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Abstract
The density profile of the QCD flux tube is investigated within the framework of the Lüscher-Weisz (LW)
string action with two boundary terms. The transverse action profile and potential between static quarks
are considered using Wilson’s loop overlap formalism at zero temperature in SU(2) Yang-Mills theory. We
find the predictions of the LW string matching the lattice data for the width of the energy-density and QQ̄
potential up to a small color-source separation of R = 0.32 fm.
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1. INTRODUCTION
The confinement of quarks is a fundamental property of quan-
tum chromodynamics (QCD) and strong interactions. Despite
extensive research efforts to provide mechanisms of the quark
confinement based on the degrees of freedom of QCD, there is
no sound analytical construction for the phenomenon of con-
finement starting from fundamental principles.

The Monte-Carlo calculations of QCD path integrals can
unambiguously probe the confinement property on first prin-
ciples basis. Computer simulations of the confinement poten-
tial of the infinitely heavy quark-antiquark pair QQ̄ revealed
its linear increasing characteristic [1].

The linear increase aspect of the potential between two
static QQ̄ in the IR region is believed to be a manifestation
of a binding gluonic flux tube that assumes a stringlike struc-
ture [2, 3, 4, 5, 6, 7, 8].

String formation is not an uncommon phenomenon among
strongly correlated systems. Following the roughening transi-
tion [9, 10, 11, 12], the relevant systems show aspects that ad-
mit an effective string description. The effective string action is
a low-energy effective field theory [13] which forms a tool for
identifying a set of infrared (IR) observables. These predictions
can unambiguously be probed in the numerical outcomes of
the Monte-Carlo simulations.

In confining gauge models, the effective string theory (EST)
predicts [14] a subleading universal correction, proportional to

the inverse of string length
1
R

, to the linearly rising potential.
This is the universal Lüscher term that has been verified on the
lattice simulations of several gauge models [15, 16, 17, 18, 19,
20].

Along with the string signatures to the static potential,
the EST predicts a logarithmic widening of the energy-density
width when the color sources are pulled apart [21]. Lattice sim-
ulations [15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] of several confin-
ing gauge groups have confirmed the logarithmic growth prop-
erty at large enough color source separation.

Despite the successful predictions of the (noninteracting)
EST at large color source separations, the analysis of the lat-
tice numerical data for QQ̄ potential and the broadening pro-
file revealed substantial deviations [32, 33] in the intermediate-
distance region at low and high temperatures in addition to the
excited spectrum.

Numerous accurate numerical simulations were prompted
[34, 35] to resolve departures from the free EST by considering
the impact that higher-order terms of the LW effective action
might have. Other string properties, such as the existence of
massive modes owing to the string’s stiffness [36, 56, 57], were
conjectured [36, 56, 57, 58, 59] and found relevant to compact
QED [17, 37], analysis at high temperatures [38, 39], and excited
energy spectrum [40].

Apart from these fine structures of the strings, it has been
proposed that the string boundaries which are either two
Polyakov lines or Wilson loops can significantly modify the
static potential and width profile. This is formally implemented
by a surface term in the action of an open string, which appears
at derivative orders respecting relativistic invariance.

In fact, the Lorentz-invariant boundary corrections [41] to
the static QQ̄ potential have demonstrated viability in the anal-
ysis of the correlators of both Wilson and Polyakov loop [39,
40, 42, 44, 46]. The boundary corrections to the string potential
recently provided the rationale for the deviations among pre-
dictions of the EST and the numerical outcomes [43, 46]. More-
over, the boundary term modifications to the excited spectrum
[40, 44] gave an account for the well-known deviations at rela-
tively large color separation distances.

The consequence of the inclusion of boundary terms in the
action is also to correct the characteristic logarithmic broaden-
ing of the string’s energy width [45]. However, a confrontation
of the numerical lattice data at zero temperature with these the-
oretical predictions remains to be addressed.

In this paper, we consider both modifications to the mean-
square width [45] and the static potential [46] by virtue of
two boundary terms, in the order of fourth and sixth deriva-
tives [42, 45], in the action. We aim to investigate these analytic
predictions with a set of lattice data corresponding to a static
meson at different values of lattice coupling.

Section 2 lays out the formalism derived from the LW string
to estimate the corrections to the QQ̄ and the width of the flux-
tubes. In Section 3, we confront the numerical behavior of each
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lattice observable with the LW string prediction. We provide
concluding remarks in Section 4.

2. THE POTENTIAL AND WIDTH OF LW
STRING WITH BOUNDARY TERMS

The conjecture that the Yang-Mills (YM) vacuum admits the
formation of a very thin stringlike object [47] has its origins in
the context of the linear rise property of the confining poten-
tial between color sources. The formation of a stringlike con-
densate in the Yang-Mills vacuum spontaneously breaks the
translational and rotational symmetries of the QCD vacuum.
By virtue of the Goldstone theorem [48], the symmetry break-
ing produces massless transverse modes of Goldstone bosons
(GB) of (d − 2) dimension.

A string action describing the massless Goldstone modes
can be introduced as the derivative expansion of collective
string coordinates respecting Poincare and parity invariance.
One particular form of this action is the LW action [14] which
is gauge-fixed to the physical gauge X1 = ζ0 and X4 = ζ1,
and restricting the string fluctuations to the transverse direc-
tions of the worldsheet C. Invariance under the parity trans-
form would keep only the terms of an even number of deriva-
tives. The Lüscher and Weisz [14] action up to a six-derivative
term reads as

SLW[X]

= σ0 A +
σ0

2

∫
d2ζ

[(
∂X
∂ζα

· ∂X
∂ζα

)
+ κ2

(
∂X
∂ζα

· ∂X
∂ζα

)2

+ κ3

(
∂X
∂ζα

· ∂X
∂ζβ

)2

+ κ4

(
∂

∂ζα

∂

∂ζβ
Xi
)(

∂X j

∂ζγ

∂X j

∂ζβ

)

+ κ5

(
∂X
∂ζα

· ∂X
∂ζα

)3

+ κ6

(
∂X
∂ζα

· ∂X
∂ζα

)(
∂X j

∂ζβ

∂X j

∂ζγ

)]

+ θ0

∫
d2ζ

√
g R+ α0

∫
d2ζ

√
g K2 + Sb ,

(1)

and the vector Xi(ζ0, ζ1) maps the region C ⊂ R2 into Rd

where subscript i = 1, 2, . . . , d denotes the dimension of the
embedding background. The map gα,β is the two-dimensional
induced metric on the worldsheet with local coordinates ζα and
ζβ, indexed with α, β = 0, 1. The worldsheet area A and the pa-
rameters σ0, α0, and θ0 are the string tension, the rigidity, and
the Gauss-curvature parameter, respectively.

