (x, v) with
x = (x0, x1, x2, x3) as the coordinate of the spacetime manifold
and v = (v0, v1, v2, v3) as the coordinate of tangent vectors. We
introduce tetrad fields eµ

a (x) which form an orthonormal basis
gµν(x)eµ

a (x)eν
b(x) = ηab, where gµν(x) is the metric of the space-

time manifold and ηab = diag(−1, 1, 1, 1) is the metric of the
Minkowski space. Each vector v in the coordinate basis can be
expressed in the frame basis according to the rule vν = eν

a(x)va.
The scalar product of a vector and a covector is defined as

(v, u) = gµν(x)vµuν = gµν(x)eµ
a (x)eν

b(x)vaub = ηabvaub. (1)

The scalar product (1) is the governing structure relation
of the tangent bundle, and its invariance with respect to cer-
tain transformations determines the geometry of the TB. There
exist two types of transformations which leave (1) invari-
ant. First, general spacetime coordinate transformations xµ →
yµ = yµ(x) with vectors which are transformed as v′µ(x) =
(∂yµ/∂xν)vν(x) do not change the scaler product (1). Besides,
at a fixed spacetime point x, the tangent vectors can be trans-
formed by a second type of transformation along the tangent
vector axis which also preserves the scalar product (1):

v′a = Ta
b (x)vb + aa(x), (2)

where Ta
b (x) are matrices satisfying the condition ηabTa

c Tb
d =

ηcd. Matrix elements Ta
b (x) are elements of the group SO(3, 1)

describing special linear local transformations with positive de-
terminant depending on the spacetime point x as a parame-
ter. The transformation (2) is determined by the special affine
group—the semidirect product group SO(3, 1) ⋊ T(3, 1) with
T(3, 1) as the translational group. Poincare transformations and
the transformation group (2) for tangent vectors in the TB are
described by the same mathematical group. However, both
have a principal different geometrical and physical meaning:
the first transforms the coordinates of a flat spacetime mani-
fold while the second describes transformations within the tan-
gent fiber F = Tx(M) leaving the spacetime point x unchanged.
Therefore, the generators of the translational group T(3, 1) are
not related to the momentum or the masses of the particles.

The geometry of the TB is closely connected with the con-
ceptual basis of gravity gauge theories. Here, it is assumed that
gravity can be described by the teleparallel gravity gauge the-
ory with the gauge group T(3, 1) based on the translational
connection as a gauge field [16, 17, 18, 19, 20]. In contrast to
this theory, we assume that the subgroup SO(3, 1) is related
to the other fundamental interactions of particle physics and
the spin connection does not vanish but is related to the gen-
eralized electroweak interaction [1]. The description of mat-
ter fields in QFT requires the knowledge of the unitary rep-
resentations TL(g) of these groups. Arbitrary transformation
by the SO(3, 1) group can be expressed in terms of elements

of Wigner’s little groups and their cosets. Vector representa-
tions satisfy the functional equation TL(g1)TL(g2) = TL(g1g2).
These representations contain certain pathologies as, e.g., the
Dirac equation for massive particles is not invariant under
the Poincare group, but under its universal covering group.
Wigner solved this problem by using projective representa-
tions of the Poincare group [21]. In quantum theory, the phys-
ical symmetry of a group of transformations on a set of vec-
tor states has to preserve the transition probability between
two states | ≺ Φ, TL(g)Ψ ≻ |2 = | ≺ Φ, Ψ ≻ |2. There-
fore generalized representations (denoted as projective repre-
sentations) are allowed which satisfy the more general com-
posite law: TL(g1)TL(g2) = ε(g1, g2)TL(g1g2) where ε(g1, g2)
is a complex-valued antisymmetric function of the group ele-
ments with |ε(g1, g2)| = 1 [21, 22]. Any projective representa-
tion of a Lie group G is equivalent to the unitary representation
of the central extension of the group Gc. For the case of simply
connected groups like the rotation group SO(3) projective rep-
resentations are obtained by replacing the group SO(3) by its
universal cover SU(2). However, the Euclidean group E(2) is
not semi-simple and the covering group Ẽ(2) is not sufficient.
One has to use the central extension Ec(2). The group Ec(2) has
been studied previously as, e.g., in [22, 23, 24] and consists of
elements (α, a, ω) with (α, a) ∈ E(2), ω ∈ R. The generators of
the central extended Ec(2) group are given by [1]:

