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Abstract
In the bound states in the continuum (BIC), the binding energy is positive, and the mass of a compos-
ite particle is greater than the total mass of its constituents. In this work, the BIC state is studied for the
electron-proton system using the ladder Bethe-Salpeter equation. We demonstrate that there is a momen-
tum space region in which the electromagnetic interaction between the particles is strongly enhanced, and
the effective coupling constant is α

√
mp/me = 0.313, where α is the fine structure constant, and mp and

me are the proton and the electron masses. This interaction resonance causes the confinement of the pair
in the BIC state with the positive binding energy of 1.531me. The integral equation for the bispinor wave
function is derived. This normalized wave function, which must be complex, was found numerically. It
turned out that in the BIC state, the average radius for the electron is 48 Fm, and that for the proton is
1.1 Fm. This composite boson can exist exclusively in the free state, in which its properties, such as its form
factors, should only be studied. In bound states with other particles, the composite loses its individuality.
In Stern-Gerlach experiments, the electron-proton composite boson will demonstrate the properties of a
spin 1

2 fermion.
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1. INTRODUCTION
Unlike the conventional bound states, there are the bound
states in the continuum (BIC) in which the binding energy is
positive and the composite particle mass is greater than the to-
tal mass of the constituents. The BIC states have been discov-
ered by von Neumann and Wigner in 1929 [1] (see also [2] with
some extension and correction of this work). The BIC states
have been found experimentally in condensed matter physics
and optics (see [3, 4, 5, 6, 7] and references therein). These states
are stable due to the confinement mechanisms that are individ-
ual for each case.

In the nonrelativistic mechanics, the BIC states have been
investigated by using the Schrödinger Hamiltonian. As a rule,
the spectral analysis of the real equation Hψ = Eψ with E > 0
was carried out [3, 4, 8, 9, 10]. However, this approach to BIC
states is greatly simplified. The eigenvalues of the BIC states
are in the continuous spectrum. Therefore, the study of the BIC
states must be carried out using the Lippmann-Schwinger inte-
gral equation, in which an infinitesimal δ is added to the energy
E. Then, the kernel of the integral equation and, respectively,
the BIC wave functions become complex. As a result, the spec-
tral analysis should be provided for a system of two coupled
integral equations.

As far as we know in quantum electrodynamics the BIC
states have not been supposed and studied previously. Further-
more, particle physics has been developed without the analy-
sis of these states. Our idea is to apply this BIC phenomenon
to some elementary particles. Below, we consider the system of
the electron and the proton, and search for the BIC state of the
system. This BIC state must represent a real particle.

The bound electron-proton system in the BIC state is a com-
posite particle. Its charge is zero and spin is either 0 or 1. There-
fore, this particle is the boson. Nevertheless, under certain ex-
perimental conditions, this boson with integer spin will mani-
fest itself as a fermion with spin 1

2 . This unusual situation will
occur, for example, in the Stern-Gerlach experiment, which is
considered as a direct experiment to determine the spin of par-
ticles [11, 12]. Let a beam of particles split into two components
in an inhomogeneous magnetic field. From this, one could con-
clude that these particles are fermions with spin 1

2 . However,
this conclusion is erroneous, since the particles were the com-
posite bosons. The observed splitting into two components is
is due to the fact that the ratio of the spin-magnetic moment of
the proton to the spin-magnetic moment of the electron is equal
to 2.79√

3
me
mp

= 0.877 × 10−3.
Note that a beam of hydrogen atoms in the ground state

would also split into two components, despite the fact that this
atom is the boson. As is known, in such an experiment, the in-
trinsic magnetic moment of the electron was established [13].

In the BIC state, the boson mass mB is greater than the sum
of the electron and proton masses, mB > mp + me. The boson
mass and wave function are the eigenvalue and eigenfunction
of the kernel of an integral equation which will be obtained
below.

It should be noted that the eigenvalue problem has, as a
rule, analytical solutions only for the simplest one-particle dif-
ferential or integral operators. Even for a two-electron atom,
the problem is formulated as follows [14]. For a known energy
level, it is required to find numerically the wave functions of
the state. In another formulation, for given wave functions that
have free parameters, it is necessary to find their values that
result in the known energy values.