The couplings κj; j = 2, . . . , 6 are effective low-energy
parameters. The Lorentz symmetry imposes constraints on
the values of these couplings. The evaluations performed in

[30, 46, 49, 50, 51] yield coupling values such that κ2 =
−σ

8
,

κ =
σ

4
, κ4 = 0, κ5 =

σ

16
, and κ6 =

−σ

8
. All the couplings agree

with the corresponding coefficients in Nambu-Goto (NG) ac-
tion expanded up to the six-derivative term [51, 52].

The last two geometrical terms, which encompass the Ricci
scalar R and extrinsic curvature K, are proportional to the
intrinsic curvature and the second fundamental form, respec-
tively. In the subsequent discussion, we do not consider the ef-
fects of these terms. However, the implications owing to these
terms were discussed at a finite temperature [53, 54] and will be
considered in a detailed version of this investigation elsewhere.

The action in equation (1) encompasses surface/boundary
terms Sb which arise by virtue of the symmetry breaking at the

string’s boundaries. The boundary term Sb is given by

Sb =
∫

∂Σ
dζ0

[
b1

∂X
∂ζ1

· ∂X
∂ζ1

+ b2
∂∂X

∂ζ1∂ζ0
· ∂∂X

∂ζ1ζ0

+ b3

(
∂X
∂ζ1

· ∂X
∂ζ1

)2
+ b4

∂2∂X
∂ζ2

0∂ζ1
· ∂2∂X

∂ζ2
0∂ζ1

]
,

(2)

where bi are the couplings [30] of the boundary terms. Consis-
tency with the open-closed string duality [30] implies a van-
ishing value of the first boundary coupling b1 = 0. Also, the
Lorentz-invariance imposes a vanishing value constraint on
both b1 = 0 and b3 = 0. The other two parameters (b2, b4)
are free nonuniversal parameters anticipated to characterize a
given gauge model.

Within the framework of the light-cone quantization,
Arvis [55] obtained the exact ground state potential of the
Nambu-Goto string action. The Arvis potential reads

VNG
Exact(R) = σ0R

√
1 − 2πγ

σ0R2 , (3)

with γ = (d−2)
24 .

Expanding the Arvis potential equation (5) up to the NNLO
term yields

Vnnℓo(R) = σ0R − πγ

R
− π2γ2

2σ0R3 − π3γ3

2σ2
0 R5

+ µ, (4)

with µ defining a certain UV cutoff [14]. As discussed above,
since the expansion of the NG action would agree with LW ac-
tion equation (1) up to six-derivative terms, the string potential
equation (4) is equivalent to that obtained from the LW action.

In the limit of an infinite cylinder’s length LT =
1
T , cor-

responding to the inverse of the temperature scale T the two
consecutive orders

Vℓo(R) = σ0R − πγ

R
+ µ, (5)

Vnℓo(R) = σ0R − πγ

R
− π2γ2

2σ0R3 + µ, (6)

coincide with the LO Lüscher potential [14] and the NLO Dietz-
Filk formula [60].

The second term in equation (5) is the famed Lüscher
term of the interquark potential. This term signifies a univer-
sal quantum effect independent of the gauge model. However,
there is no reason to believe that all orders of power expan-
sion are universal among gauge models [34, 62]. For instance,
in [61], it has been shown that the universality feature extends
to the NLO term but not the NNLO six-derivative term with
its universality expected only among closed string gauge mod-
els [63].

The Lorentz symmetry is broken by light-cone quantization
at any dimension other than d = 3, 26. Counterterms have to
be introduced [64, 65] for compatible quantization. The first
term appears in the same order as that of the NNLO term

−π3(d − 26)
192πR5 ; however, this term vanishes for the ground state.

The Arvis potential is tachyonic [55] at a small string length,
and the threshold is defined by the convergence radius of the
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square root expansion | 2πγ

σ0R2 | < 1. One should recall that the

second geometrical term in the LW action equation (1) corre-
sponding to extrinsic curvature circumvents the undesirable
features of the NG action such as ghosts, tachyons, or an imag-
inary static potential between quarks when the distance be-
comes smaller than the critical distance [36, 54, 56, 57, 58, 59].

The potential [46] of an open Dirichlet string is given from
the partition function of Wilson’s loop:

V(R) =
−1
T

log Z. (7)

Figure 1 shows a conveniently chosen rectangle-shaped
Wilson loop circumscribing the spatial-temporal area of R × T.
The partition function is the path integral over all string config-
urations:

Z =
∫

DXe−SLW−Sb2−Sb4 . (8)

In Wilson loops [43, 46, 66], the boundary action Sb survives
over both the spatial and temporal extents. The boundary ac-
tion Sb2 is then given by

Sb2 = b2

∫
∂Σt

dζ0
∂∂X

∂ζ1∂ζ0
· ∂∂X

∂ζ1ζ0
+ b2

∫
∂Σs

dζ1
∂∂X

∂ζ1∂ζ0
· ∂∂X

∂ζ1ζ0
.

(9)
The curves ∂Σt and ∂Σs stand for temporal and spatial parts

of the Wilson loop, respectively.
Perturbative expansions of the partition function equa-

tion (8) around the free action yield

Z = Z0

( (
1 −

〈
Sb2

〉
□ −

〈
Sb4

〉
□

)
+

1
2

〈(
Sb2 + Sb4

+ . . .
)2
〉
□

)
+ . . . ,

(10)

where Z0 is the partition function of the leading term in LW ac-
tion SLW

ℓo . The direct calculation of the expectation value of the
⟨Sb⟩□ entails contributions from both the temporal and spatial
parts.