T1 = −i
(

∂

∂ξ1
+

1
2

ξ2
∂

∂β

)
,

T2 = −i
(

∂

∂ξ2
− ξ1

1
2

∂

∂β

)
,

T3 = −i
(

ξ1
∂

∂ξ2
− ξ2

∂

∂ξ1

)
,

E = −i
∂

∂β
,

(3)

which satisfy the following commutation rules [T1, T2] = iE,
[T1, T3] = −iT2, [T1, T3] = −iT2, [T1, T3] = −iT2, [Ta, E] = 0.

The vertical Laplacian of the group Ec(2) is determined by
∆Ec = (T1)2 + (T2)2 + 2T3E. Using ξ1 = ξ cos ϕ, ξ2 = ξ sin ϕ
and hnmκ(ξ, β, ϕ) = exp(iκβ)(exp(imϕ)gnmκ(ξ) for the eigen-
functions of the Laplacian we find with (3):[(

− 1
ξ

∂

∂ξ
ξ

∂

∂ξ
+

1
ξ2 m2

)
+κ2ξ2 − 2κm

]
gnmκ(ξ)

= ϵnmκgnmκ(ξ).
(4)

The solutions of (4) with hnmκ = Nnmκ exp(iκβ) exp(imϕ)gnmκ
are given by

gnmκ =

(
exp

(
−|κ|ξ2

2

) (√
κξ
)|m| L|m|

n

(
|κ|ξ2

))
, (5)

where Nnmκ =
√κ

π ( n!
(|m|+n)! )

1
2 , ϵnmκ = 4κ(n + 1

2 + 1
2 (m +

|m|)), n = 0, 1, 2, . . ., m = 0,±1,±2 . . ., and m = ± 1
2 ,± 3

2 , . . .,

κ = ±1,±2, . . ., and κ = ± 1
2 ,± 3

2 , . . . , L|m|
n (x) are the associ-

ated Legendre polynomials and the internal quantum number
(IQN) m can be interpreted as a hypercharge known from the
SM, but here two additional IQNs arise: the Ec charge κ and the
family quantum number n which could elucidate the existence
of families in the SM.

2



Letters in High Energy Physics LHEP-427, 2023

The solutions hnmκ in (5) form an orthonormal set and have
the analog form like the solutions of the Schrödinger equa-
tion in two space dimensions for electrons in a perpendicu-
lar external magnetic field B where the entity κ is substituted
by κ → eB/2. In the Schrödinger equation, the different lev-
els with quantum number n = 0, 1, 2, . . . are denoted as Lan-
dau levels (LL). Each Landau level is highly degenerate, and
the degeneracy is BA/2π where A is the area of the system.
An important entity in the Quantum Hall effect (QHE) is the
filling factor ν of a Landau level defined as the ratio of the
density of electrons nel to the density of states in a Landau
level ndeg = eB/2π (in the unit system c = h̄ = 1) given by
ν = 2πnel/eB. Final dimensional representations of the group
SU(2) are here described by complex coordinates z1 and z2

with |z1|2 + |z2|2 = 1. This is equivalent to the usual two-
component description by isospinors (ϕ1(x), ϕ2(x))T .