Of course, the integral equation for the BIC state is diffi-
cult to solve analytically. But this composite must represent a
known particle. The only such particle is the neutron. In this
case, the positive binding energy E = 1.531me, and the en-
ergy eigenvalue of the composite is mB = mp + me + E =
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mp + 2.531me. Then, the problem which is considered in the
work is reduced to find the BIC wave functions of the particle.

The coupling constant of the electromagnetic interaction is
the fine structure constant, α = 1

137.04 . Because of the relatively
small value of the coupling constant, the mass of the composite
particle E in the normal bound states is slightly less than the
mass of the constituent particles ∑i mi. Then, the binding en-
ergy defined as E − ∑i mi is negative and, as a rule, is propor-
tional to α2. Typical examples are the hydrogen and the positro-
nium.

In this regard, the following questions arise: (1) How can
an electromagnetic interaction with the relatively small cou-
pling constant lead to a composite particle with a large, posi-
tive value of the binding energy? (2) The composite from the
electron and the proton is the boson with the spin equal to 0
or 1. Can the behavior of this boson in inhomogeneous mag-
netic fields represent fermion properties? The form factors of
the composite boson can be extracted from the calculated wave
function in the BIC state. Can these form factors be compared
with the known data on the neutron form factors?

These issues are discussed in the present paper. The com-
posite particle of the proton and the electron is studied. Us-
ing the ladder Bethe-Salpeter equation, an integral equation for
the BIC state of the two-particle system is derived. We demon-
strate that the electromagnetic interaction between the particles
is strongly enhanced when the momenta of the constituents are
in the two regions in the momentum space. These momentum-
space regions can be called the resonant regions because the
interaction between particles becomes formally unlimited. To-
gether with the correlations in motion of the particles, the res-
onance of the electromagnetic interaction leads to the confine-
ment of these particles in the BIC state with a positive binding
energy equal to 1.531me. A numerical solution of this integral
equation by means of the iteration method is found. Results
obtained for the BIC wave function in the momentum and co-
ordinate spaces are presented.

Natural units (h̄ = c = 1) will be used throughout.

2. THE EQUAL-TIME BETHE-SALPETER
EQUATION

Integral equations for a two-body system were derived by var-
ious methods (see Section 2 of the review [15]). Using the Feyn-
man diagram technique, the general form of this equation was
obtained by Bethe and Salpeter [16]. For scattering problems,
of course, one should use the inhomogeneous Bethe-Salpeter
equation. In order to study bound states, the homogeneous in-
tegral equation should be used for both negative and positive
binding energies of the system [16]. In this case, bound states
vanish as the coupling constant tends to zero.

The bound states are described by the homogeneous Bethe-
Salpeter equation [16]:

ψ(1, 2)

=−i
∫ ∫ ∫ ∫

dτ3dτ4dτ5dτ6Ke(1, 3)Kp(2, 4)G(3, 4; 5, 6)ψ(5, 6).

(1)

In equation (1), dτi = dridti, Ke and Kp are the free propaga-
tors for the electron and the proton, and G(3, 4; 5, 6) is the in-
teraction function. In the ladder approximation, the function is

given by

G(1)(3, 4; 5, 6) = −α
(
1 − αeαp

)
δ(4)(3, 5)δ(4)(4, 6)δ+

(
s2

56

)
,
(2)

where δ+(s2
56) is the propagation function of the virtual photon.

Feynman discussed two different free-fermion propagators
for the Dirac equation [17]:

K+(2, 1) = ∑
p

ψp(2)ψ̄p(1)θ (t2 − t1)

− ∑
p

ψ−p(2)ψ̄−p(1)θ (t1 − t2) ,
(3)

K−(2, 1) = ∑
p

(
ψp(2)ψ̄p(1) + ψ−p(2)ψ̄−p(1)

)
θ (t2 − t1) .

(4)

Here, ψ±p is the Dirac plane wave and ψ̄p the Dirac conjugate
wave function.

The modern description of the electron-positron field is
based on the use of (3). The contribution to K+(2, 1) for t2 > t1
is due to the electron terms, and the negative energy states are
assumed to be not available to the electrons. The contribution
to K+(2, 1) for t2 < t1 is due to the positron terms, and the up-
per continuum is assumed to be not available to the positrons
which are recognized as particles traveling backward in time
[17]. As a result, the total number of degrees of freedom, which
is determined by the complete basis of the Dirac plane waves,
is divided into half. One-half of the degrees of freedom is as-
signed to the electron and the other to the positron.