These two contributions give similar formulas of the poten-
tial [46]; however, with the role between the source separation,
R, and temporal extent, T, exchanged,

Vb2
□ (R, T) = − (d − 2)b2π3

60R4 E4

(
iT
2R

)
− (d − 2)b2π3R

60T5 E4

(
iR
2T

)
,

(11)
where E4 and E6 are Eisenstein series defined [67] according to

E4(τ) = 1 + 240
∞

∑
n=1

n3qn

1 − qn ,

E6(τ) = 1 − 504
∞

∑
n=1

n5qn

1 − qn ,

(12)

respectively, with q = eiπτ and τ = iT
2R .

Similarly, the boundary potential at the next order b4 would
assume the form

Vb4
□ (R, T) = − (d − 2)b4π5

126R6 E6

(
iT
2R

)
− (d − 2)b4π5R

126T7 E6

(
iR
2T

)
.

(13)
The above expression of the potential due to the next boundary
term Vb4 is derived in [38].

FIGURE 1: Rectangular Wilson Loop: the temporal and spatial
length are T and R, respectively. The worldsheet coordinates
are ζ0 and ζ1. In LGT, the temporal and spatial edges of Wilson
loops are the gauge model’s links.

In the following, we put forth the formalism of (MS) width
of the string which is another observable that can be probed
in the QCD vacuum. The perturbative expectation value of the
mean-square (MS) width of the LW string is given by

W2
LW(R) = W2

ℓo(R)−
〈

X2Snℓo

〉
−
〈

X2S□,b2

〉
−
〈

X2S□,b4

〉
+ . . . ,

(14)

where W2
ℓo is the leading-order MS width in d dimension calcu-

lated by Lüscher et al. [21]:

W2
ℓo (R, R0) =

d − 2
2πσ0

log(R) + R0, (15)

where R0 is the UV cutoff [21, 68, 69].
The width at the two-loop order of LW action equation (1)

has been worked out in detail in [69, 70]. In the limit of infinite

cylinders’ height LT =
1
T → ∞, the NLO term reads

W2
nℓo(R) = −

πW2
lo(R)

4σ0R2 −
(
(d − 2)2

96
− d − 2

16

)
1

σ2
0 R2

. (16)

Following the same line of reasoning that led to equa-
tions (11) and (13), the expectation value of the boundary cor-
rection to the width of Wilson’s loop is evaluated as

W2
□,b2

=
〈

X2Sb2

〉
∂Σs

+
〈

X2Sb2

〉
∂Σt

= W2
b2
(R, T) + W2

b2
(T, R),

(17)

where W2
b2
(R, T) is derived in detail in [38] and reads as

W2
b2
(R, T)

=
−π3b2(d − 2)

16R5σ2
0

(
1
3

E2

(
iT
R

)
+ 2

ϑ′
1

ϑ1

(
iπT
4R

, q
)′

− 91
6

)
,

(18)
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with ϑ1(z, q) representing the Jacobi elliptic theta function,
where z ∈ C, and E2 denoting the Eisenstein series defined by

E2(τ) = 1 − 24
∞

∑
n=1

nqn

1 − qn . (19)

The next-to-leading boundary correction for the Wilson loop of
rectangular area T × R [38] is, accordingly, given by

W2
□,b4

(R, T) = W2
b4
(R, T) + W2

b4
(T, R), (20)

with

W2
b4
(R, T) =

π5(d − 2)b4

32R7σ2
0

(
2
15

E4

(
iT
R

)
+

1
3

E2

(
iT
R

)

− 7
60

− 2
ϑ′

1
ϑ1

(
iπT
4R

, q
)′

− 32

)
.

(21)

Equations (18) and (21) consistently indicate the same dimen-
sion of the couplings [b2] = L3 and [b4] = L5 as of equa-
tions (11) and (13). Scrutinizing the boundary corrections on
the lattice entails considering a dimensionless continuum coun-
terpart. The continuum couplings can be conveniently defined
[40, 44, 46] through the string tension of a given gauge model
as

bc
2 = b2

√
σ3

0 ; bc
4 = b2

√
σ5

0 . (22)

In the following discussion, we ascertain the scaling behavior
of the boundary parameters on each lattice coupling.

The leading boundary corrections b2 to the flux tube for
either the potential or energy width indicate proportional-
ity to the inverse string length scale at powers 1

R4 and 1
R5

equations (11) and (17), respectively. High lattice resolution is,
thereof, essential to detect and disentangle the effects of the two
boundary terms b2 and b4 (of higher inverse power). On top of
that, lattice spacing has to be fine in such a way as to avoid sys-
tematic errors in the determination of the continuum physics
equation (22).

3. NUMERICAL RESULTS AND
DISCUSSION

3.1. Lattice Gauge Theory Data
Within the following, we compare lattice data calculated by Bali
et al. [2] to the predictions of the string model with boundary
action. The lattice gauge theory data represent sets of carefully
analyzed correlators corresponding to the QQ̄ potential and en-
ergy distribution at different couplings.

The numerical simulation performed by Bali et al. [2] cor-
responds to lattices of SU(2) gauge links in pure Yang-Mills
theory. The lattices constitute four-dimensional hypercubic Eu-
clidean space-time with periodic boundary conditions. The
simulation parameters are summarized in Table 1 with lattice
spacing and string tension in lattice units at each coupling β.
The lattice volumes L3

s × Lt are enlisted in Table 1 with Ls and
Lt defining the spatial and the temporal extents of the 4 torus,
respectively. Temporal links are integrated, and spatial links are
smeared (see [2] for technical details) to improve the signal-to-
noise ratio.

β = 2.50 β = 2.635 β = 2.74
L3

s × Lt 324 483 × 64 324

σ0a−2 0.0350(12) 0.01458(8) .00830(6)
a (fm) 0.0826(14) 0.0541(2) .0408(2)

TABLE 1: The string tension and the correspond-
ing lattice spacing at each coupling. The phys-
ical scales have been computed from the value√

σa = 440 MeV.