Differential geometry on a fiber bundle can be executed by
using the definition of connections and covariant derivatives
on the bundle. They can be constructed by the complementary
splitting Tu(P) = Hu(P)⊕ Vu(P) of the bundle into a vertical
and a horizontal subbundle [25]. In the SM, the vertical sub-
bundle describes the internal degrees of freedom arising by
the gauge group. On the other hand, the horizontal subbun-
dle is a concept to formulate the notion of a connection on the
fiber bundle. In the geometric structure of fiber bundles, the
connection is independent on the metric and can be axiomat-
ically defined as a matrix-valued 1-form [25]. Differentiation
along the horizontal lifted curves in the TB is given by the rule
d/dτ = (dxµ/dτ)Dµ, where

Dµ =
∂

∂xµ + ig1 Aa
µ(x)Ja + ig2

1
2

Ba
µ(x)Ta + ig3Cµ(x)E (6)

is the covariant derivative, Ja (with a = 1, 2, 3) are the gener-
ators of the SU(2) group, Ta and E are the generators of the
group Ec(2), and Aa

µ(x), Ba
µ(x), and Cµ(x) are the correspond-

ing connection coefficients (gauge potentials). Here, gravity is
neglected. On the TB, one-particle states of the fermion Dirac
field labeled by the momentum p are described by

Ψ(x, u) = ∑
K

1√
2EMV

[
aKus(p)χM(u) exp(ipx)

+ b†
Kvs(p)χ∗

M(u) exp(−ipx)
]

,
(7)

where the index s characterizes the helicity s = {L, R} and
K = {M, p, s} with M = (n, m,κ, j, j3). aK(t) is the annihila-
tion operator for a particle and b†

K(t) is the antiparticle creation
operator satisfying the anticommutation rules. EM is the sin-
gle particle energy and V the volume, and us(p) and vs(p) are
the plane wave solutions of the Dirac equation for particles and
antiparticles, respectively. χM(u) are the eigenfunctions of the
Laplacian of the group SU(2)⊗ Ec(2).

3. THE ANALOGY WITH THE
FRACTIONAL QUANTUM
HALL EFFECT

The Laplacian ∆Ec on the group Ec(2) refers to a single tangent
fiber at a fixed space point x. Now, we consider the whole space
with a finite volume V = L3 and present the fields arranged
in a regular cubic lattice of unit cells which are defined by a

set of position vectors R = n1a1 + n2a2 + n3a3 in which ni =
0,±1,±2 run over all integers and ai are linear independent
basis vectors. In the limit L → ∞, we associate a tangent fiber
with an elementary cell with volume ∆Vi = ( 2π

L )3. To obtain
the vertical Laplacian of the TB, we combine the fibers attached
at all space points xi. For the Ec(2) part of the vertical Laplacian
of the bundle, we obtain

ΛEc(2) = ∑
i

[
−i

∂

∂ξ
(i)
1

− κ
2

ξ
(i)
2

]2

+

[
−i

∂

∂ξ
(i)
2

+
κ
2

ξ
(i)
1

]2

, (8)

where ξ
(i)
1 and ξ

(i)
2 are the corresponding variables of the rep-

resentation of the Ec(2) group attached to the space cell i. The
Laplacian (8) has an analog form as the multiparticle Hamilto-
nian of a 2D quantum mechanical many-electron system in an
external uniform magnetic field describing the integer and frac-
tional quantum Hall effect (QHE). In the integer QHE [26], in
a 2D layer of a semiconductor at low temperature and strong
magnetic fields, the Hall conductance takes quantized values
of σxy = e2ν/2πh̄, where ν is precisely an integer number,
ν = 1, 2, . . . . In the fractional QHE [27], ν is not only restricted
to take integer values but can take fractional values. The inte-
ger QHE can be understood because the 2D electron gas forms
an incompressible liquid at the filling factors ν = n = 1, 2, 3
due to the Landau level structure with a finite energy gap for
all charged excitations. The fractional QHE was first explained
by a theory of Laughlin [28]. He proposed a trial ground-state
many-body wavefunction in a partially filled Landau level
with filling fraction ν = 1/(2p + 1), p = 1, 2, 3, . . ., which in-
cludes strong Coulomb interaction and correlations among the
electrons. Since the vertical Laplacian (8) has the same form as
the 2D multiparticle Hamiltonian in a quantum Hall system,
we can use the analog Laughlin wavefunction ΦL

vert(η) for the
description of the vertical part of the quark wavefunction in the
vacuum n = 0:

ΦL
vert(η) = ∏

i≺j

(
ηi − ηj

)k
exp

(
− 1

4l2κ
∑

i
|ηi|2

)
, (9)

where k = 2p + 1 must be an odd integer for ΦL
vert(η) to be to-

tally antisymmetric, ηi = ξ
(i)
1 + iξ(i)2 = ξi exp(iφi). This wave-

function describes a uniform “density” state with a partially
filled lowest TB-LL with filling factor νTB = 1/(2p + 1). Due
to a particle-hole symmetry, there exist also states at the fill-
ing factor νTB = 1 − 1/(2p + 1) [28]. In particular, for p = 1,
we find states with the filling factor νTB = 1/3 and νTB = 2/3.
Laughlin wavefunction exhibits an analog form as a 2D plasma.
From this analogy, he derived as a key result that the elemen-
tary charged excitations of the ground state would be quasipar-
ticles or quasiholes with fractional electric charges ±e/k (with
k = 2p + 1). For spin singlets, a generalized wavefunction has
been determined by Halperin [29]. Since the vertical Laplacian
(8) has the same form as the 2D multiparticle Hamiltonian in
a quantum Hall system, we can use the analog Laughlin or
Halperin wavefunctions for the description of the vertical part
of the quark wavefunction.

According to the Laughlin wavefunction, the fractional
quantum Hall effect (FQHE) is a collective behavior of elec-
trons in a 2D semiconductor system in a magnetic field when
all highly degenerate electrons are confined to the lowest Lan-
dau level. In semiconductors, the complex variables ηi are re-
lated to the two space coordinates and the odd number k with
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the orbital angular momenta responsible for the degeneracy. In
the wavefunction (9), the variables ηi are corresponding vari-
ables of the tangent vectors, k is related to the hypercharge, and
the magnetic field is substituted by the new internal quantum
number denoted as Ec charge. The collective behavior in the
internal (vertical) space of quarks described by the TB bundle
Laplacian is a novel phenomenon which has no counterpart in
the SM.

4. COMPOSITE QUARKS WITH
FRACTIONAL HYPERCHARGES

The composite fermion picture of Jain [13, 30] is a convenient
way to provide an intuitive idea for the fractionally charged
quasiparticles. This concept can be transferred to the under-
standing of fractionally charged quarks in TB geometry. When
all particles are confined in the lowest TB-LL, the wave func-
tion (9) is a polynomial of the complex variable ηi = ξi exp(iϕi)
which has a vortex at the origin because a complete loop
around the origin changes ϕi by 2π. A composite quark is sim-
ply envisioned as a bound state of a bare quark carrying two
quantized vortices of the many-particle wave function.

A composite quark experiences a reduced IQN meff and
κeff. This can be calculated in an analog way as in the case of
the anomalous QHE taking into account the magnetic field of
the 2p attached vortices Bvort = −2pρ0Φ0 pointing antiparal-
lel to the external magnetic field B where Φ0 = h/e is the el-
ementary quantum of magnetic flux. Thus, with the effective
magnetic field Beff = B − 2pρ0Φ0, the composite fermions ex-
perience a reduced effective magnetic field. Using the analogy
of κ with the magnetic field B we can substitute eBeff → 2κeff
and obtain κeff = κ/(2p + 1).