Equation (4) determines the propagation of a free fermion
which is described by the complete set of the Dirac plane
waves.

As noted in [17], the choice of equation (4) is unsatisfactory
to study relativistic field effects and (3) should be used. In con-
trast, the choice of equation (3) is unsatisfactory to study the
motion of particles in external fields and (4) should be used
[17].

There is no doubt that the complete spectrum of states for
any system of interacting particles can be deduced only when
the full basis of states is taken into account for each particle of
the system [18]. In equation (4), the free-fermion states form the
complete basis of the Dirac plane waves.

We study the BIC state for the electron which moves in the
external field created by the proton. Then, equation (4) should
be used. The free electron propagator (4) is reduced to the fol-
lowing form:

Ke(1, 3)

= ∑
p

1
2εp

[
Λ+

e e−iεp(t1−t3) + Λ−
e eiεp(t1−t3)

]
θ(t1 − t3)eip(r1−r3),

(5)
where

Λ±
e (p) = εp ± αep ± βeme, (6)

me, p, and εp =
√

m2
e + p2 are the mass, the momentum, and

the energy of the electron, and αe and βe matrices are taken in

the standard representation, βe =
( 1 0

0 −1
)

e, αe =
(

0 σe
σe 0

)
, and

σ is the Pauli matrices. The subscript e of the Pauli matrices
means their action on the spin of the particle e.
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Respectively, the propagator of the particle p is given by

Kp(2, 4)

= ∑
q

1
2ωq

[
Λ+

p e−iωq(t2−t4) + Λ−
p eiωq(t2−t4)

]
θ (t2 − t4) eiq(r2−r4).

(7)
Here,

Λ±
p (q) = ωq ± αpq ± βpmp, (8)

mp, q, and ωq =
√

m2
p + q2 are the mass, the momentum, and

the energy of the proton, and αp and βp matrices are taken in
the standard representation.

We search the BIC state with the binding energy propor-
tional to the mass of the lighter particle from the pair, E ∝ me.
The energy of the virtual photon, ω, is about the binding en-
ergy. We suppose that in the BIC state, the characterized scale
of the distance between the two particles, r56, is

r56 ≪ me

E λ̄e, (9)

whereλ̄e is the Compton wavelength of the electron.
Obviously, (9) implies a physically reasonable size of the

composite particle. Inequality (9) means that we can neglect the
retardation of the interaction between the particles. Then, equa-
tion (1) is reduced to the equal-time Bethe-Salpeter equation:

ψ (r1, r2; E) = −α
∫

dr′1
∫

dr′2 ∑
p

∑
q

Kep(p, q; E)

× eip(r1−r′1)+iq(r2−r′2)
1 − αeαp∣∣r′1 − r′2

∣∣ ψ
(
r′1, r′2; E

)
.

(10)

Here, the two-particle propagator is:

Kep =
1

4ωqεp

[
Λ+

p Λ+
e

E − εp − ωq + iδ
+

Λ+
p Λ−

e

E + εp − ωq + iδ

+
Λ−

p Λ+
e

E − εp + ωq + iδ
+

Λ−
p Λ−

e

E + εp + ωq + iδ

]
.

(11)

In the momentum space, equation (10) with (11) is reduced
to the following form:

ψ(p, q; E)

= − α

2π2 Kep(p, q; E)
∫ dk

k2

(
1 − αeαp

)
ψ(p + k; q − k).

(12)

3. RESONANCE OF THE
ELECTROMAGNETIC INTERACTION

Consider the BIC state with the total energy E = mp + me +
E and the binding energy E = 1.531me. The imaginary parts
of the last two terms in the square brackets in equation (13)
vanish. These terms are not essential for the formation of the
BIC state and can be omitted. The first two terms in equation
(11) are fundamentally important. Using them, in equation (12),
we can introduce a function describing the effective interaction
between the particles:

αeff =
αΛ+

e Λ+
p

4ωqεp

[
P

E − εp − ωq
− iδ

(
E − εp − ωq

)]
+

αΛ−
e Λ+

p

4ωqεp

[
P

E + εp − ωq
− iδ

(
E + εp − ωq

)]
.

(13)

For normal bound states, the energy eigenvalue is negative,
E < 0. Then, the δ-functions in the right-hand side of equation
(13) vanish as well. Hence, any enhancement of the interaction
between particles does not occur in the convenient bound states
with the negative binding energy.