3.2. The Quark-Antiquark QQ̄ Potential
The QQ̄ potential can be extracted from the Wilson loop in the
limit of large Euclidean time. Wilson loop consists of an or-
dered product of gauge links with spatial separations R and
temporal extent T (see Figure 1 for the rectangular loops con-
sidered here). The QQ̄ pair is then propagated to τ = T. At
Euclidean time τ = 0, a creation operator

Γ†
R = Q(0)U(0 → R)Q†(R), (23)

where the gauge-invariant spatial link U(0 → R) is applied to
the vacuum state |0⟩ and then finally annihilated by the appli-
cation of ΓR. A spectral decomposition of the Wilson loop reads

⟨W(R, T)⟩ = 1
∑m e−EmT

× ∑
m,n

|⟨m |ΓR| n, R⟩|2 e−Vn(R)Te−Em(Lt−T).
(24)

The ground state potential V(R) can be extracted in the asymp-
totic limits (T → ∞).

V(R, T) = − log
(
⟨W(R, T + 1)⟩
⟨W(R, T)⟩

)
. (25)

The QQ̄ potential data are fitted to theoretical formulas of
the LW string potential at the NLO Vnℓo and NNLO Vnnℓo equa-
tions (6) and (4), respectively. The number of Wilson loops time
slices, at each coupling, is such that the physical length of tem-
poral extents T ≈ 1.7 fm.

The cutoff potential is set µ as a measured fit parameter
while keeping the string tension σ0a2 fixed to the standard val-
ues enlisted in Table 1. The corresponding returned values of χ2

at each perturbative order are enlisted in Table 3 for the three
considered lattices of the depicted coupling.

The selected fit intervals of the potential are such that the
color source separations are greater than the tachyonic string-
length (enlisted for each corresponding β in Table 2). Even
so, we have included fit intervals that are shorter than the
tachyonic length by roughly 0.05 fm and 0.1 fm. The values of
these (listed in Table 2) depict a cutoff length defined through
Vnnℓo,nℓo(Rc) = µ which may imply a threshold of physical po-
tential at the NLO and the NNLO equations (6) and (4).

Inspection of Table 3 reveals that the fit of the pure NG
string potential equation (6) to the numerical data returns very
large values of χ2

d.o.f. Despite the reduction in the residuals by
the gradual exclusion of short-distance points, the results indi-
cate poor fit all over the considered string length up to color
source separation distance R < 0.6 fm. The values of χ2

d.o.f re-
turned from the fits of the NNLO Vnnℓo are almost as twice
as that of the fits of the NLO Vnℓo. However, it seems that
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β = 2.50 β = 2.635 β = 2.74
Order/Radii Rca−1 Rca−1 Rca−1

Exact NG/Arvis 3.8678 5.9927 7.9426
NNLO 3.3907 5.2534 6.9627
NLO 3.1965 4.9526 6.5641

TABLE 2: The first raw enlists the critical radii at which
tachyonic QQ̄ potential takes place equation (3). The
next rows are the radii at the cutoff perturbative po-
tential V(Rc) = µ at NLO and NNLO of LW string
equations (6) and (4).

Fit Vnℓo Vnnℓo
Interval χ2

d.o.f χ2
d.o.f

β = 2.5
[4, 8] 26.6 86.0
[5, 8] 8.9 16.5
[6, 8] 4.0 5.9

β = 2.63
[6, 12] 103 —
[7, 12] 49.0 99.3
[8, 12] 26.8 46.6
[9, 12] 9.8 15.2
[10, 12] 5.9 7.9

β = 2.74
[7, 16] 55.1 187.6
[8, 16] 22.3 50.0
[9, 16] 12.2 22.9
[10, 16] 5.6 9.3
[11, 16] 2.7 4.2
[12, 16] 1.7 2.5
[13, 16] 0.6 0.8

TABLE 3: The χ2
d.o.f. values

returned from fits to the
(NLO) potential Vnℓo equa-
tion (6) and (NNLO) poten-
tial Vnnℓo equation (4).

both perturbative orders consistently fit well over the interval
R ∈ [13a, 16a] of the lattice of fine spacing a = 0.0408(2).

The static QQ̄ potential data are fitted to the possibly in-
teresting combination of the leading boundary correction Vb2

equation (26) together with either of the two perturbative or-
ders Vnℓo and Vnnℓo such that

Vb2
nℓo = Vnℓo + Vb2

□ , (26)

Vb2
nnℓo = Vnnℓo + Vb2

□ . (27)

The returned χ2
d.o.f. and b2 from the fits are enlisted in Tables 4,

5, and 6 corresponding to each lattice. The continuum scale pa-

rameter bc
2 =

√
σ3

0 b2 is evaluated at each fit interval.
The boundary-corrected string potential fits show a consid-

erable reduction in χ2
d.o.f. across all fit intervals. The fit of the

numerical data using the boundary terms Vb2
nℓo produces good

χ2
d.o.f. over short fit interval of R ∈ [5a, 8a] at β = 2.5. The po-

tential at NNLO Vb2
nnℓo fits the data nicely on the same fit inter-

val.
Models examination over the lattice of coupling β = 2.63

returns no significant difference between string models Vb2
nℓo

and Vb2
nnℓo up to Rmin = 9a corresponding to physical distance

R = 0.4869 fm. However, the fits cease to return good χ2
d.o.f

for Vb2
nnℓo, at R < 8a and R < 7a for Vb2

nℓo. Similarly, at cou-
pling β = 2.74, the stringy behavior set in for source separation
R ∈ [9a, 16a], that is, one lattice spacing smaller than fits with
NNLO potential Vb2

nnℓo.

β = 2.5 Fit Parameters
χ2

d.o.f.Fit Interval b2 bc
2 103

Vb2
nℓo

[4, 8] 0.25(4) 1.6(3) 18.3
[5, 8] 0.16(4) 1.1(3) 0.15
Vb2

nnℓo
[4, 8] 0.39(4) 2.6(3) 75.0
[5, 8] 0.22(4) 1.4(3) 0.47

TABLE 4: The χ2
d.o.f. values and the bound-

ary parameter b2 together with its contin-

uum counterpart bc
2 =

√
σ3

0 b2 returned

from fits to both NLO Vb2
nℓo and NNLO

Vb2
nnℓo given by equations (26) and (27).