In the SM, the members arranged in different fami-
lies of leptons and quarks have identical IQNs and prop-
erties except for their masses. In contrast, in the TB, dif-
ferent families can be distinguished by the different fam-
ily quantum numbers n = 1, 2, 3 while the vacuum state
carries the TB family quantum number n = 0. Rules
for the determination of the new IQN κ can be found
by the Yukawa interaction Lagrangian which includes addi-
tional matrix elements IY

QHUR
=
∫

dµχH(u)χ∗
Q(u)χUR (u) and

IY
QHc DR

=
∫

dµχHc (u)χ∗
Q(u)χDR (u) with the integration mea-

sure dµ(u) = dµSU(2)dµEc , Φc
H = iσ2ΦH and the notation

Qn = (Un,Dn)T
L , (Un)R, (Dn)R, where n = 1, 2, 3 stands for

the different families. The matrix elements are nonzero if the
following selection rules are fulfilled: −mQ + mH + mDR = 0,
−mQ + mHc + mUR = 0 and −κQ + κH + κDR = 0, −κQ +
κHc +κUR = 0 with mH = −mHc = 1.

Now, one can interpret the IQNs of different quarks in the
composite quark picture according to its composition by bare
quarks and attached TB vortices. Left-handed quarks (UL, DL)
have the IQN meff = 1/3 which can be interpreted as excita-
tions of composite holes with two attached TB vortices. Right-
handed DR quarks are isospin singles with I3 = 0 and can
be interpreted by the assumption that the lowest level is occu-
pied with isospin singlets. Since every isospin component car-
ries the hypercharge −1/3, the hypercharge of the DR quark is
meff = −2/3. The right-handed UR quarks with I3 = 0 can be
identified as excited hole states with two isospin components

each of which carry the hypercharge meff = 2/3. The total hy-
percharge of the UR quarks is meff = 4/3.

The left-handed leptons (N, E)L are interpreted as fermions
without attached TB vortices with m = −1 and a completely
filled lowest level ν = 1. Right-handed leptons ER are isospin
singlets with m = −2 and filling factor ν = 2.

5. EMERGENT CHERN-SIMON SU(3)
GAUGE FIELDS ON THE TB

A field-theoretical formalism can be derived that allows a sim-
ple understanding of the composite fermion concept. In this
“Chern-Simon” approach, a singular gauge transformation is
used to map the Hamiltonian of interacting electrons to one
of electrons coupled to an additional emergent gauge field
[31, 32, 33, 34]. Thus, the fractional QHE has a hidden dynami-
cally generated emergent local U(1) gauge symmetry which is
responsible for the binding of vortices to the fermions. In such
a way, the Laughlin state with partially filled lowest Landau
level is mapped into a completely filled fermionic state of com-
posite fermions.

Quarks can occupy three different isospin states: two states
are arranged as a left-handed isospin doublet with I3 = 1/2
and I3 = −1/2 and the third is the right-handed isospin singlet
I3 = 0. In the Laplacian of the product group Ec(2) ⊗ SU(2),
one can assume that in the ground state the three isospin com-
ponents are degenerate and equally active. In this case, a finite
number of states is available for each orbital state within a de-
generate Landau level. Therefore, the system possesses an un-
derlying SU(3) symmetry, and the vertical part of the TB Lapla-
cian shows certain analog features of a semiconductor quan-
tum Hall multicomponent system (see, e.g., [15]) which can be
realized by a variety of realizations such as multivalley semi-
conductors, multi-quantum-well systems or in direct analogy
to the use of isospin in the present letter by the use of electron
spin. Note that here the isospin does not play a role as internal
symmetry but only the pure existence of three components and
its possible quantum coherence is requested.

To describe the full dynamics in the TB, we have to include
the spacetime depending horizontal part Φhor of the wavefunc-
tions; therefore, the multiplets of quark fields in the TB de-
pend both on the spacetime variables x and on the variables
ξ = (ξ1, ξ2) of the group Ec(2). This means that number density
ϱ(x, ξ) and color SUc(3) spin density SA(x, ξ) in the ground
state n = 0 take the following form:

ϱ(x, ξ) = Φ†
vert(x, ξ)Φvert(x, ξ),

SA(x, ξ) = Φ†
vert(x, ξ)λAΦvert(x, ξ),

(10)

where λA are the SU(3) Lie algebra matrices. For simplifica-
tion, we consider the case of a vacuum state with aligned spin
and isospin states. The Chern-Simon formalism for the frac-
tional QHE with an emergent U(1) gauge group has been gen-
eralized for the inclusion of spin in the QHE [33, 34]. Using an
analog approach, the generalized vertical Laplacian of quarks
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interacting through the emergent Uem(1)⊗ SUc(3) fields is

ΛEc(2) = LCS

+ Φ†
vert

[ (
i∂0Φ − GA

0 − A0

)
+

(
−i

∂

∂ξ1 +κξ2 − λAGA
1 − A1

)2

+

(
−i

∂

∂ξ2 −κξ1 − λAGA
2 − A2

)2
]

Φvert,

(11)

where GA
a are the SUc(3) Chern-Simon gauge vector potentials,

(ξ0 = t, a = 0, 1, 2, A = 1 − 8), Aa is the emergent Uem(1)
gauge potentials depending on the spacetime coordinates x as
a parameter, and LCS is the non-Abelian Chern-Simon action
of the group Uem(1)⊗ SUc(3):

LCS =
1

4πk2
εabc

[
GA

a ∂bGA
c +

1
3

fABCGA
a GB

b GC
c

]
+

1
4πk1

εabc Aa∂b Ac

(12)

(compare [33, 34, 35]). Here, we introduced ∂a = ∂/∂ξa, and
k1 and k2 are integers defining the topological structure of the
model. εabc is the antisymmetric 2D Levi-Civita symbol and
f C
AB are the structure constants of the SU(3) group. The ver-

tical “magnetic” field strength for the Uem(1) group in the Ec

manifold is defined as B = ϵab∂a Ab and for the SU(3) group
GA = ϵab(∂aGA

b − fABCGB
a GC

b ). The equation of motion in the
vertical (internal) subspace can be obtained by the variation of
the vertical Laplacian ΛEc(2) over A0 given by

B = εab∂a Ab = 2πk1ϱ. (13)

The relation (13) is a constraint for the vertical “density” ϱ
which is locally proportional to the emergent vertical “mag-
netic field” B. A simple way to analyze the Chern-Simon ap-
proach is to make the mean-field approximation in the gauge
A0 = 0. Using an average over the variables ξ of the Ec mani-
fold ≺ ρ ≻= ϱ0, the TB Chern-Simons field is smeared out to
≺ B ≻= 2πk1ϱ0. The effective field Beff is reduced to

Beff = B− ≺ B ≻= B − 2πk1ϱ0. (14)

Using the analogy of κ with the magnetic field B (eB → 2κ),
we can substitute eBeff → 2κeff and find a fractional Ec charge
κeff = κ/(2p + 1. This relation for κeff agrees with the com-
posite quark interpretation explained above and also with the
rules derived from the Yukawa interaction Lagrangian.

Variation over GA
0 yields the constraint

GA = ϵab
(

∂aGA
b − f ABCGB

a GC
b

)
= 2πk2SA. (15)

The invariant internal Chern-Simon SU(3) color-magnetic
field GA is according to (15) directly proportional to the color
SU(3) spin density SA. An important property of the (2 + 1)D
Chern-Simon approach is that the large-scale physics of an in-
compressible 2D system (this means that there is an energy gap
above the ground state) is determined purely by the Chern-
Simon action LCS in (12) [31]. Other interaction terms in (11) are

short range and invisible in the large-distance scale. This leads
to an interesting conclusion. The field equation derived from
the pure Chern-Simon action LCS in (12) is given by GA = 0.
Since the internal Chern-Simon color-magnetic field GA in the
large-scale limit of the variables of the Ec group vanishes, we
find from (15) for the averaged color SU(3) spin density

≺ SA ≻= 0. (16)

The vanishing of the average ≺ SA ≻ over the variables ξ im-
plies that the ground state is a color singlet. This could be inter-
preted as a signature of quark confinement in the TB-QFT. This
surprising and unexpected result in the large-scale approxima-
tion follows from general universal physical principles in the
vertical TB Laplacian independent on the microscopic dynam-
ics of quarks in QCD. Note that similar universal properties in
a quantum Hall system, such as the quantized Hall conductiv-
ity, are known where the theoretical understanding of physi-
cal properties is encoded into the large-scale Chern-Simon La-
grangian and does not involve a detailed understanding of the
microscopic quantum mechanics of such systems [31].