β = 2.63 Fit Parameters
χ2

d.o.f.Fit Interval b2 bc
2 103

Vb2
nℓo

[6, 12] 0.83(2) 1.46(4) 48.4
[7, 12] 0.40(3) 0.70(5) 1.3
Vb2

nnℓo
[6, 12] 1.57(2) 2.76(4) 248
[7, 12] 0.59(3) 1.03(5) 6.55
[8, 12] 0.48(5) 0.85(9) 1.42

TABLE 5: Same as Table 4 except the re-
turned χ2 values are from fits to the static
QQ̄ potential over a finer-spaced lattice
a = 0.01456 fm.

β = 2.74 Fit Parameters
Fit Interval b2 bc

2 103 χ2
d.o.f.

Vb2
nℓo

[7, 16] 0.078(22) 0.059(17) 5.6
[8, 16] 0.9(3) 0.7(2) 1.7
[9, 16] 0.8(3) 0.6(2) 0.6
Vb2

nnℓo
[7, 16] −1.5(2) −1.1(2) 74.9
[8, 16] 1.9(3) 1.4(2) 11.9
[9, 16] 1.5(3) 1.1(2) 2.7
[10, 16] 1.0(3) 0.75(2) 0.71

TABLE 6: Same as Table 4; however, the ana-
lyzed data correspond to lattice of spacing a =
0.0408 fm.

We explore the prospective effects of incorporating the sub-
sequent boundary correction Vb4 equation (13) to further as-
sess the viability of higher-order boundary terms. The follow-
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ing two models

Vb2,b4
nℓo = Vnℓo + Vb2

□ + Vb4
□ , (28)

Vb2,b4
nnℓo = Vnnℓo + Vb2

□ + Vb4
□ , (29)

are fitted to the lattice data of the static QQ̄ potential. The re-
turned fit parameters from both models are collected in Ta-
bles 7, 8, and 9 for the considered β values. The values of the

continuum scale bc
4 =

√
σ5

0 b4 are included as well.
We find a subtle difference in the fit behavior between the

NLO and NNLO to diminish within the context of the two-
parameter (b2, b4) LW string potential. At couplings β = 2.5
and β = 2.63, the optimal fits are reproduced on the intervals
R ∈ [4a, 8a] and R ∈ [6a, 12a] corresponding to a minimal phys-
ical length R = 0.3246 fm and R = 0.3304, respectively.

The fits to the boundary-corrected LW string potential are
generically reproducing values of the parameter (b2, b4) which
appear to depend drastically on both the fit interval and lattice
coupling β. As discussed near the end of Section 2, we expect
the physical relevance of the parameters to scale with the lattice
spacing and always preserve the continuum limit. Actually, sta-
bility in the values of the continuum parameters bc

2 is observed
for fit over intervals returning residuals around χ2

d.o.f. ≃ 1 or
less. This is evident from the last entries in Table 6 correspond-
ing to β = 0.263 and those in Table 5.

β = 2.5 Fit Parameters
Fit Interval b2 bc

2 103 b4 bc
4 105 χ2

d.o.f.
Vb2,b4

nℓo
[4, 8] 0.003(49) 0.02(32) 0.058(5) 1.3(1) 0.38
Vb2,b4

nnℓo
[4, 8] 0.003(49) 0.02(32) 0.058(5) 1.3(1) 0.31

TABLE 7: The χ2
d.o.f. values with the continuum boundary pa-

rameters bc
2 =

√
σ3

0 b2 and bc
4 =

√
σ5

0 b4 and µ returned from

fits to NLO potential Vb2,b4
nℓo and NNLO potential Vb2,b4

nnℓo given
by equations (28) and (29), respectively.

β = 2.63 Fit Parameters
Fit Interval b2 bc

2 103 b4 bc
4 105 χ2

d.o.f.
Vb2,b4

nℓo
[6, 12] 0.8 1.4(4) 0.86(7) 2.2(2) 0.17
Vb2,b4

nnℓo
[6, 12] 0.6(2) 1.1(4) 1.21(7) 3.1(2) 0.15

TABLE 8: Same as Table 7 except the returned χ2 values are
from fits to the static QQ̄ potential over finer-spaced lattice
a = 0.01456 fm.

To further oppose the outcomes in Tables 8 and 9, we
should beware of the small values of χ2

d.of ≤ 1. For instance,
when fitting Vb2,b4

nℓo with b4 = 0.76 and bc
4 = 1.3 over the range

R ∈ [6a, 12a], the resulting χ2 = 5.9 is consistent with the un-
certainties of the values of R0 and b2 listed in Table 8. A sim-
ilar argument applies to the second entry in Table 9, adopting
b4 = 1.13; bc

4 = 1.94, such that it approaches the continuum pa-
rameter bc

4 = 1.6(6) in Table 9, and reproduces good χ2 = 4.8
where R0 and b2 are within its uncertainties. Similar considera-
tions hold for the outcomes in Table 7.

β = 2.74 Fit Parameters
Fit Interval b2 bc

2 103 b4 bc
4 105 χ2

d.o.f.
Vb2,b4

nℓo
[7, 16] 0.8(3) 0.6(2) 1.0(6) 0.91(5) 1.06
Vb2,b4

nnℓo
[7, 16] 0.2(3) 0.1(3) 2.5(1) 1.6(6) 0.83

TABLE 9: Same as Table 7; however, the analyzed data corre-
spond to lattice of spacing a = 0.0408 fm.

Three plots at each assumed coupling β are collected in the
panel of Figure 2. The figures show the lattice data of the poten-
tial’s QQ̄ together with the lines that best fit each string model
prediction. The legend depicts the interval of the best fits.

One clearly observes the improvement in the fit with re-
spect to the LW string with one boundary term Vnℓo compared
LW model at NLO Vnℓo. The fit of the potential with one bound-
ary term Vb2

nℓo indicates at least three lattice spacing values of
the overall improved match. The two-term boundary potential
Vb2

nnℓo; however, finely corrects at least one lattice spacing value
at each lattice coupling.

3.3. Energy-Density Profile
To characterize the Euclidean action density on the lattice we
utilize a plaquette operator defined by

Pµν(ρ) =
[
Uµ(ρ)Uν(ρ + µ)U†

µ(ρ + ν)U†
ν (ρ)

]
, (30)

with the indices µ and ν corresponding to Lorentz indices.
The Euclidean action density at position ρ is given by

S(ρ) = β ∑
µ<ν

(
1 − 1

3
Re TrPµν(ρ)

)
, (31)

where β is the coupling of Yang-Mills theory. The plaquette
Pµν can be expanded in a power series in the symmetric field
strength tensor Fµν such that

S(ρ) = a4 ∑
µ<ν

Tr F2
µν(ρ) +O

(
a2
)
+O

(
a2g2

)
(32)

with g2 =
6
β

.

A dimensionless scalar field characterizing the Euclidean
action density distribution in the Polyakov vacuum, i.e., in the
presence of color sources can be defined as

C (ρ; r1, r2) =

〈
P2Q(r1, r2)

〉
⟨S(ρ)⟩ −

〈
P2Q (r1, r2) S(ρ)

〉〈
P2Q (r1, r2)

〉
⟨S(ρ)⟩

, (33)

with the vector ρ referring to the spatial position of the energy
probe with respect to some origin, and the bracket ⟨· · · ⟩ stands
for averaging over gauge configurations and lattice symme-
tries. Other dimensionful definitions of the correlator (33) yield
an equivalent representation of the width (see, for example,
[5]).

The width of the transverse profile of the action density
equation (33) is extracted from the fits to Gaussian form [2],
which within the accuracy of the measurements return good
χ2 for color source separation R > 0.2 fm.
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FIGURE 2: The quark-antiquark QQ̄ potential data at three different lattice spacing a. The dotted and dashed lines correspond to
fits of the LW string potential at NLO Vnℓo equation (26) and NLO potential with boundary terms Vb2

nℓo equation (26), respectively.
The solid line corresponds to best fits to LW string at NNLO with two boundary terms Vb2,b4

nnℓo equation (29).

We discuss the growth in the width of the action density
with the increase of the QQ̄ separation according to either of
the following three models.

The pure LW string models at the two-loop order:

W2
1 = W2

(ℓo) + W2
(nℓo), (34)

in accordance with equations (15) and (16). In addition to the
MS width of LW string with one and two boundary corrections:

W2
2 = W2

(ℓo) + W2
(nℓo) + W2

b2
, (35)

W2
3 = W2

(ℓo) + W2
(nℓo) + W2

b2
+ W2

b4
, (36)

respectively, in accordance with equations (15), (16), (17), and
(20).

The analysis of the fit behavior of the MS width data is
discussed keeping the string tension fixed to the standard val-
ues enlisted in Table 1. The fits are obtained by solving an ex-
tremum problem in the parameter space R0, b2, b4 such that the
least square residuals

χ2 (R0, b2, b4) = ∑
i

(
W2 (Ri)− W2

model (Ri; R0, b2, b4)

2W (Ri) e (Ri)

)2

(37)
are minimized. It should be noted that, in equation (37), e(Ri)
corresponds to the error in the width W(Ri). We consider the
lattice data of the MS width of the QCD flux tube at the perpen-
dicular plane in the middle R/2 between the color sources [2].

The resultant minimum χ2
d.o.f. and the corresponding fit pa-

rameters R0, b2, and b4 from the fits to the lattice data are col-
lected in Tables 10–15.

The large χ2
d.o.f. values in Tables 10 and 11 reflect the poor

fits received from the NLO approximation equation (34) of the
pure LW string model (without boundary corrections). The
plots in Figure 3(b) show that this string model must have
considerable source separations R ≥ 0.6 fm before it can best
match the numerical data. These findings imply that the pure
LW string action fails to adequately integrate the subtle charac-
teristics of QCD flux tubes at close ranges.

The parameters retrieved by fitting the width data to the
LW string with two boundary terms corresponding to equa-
tion (36) are collected in Table 12. The results demonstrate the

β = 2.5 Fit Range [4, 14] χ2
d.o.f. = 48.2

Fit Parameters Estimate Standard Error
R0 3.634 0.675146

TABLE 10: The returned χ2
d.o.f. from the fit of the LW

string at NLO equation (34) to the data of MS width
of flux tube, lattice spacing a = 0.0804 fm, over two
fit intervals [Rmin, Rmax]. R0 is the UV cutoff parame-
ter equation (15).

β = 2.63 Fit Range [6, 20] χ2
d.o.f. = 72.64

Fit Parameters Estimate Standard Error
R0 12.68 0.327134

Fit Range [8, 20] χ2
d.o.f. = 8.25

R0 −4.74331 1.04629

TABLE 11: Same as Table 10; however, the fits are per-
formed on data on the lattice of finer spacing a =
0.0541 fm.

β = 2.5 Fit Range [4, 12] χ2
d.o.f. = 0.16

Fit Parameters Estimate Standard Error
R0 10.8904 15.1857
b2 0.22468 0.07494
bc

2 103 1.47121 0.49069
b4 0.09324 0.03392
bc

4 105 2.13692 0.77725

TABLE 12: The retrieved χ2
d.o.f. of the fits of the MS width

of the LW string with one boundary parameter b2 equa-
tion (35) to the MS width data.

β = 2.63 Fit Range [6, 20] χ2
d.o.f. = 3.79

Fit Parameters Estimate Standard Error
R0 −267.702 15.1058
b2 0.86463 0.046570
bc

2 103 1.52210 0.081982

TABLE 13: Same as Table 12; however, a = 0.0541 fm and
fit interval commences at R = 3.24 fm.
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β = 2.63 Fit Range [8, 20] χ2
d.o.f. = 1.09

Fit Parameters Estimate Standard Error
R0 −268.448 43.3449
b2 0.86710 0.14248
bc

2 103 1.52645 0.25082

TABLE 14: Same as Table 13 except that the fit interval
commences at R = 4.328 fm.