6. THE CONDENSED VACUUM
STRUCTURE IN THE TANGENT
BUNDLE

The analog form of the vertical Laplacian with the Hamiltonian
of a quantum Hall system induces the hypothesis that the vac-
uum with the IQN n = 0 is completely filled with see leptons
and composite see quarks and all higher levels n = 1, 2, 3 are
empty. In this picture the background charge of vortices can-
cels the charge with the opposite sign of the composite quarks.
When we add one quark state to the system of the completely
occupied ground state, it is placed into a higher energy level
n = 1, 2, 3 because of the Pauli exclusion principle and leaves
an unoccupied state (hole) in the lowest energy state. This re-
sembles the understanding of an electron hole in a semicon-
ductor crystal lattice. In solid-state physics, an electron hole is
simply the absence of an electron from a full valence band. In
a similar way, the here-introduced quark-hole is a way to con-
ceptualize the interaction of composite quarks (with n = 1, 2, 3)
with the full vacuum state n = 0 which leads to a redefinition
of antiparticles as holes in the completely filled vacuum state.
This new understanding of the vacuum as a completely filled
band with the family IQN n = 0 differs significantly from the
interpretation of the vacuum in QFT as a Fock state with zero
particle number. In contrast, it associates a finite particle num-
ber density or a chemical potential with the vacuum state. In
the presence of attractive interaction by gluon exchange, the
vacuum is unstable with respect to the formation of a quark
condensate due to the pairing of quarks with antiquarks. This
phenomenon shows some analogies with exciton condensation
in solid states where pairs of electrons form a condensate due to
the weak attractive force between electrons and holes. The pos-
sible condensation of excitons has been studied theoretically
beginning in the 1960th [36, 37, 38]. Studies in semiconductor
bilayer systems have provided experimental evidence for the
existence of exciton condensation [39].

To explore the condensed vacuum structure in the TB and
the dynamics of quark condensation by quark-antiquark pair-
ing in [11], the gap for quark-antiquark pairing has been calcu-
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lated in the mean-field approximation of a relativistic Hamilto-
nian formalism describing the two-body interaction of quarks
in the TB by gluon exchange. In the gap equation, the main
contribution arises at the Fermi surface |k| ≃ µ. Using this ap-
proximation, we find the gap [11]

∆(p) =
2
3

b2
qh

∫ δ

−δ

µ2dk√
∆2

0(k) + (k − µ)2

×
[

3
2

ln

(
1 +

8π2

N f g2

)
+ ln

(
1 +

64πµ

N f g2|p − k|

)]
∆(k)

(17)

with k = |k|, p = |p|, b2
qh = 1

9 g2N f NC/π2 and δ as a cut-
off parameter, NC = 3 is the number of colors, and N f is the
number of flavors. An approximate solution of (17) is given by

∆(k) = ∆0 sin
[

2
3

bqh ln
( cµ

2k

)]
(18)

with c = 256(π4/g5)(2/N f )
5/2 and

∆0 = cµ exp

(
− 3π2
√

2g

)
, (19)

while the quark condensation parameter Cq is approximately
estimated by

Cq =≺ Φ
∣∣∣Ψa

f (x, u)Ψa
f (x, u)

∣∣∣ ≃ −Ng∆0
µ2

ren
8π2 . (20)

With Cq ≃ −(0.240)3 GeV3, we find a vacuum chemical poten-
tial µ ≃ 0.8 GeV and a gap ∆0 ≃ 0.2 GeV.