β = 2.63 Fit Range [6, 20] χ2
d.o.f. = 1.06

Fit Parameters Estimate Standard Error
R0 −258.75 197.143
b2 0.8441 0.4532
bc

2 103 1.4859 0.7976
b4 0.01712 0.37605
bc

4 105 0.54163 1.18920

TABLE 15: The retrieved χ2
d.o.f. and fit parameters, bc

2
and bc

4 of the fits of the MS width of the LW string,
with two boundary parameters equation (36), to the MS
width data. The fit range commences at R = 3.24 fm.

significant reduction of residuals χ2
d.o.f compared to that re-

trieved from the fits of NLO model equation (34). The fits are
even better than that of the one boundary parameter equa-
tion (35) returning χ2

d.o.f = 2.5. The plots in Figure 3(a) show
how well the lattice data to source separations R ≥ 0.2478 and
the LW string with b2 and b4 match each other.

The fits of the LW string model with b2 equation (35) over
the finer lattice, a = 0.054 fm and β = 2.63, provide optimal
flux tube width over color separation interval R ∈ [8a, 20a], Ta-
bles 13–15. The corresponding plot in Figure 3(b) demonstrates
a good match with the lattice data up to a minimal string length
of R = 0.4328 fm.

Considering fit intervals with smaller color source separa-
tions R ∈ [6a, 20a] at coupling β = 0.263, which is still above
the tachyonic threshold radius Rc, the corresponding returned
results in Table 15 reflect a good χ2

d.o.f = 1.06 from the fit of the
two-parameter LW string (b2, b4). Figure 3(b) displays a bet-
ter match of one lattice spacing, corresponding to the minimal
length R = 0.3246 fm than fits using the b2 term.

The characteristics of the energy profile of the QCD string
should be understood in the context of the complementary
IR observable, namely, the ground state potential QQ̄. De-
spite the comparatively higher uncertainty in the action density
equation (33) than in the QQ̄ potential, the observation of the
string over intervals commencing from the same source sepa-
ration demonstrates the relevance of the boundary action to the
physics of the confining flux tube.

More regularities among the fit parameters of the bound-
ary action are observed when comparing the fits of the QQ̄ po-
tential or the energy width. For example, the fits of the energy
density on the interval R ∈ [8a, 20a] shown in Table 14 produce
b2 = 0.87(0.14) which is the same produced from the fits of
the QQ̄ potential in Table 6 R ∈ [8a, 16a] with b2 = 0.8(3). At
the coupling β = 2.5, opposing the parameters in Tables 4 and 7
with those in Table 12 shows comparable continuum numerical
values within the statistical uncertainties.
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FIGURE 3: (a) The data points correspond to the MS width of

the flux tube at the middle plane
R
2

at β = 2.5 for the depicted
fit ranges. The solid and dotted lines are the fit of the MS width
of the LW string at NLO equation (34) and that with boundary
term b2 equation (35). (b) Same as plot (a), except that the MS
width is measured on a finer lattice of spacing a = 0.0541 fm.
The dashed line corresponds to fits to the LW string with two
boundary terms b2 and b4 equation (36).

4. CONCLUSION
In this paper, the quark-antiquark (QQ̄) potential and energy
profile of a static meson are compared to the theoretical predic-
tions based on the Lüscher-Weisz (LW) string with two bound-
ary terms. Link-integrated Wilson loop correlators with opti-
mal overlap with the ground state [2] are discussed.

At intermediate distances, we detect signatures of the two
boundary terms of the Lüscher-Weisz (LW) string [46, 38] in
the Monte-Carlo data of the static QQ̄ potential. The boundary-
corrected string model extends the region of validity of the
string for color source separation R ≥ 0.37 fm using one bound-
ary term b2, and R ≥ 0.32 fm for two boundary terms (b2, b4).

The boundary-corrected width [45] with one boundary
term b2 for the (LW) action reduces the residuals of the fits to
the lattice data of the action density, with good fits obtained for

8
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string length R ≥ 0.5 fm. The inclusion of the second Lorentz-
invariant boundary term b4 discloses a good match with the
LGT data for color source separation R ≥ 0.32 fm

CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest re-
garding the publication of this paper.

ACKNOWLEDGMENTS
The authors would like to thank G. Bali for his useful and en-
couraging comments. We also acknowledge suggestions and
careful revision of the manuscript provided by the LHEP re-
viewers.

References
[1] M. Creutz. Monte carlo study of quantized SU(2) gauge

theory. Phys. Rev., D21:2308–2315, 1980.
[2] G. S. Bali, K. Schilling, and C. Schlichter. Observing long

color flux tubes in SU(2) lattice gauge theory. Phys. Rev.,
D51:5165–5198, 1995.

[3] Richard W. Haymaker, Vandana Singh, Yingcai Peng, and
Jacek Wosiek. Distribution of the color fields around static
quarks. Physical Review D, 53(1):389, 1996.

[4] Paolo Cea and Leonardo Cosmai. Dual superconductivity
in the SU(2) pure gauge vacuum: A lattice study. Physical
Review D, 52(9):5152, 1995.

[5] F. Okiharu and R. M. Woloshyn. A study of colour field
distributions in the baryon. Nuclear Physics B-Proceedings
Supplements, 129:745–747, 2004.

[6] A. Bakry, X. Chen, M. Deliyergiyev, A. Galal, S. Xu, and
P. M. Zhang. Mesonic String of Diquark-Quark Configu-
ration at Finite Temperature. PoS, Hadron2017:211, 2018.

[7] Ahmed S. Bakry, Xurong Chen, and Peng-Ming Zhang. Y-
stringlike behavior of a static baryon at finite temperature.
Phys. Rev., D91:114506, 2015.

[8] A. S. Bakry, M. A. Deliyergiyev, A. A. Galal, and A. M.
Khalaf. Strings of diquark-quark (QQ)Q baryon before
phase transition. arXiv/heplat:2002.07202.

[9] Mark G. Alford and Gerald Good. Flux tubes and the
type-i/type-ii transition in a superconductor coupled to
a superfluid. Phys. Rev. B, 78(2):024510, Jul 2008.

[10] K. Kasamatsu and M. Tsubota. Quantized vortices in
atomic Bose-Einstein condensates. ArXiv e-prints, Septem-
ber 2007.

[11] H. B. Nielsen and P. Olesen. Vortex-line models for dual
strings. Nuclear Physics B, 61:45–61, 1973.

[12] Amy S. Lo and Edward L. Wright. Signatures of cosmic
strings in the cosmic microwave background. 2005.

[13] Curtis G. Callan Jr., Sidney Coleman, Julius Wess, and
Bruno Zumino. Structure of phenomenological la-
grangians. ii. Physical Review, 177(5):2247, 1969.

[14] Martin Luscher and Peter Weisz. Quark confinement and
the bosonic string. JHEP, 07:049, 2002.

[15] K. Jimmy Juge, Julius Kuti, and Colin Morningstar. Fine
structure of the QCD string spectrum. Phys. Rev. Lett.,
90:161601, 2003.

[16] N. D. Hari Dass and Pushan Majumdar. Continuum
limit of string formation in 3d SU(2) lgt. Phys. Lett. B,
658(5):273–278, 2008.

[17] Michele Caselle, Marco Panero, and Davide Vadacchino.
Width of the flux tube in compact U(1) gauge theory in
three dimensions. JHEP, 02:180, 2016.

[18] M. Caselle, M. Panero, P. Provero, and M. Hasenbusch.
String effects in Polyakov loop correlators. Nucl. Phys.
Proc. Suppl., 119:499–501, 2003.

[19] P. Pennanen, Anthony M. Green, and Christopher
Michael. Flux-tube structure and beta-functions in SU(2).
Phys. Rev., D56:3903–3916, 1997.

[20] Bastian B. Brandt and Marco Meineri. Effective string
description of confining flux tubes. Int. J. Mod. Phys.,
A31(22):1643001, 2016.

[21] M. Luscher, G. Munster, and P. Weisz. How Thick Are
Chromoelectric Flux Tubes? Nucl. Phys., B180:1–12, 1981.

[22] M. Caselle, F. Gliozzi, Ulrika Magnea, and S. Vinti. Width
of long colour flux tubes in lattice gauge systems. Nucl.
Phys., B460:397–412, 1996.

[23] Claudio Bonati. Finite temperature effective string cor-
rections in (3+1)D SU(2) lattice gauge theory. Phys.Lett.,
B703:376–378, 2011.

[24] Martin Hasenbusch, Mihai Marcu, and Klaus Pinn. High
precision renormalization group study of the roughening
transition. Physica A: Statistical Mechanics and its Applica-
tions, 208(1):124–161, 1994.

[25] Michele Caselle, Martin Hasenbusch, and Marco Panero.
High precision Monte Carlo simulations of interfaces in
the three-dimensional ising model: A Comparison with
the Nambu-Goto effective string model. JHEP, 03:084,
2006.

[26] Barak Bringoltz and Michael Teper. Closed k-strings
in SU(N) gauge theories: 2+1 dimensions. Phys. Lett.,
B663:429–437, 2008.

[27] Andreas Athenodorou, Barak Bringoltz, and Michael Te-
per. On the spectrum of closed k = 2 flux tubes in D=2+1
SU(N) gauge theories. JHEP, 05:019, 2009.

[28] N. D. Hari Dass and Pushan Majumdar. String-like be-
haviour of 4-D SU(3) Yang-Mills flux tubes. JHEP, 10:020,
2006.

[29] Pietro Giudice, Ferdinando Gliozzi, and Stefano Lottini.
Quantum broadening of k-strings in gauge theories. JHEP,
01:084, 2007.

[30] Martin Luscher and Peter Weisz. String excitation energies
in SU(N) gauge theories beyond the free-string approxi-
mation. JHEP, 07:014, 2004.

[31] M. Caselle. Flux tube delocalization at the deconfinement
point. JHEP, 08:063, 2010.

[32] A. S. Bakry et al. String effects and the distribution of the
glue in static mesons at finite temperature. Phys. Rev. D,
82(9):094503, Nov 2010, hep-lat/1004.0782.

[33] Ahmed S. Bakry, Derek B. Leinweber, and Anthony G.
Williams. Bosonic stringlike behavior and the Ultraviolet
filtering of QCD. Phys.Rev., D85:034504, 2012.

[34] M. Caselle, M. Hasenbusch, and M. Panero. Short distance
behavior of the effective string. JHEP, 05:032, 2004.

[35] M. Caselle, M. Pepe, and A. Rago. Static quark potential
and effective string corrections in the (2+1)-d SU(2) Yang-
Mills theory. JHEP, 10:005, 2004.

[36] J. Ambjørn, Y. Makeenko, and A. Sedrakyan. Effective
QCD string beyond the Nambu-Goto action. Phys. Rev.,

9



Letters in High Energy Physics LHEP-431, 2023

D89(10):106010, 2014.
[37] Michele Caselle, Marco Panero, Roberto Pellegrini, and

Davide Vadacchino. A different kind of string. JHEP,
01:105, 2015.

[38] A. S. Bakry, M. A. Deliyergiyev, A. A. Galal, and M. Khalil
William. On qcd strings beyond non-interacting model.
arXiv preprint arXiv:2001.04203 [hep-lat], 2020.

[39] A. S. Bakry, M. A. Deliyergiyev, A. A. Galal, A. M. Khalaf,
and M. Khalil William. Quantum delocalization of strings
with boundary action in Yang-Mills theory. arXiv preprint
arXiv:2001.02392 [hep-lat], 2020.

[40] Bastian B. Brandt. Spectrum of the open QCD flux tube.
JHEP, 07:008, 2017.

[41] Ofer Aharony and Nizan Klinghoffer. Corrections to
nambu-goto energy levels from the effective string action.
Journal of High Energy Physics, 2010(12):1–18, 2010.

[42] A. S. Bakry, M. A. Deliyergiyev, A. A. Galal, and M. N.
Khalil. On QCD strings beyond non-interacting model.

[43] Marco Billo, Michele Caselle, and Roberto Pellegrini.
New numerical results and novel effective string predic-
tions for Wilson loops. JHEP, 01:104, 2012. [Erratum:
JHEP04,097(2013)].

[44] Bastian B. Brandt. Probing boundary-corrections to
Nambu-Goto open string energy levels in 3d SU(2) gauge
theory. JHEP, 02:040, 2011.

[45] A. S. Bakry, M. A. Deliyergiyev, A. A. Galal, and M. Khalil
Williams. Boundary action and profile of effective bosonic
strings. arXiv preprint arXiv:1912.13381, 2019.
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