7. CONCLUSIONS
This paper is a follow-up of [1] with a study of the hypoth-
esis that the tangent bundle (TB) with the structure group
SO(3, 1) ⋊ T(3, 1) is the underlying geometric structure for
a unified theory of the fundamental interactions, explaining
their common origin and opening a deeper understanding of
the relationship between them. Based on this assumption in
[1], a generalized theory of electroweak interaction (includ-
ing hypothetical Dark Matter particles) with the little groups
G = SU(2)⊗ Ec(2) of the SO(3, 1) group as gauge group has
been presented. The tangent bundle is also the geometric fun-
dament for a gauge theory of gravity based on translational
transformations T(3, 1) of tangent fibers [16, 17, 18, 19, 20].
The present paper describes a possible way that strong inter-
action can emerge in the tangent bundle geometry. The group
SU(3) cannot be described as a geometrical symmetry in the
TB, but this symmetry is hidden in the fundamentals of the tan-
gent bundle geometry arising as an emergent symmetry similar
to Chern-Simon gauge symmetries in Quantum Hall systems.
This assumption is based on the fact that the vertical Laplacian
of the TB has the same form as the multicomponent Hamilto-
nian of a Quantum Hall system. The eigensolutions of the verti-
cal Laplacian exhibit two additional internal quantum numbers
(IQN) which explain the existence of lepton and quark fami-
lies: the Ec charge κ and the family quantum number n. The
family quantum number n characterizes different states anal-
ogous as Landau levels of electrons in an external magnetic

field. The lowest quantum number describes a completely oc-
cupied vacuum state (filled with see leptons and see quarks).
This means the vacuum state (with n = 0) differs from excited
states (with n = 1, 2, 3) describing valence quarks by a different
IQN. The analogy with a quantum Hall system allows using
the Laughlin wave function for the description of quarks with
fractional hypercharges which can be interpreted as compos-
ite quarks formed from bare quarks and two attached hyper-
charge vortices. Taking into account the three isospin compo-
nents I3 = −1/2, 0, 1/2, the color SU(3) symmetry arises as
an emergent gauge symmetry described by (2 + 1)D Chern-
Simon gauge fields. The field equation of the vertical Laplacian
including the emergent Chern-Simon fields implies that in the
large-scale limit of the variables of the TB Laplacian the ground
state is a color singlet demonstrating a signature of quark con-
finement. This result follows from the general universal princi-
ple in the TB vertical Laplacian independent of the microscopic
dynamics of quarks in QCD. Besides, in the TB geometry, a
new understanding is introduced for the vacuum as the ground
state that is occupied with a condensate of quark-antiquark
pairs with finite density (or chemical potential). The gap for
quark-antiquark pairing is calculated in the mean-field approx-
imation which allows a numerical calculation of the character-
istic parameters of the vacuum such as its chemical potential,
the quark condensation parameter, and the vacuum energy.

Recently, at CERN, new exotic particles were observed to
have formed as tetraquarks containing two quarks and two an-
tiquarks and pentaquarks containing four quarks and one anti-
quark (for a review, see, e.g., [40]). The analogy with the anoma-
lous QHE could hint at a possible existence of other types of
exotic particles formed from exotic quark states with hyper-
charges of e/5 for up and down quarks and the exotic up quark
had an electric charge of (7/10)e, while the exotic down quark
had charge (−3/10)e. Pairs of exotic quarks and exotic anti-
quarks with the same flavor can form neutral flavorless exotic
mesons. In solid-state physics, the real existence of e/5 charged
quasiparticles has been proven by shot-noise measurements in
a quantum Hall system [41].

Since the tangent bundle is also the geometric fundament
for a gauge theory of gravity based on translational transfor-
mations T(3, 1) of tangent fibers [16, 17, 18, 19, 20] and for a
generalized theory of electroweak interaction [1], one can iden-
tify the TB as the underlying geometric structure for a new type
of unified geometrized field theory linked with the geometriza-
tion program of physics.
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