For the BIC state, the energy eigenvalue is positive, E > 0.
Hence, E − mp ± me > 0, and the term with the δ-function
is principally important. This function determines the two re-
gions in the momentum space which are solutions of the equa-
tion: (

E − ωq
)2

= ε2
p. (14)

Inside these regions, the principal part is

P(
E − ωq

)2 − ε2
p

= 0. (15)
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FIGURE 1: The solution of equation (14) for the energy E =
mp + me + E with E = γme and γ = 1.531.

The two lines in Figure 1 correspond to the two regions
in the momenta space. These lines are given the relation be-
tween the modules of the vectors p and q. Their directions,
p/p and q/q, are also interrelated, as will be shown below. In
these regions, the motions of two particles are correlated with
each other, and their interaction is sharply enhanced, becom-
ing formally unlimited. Therefore, these regions can be called
resonant ones.

The first resonant region is presented by curve 1 in Figure
1. For the electron, this region is limited from above by the mo-
ment p = 2.324me, and for the proton, the similar restriction is
q ≤ 1.749√memp. Here, the energies of both particles are posi-
tive. This curve is given by the first term in square brackets on
the right side of equation (11). However, this region is not im-
portant for the formation of the BIC state that is of interest to us.
This is because the electron momenta are relatively small. Re-
spectively, it leads inevitably to a large radius of the composite
particle that is aboutλ̄e.

In this regard, the second resonant region represented by
curve 2 in Figure 1 is of undoubted interest. It is determined by
the second term in square brackets on the right side of equa-
tion (11). For this case, the proton energy, ωq, is above the
lower boundary (+mp) of the upper continuum of the Dirac
levels. At the same time, the electron energy, −εp, is negative,
and is below the upper boundary (−me) of the lower contin-
uum of the Dirac levels. In this region, the proton momentum
q ≥ 2.659√memp. We can estimate the characteristic radius of
its motion in the BIC state: Reff < (2.659√memp)−1. As for the
e− particle, there are no restrictions on its momentum. More-
over, the electron momentum increases sharply with q. It is im-
portant that this increase in the momenta p and q does not lead
to a change in the energy E = mp + me + E .
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Note that for normal bound states, finding a particle in
lower continuum states is not uncommon. For example, in the
bound states of the hydrogen, the electron is also characterized
by a wave function in the lower continuum. But the probability
of being in them is small, of the order of ≃ α2. This probability
increases with the nuclear charge [19].

In the second resonant region, we have

ψ(p, q; E) = − α

8π2ωqεp

Λ−
e Λ+

p

E + εp − ωq + iδ

×
∫

Dk

dk
k2 (1 − αeαp)ψ(p + k; q − k).

(16)

In equation (16), the integration over k is carried out in the
second resonant region Dk:

mp + (γ + 1)me +
√

m2
e + (p + k)2 =

√
m2

p + (q − k)2. (17)

4. THE BIC WAVE FUNCTION IN THE
MOMENTUM SPACE

From (17), we conclude that in the second resonant region the
electron is relativistic and its momentum p > me. The proton
is nonrelativistic. The proton energy can be written as ωq =

mp +
q2

2mp
, and its momentum q ∝ √memp. Then, equation (8)

is reduced to

Λ+
p → 2mp

(
1 0
0 0

)
p

. (18)

Also, the interaction of the particles through the vector poten-
tial can be omitted since

αeαp ≃
√

me

mp
≪ 1. (19)

Due to the symmetry of the problem, the functions ψ can
depend on absolute values of the vectors p and q and the an-
gle between them θ. So, the function is ψ(p, q; θ). In the BIC
state, the proton is non-relativistic and, taking into account (18),
its spin part is the bispinor, in which only the upper spinor is
nonzero, (a

b) with constant a and b. This bispinor is not essential
for further consideration.

In equation (16), the operator Λ−
e given by (6) acts on the

wave function ψ(p + k; q − k). The spin operator and the or-
bital angular momentum operator each separately do not com-
mute with the operator Λ−

e . For this reason, the wave function
cannot have a definite value of the orbital angular momentum
and its z-projection [20]. Therefore, the function can be written
as:

ψ(p, q; θ) =

√
δ

π

1
E + εp − ωq + iδ


1√
3

v(p, q; θ)Y10

(
p
p

)√
2
3 v(p, q; θ)Y11

(
p
p

)
u(p, q; θ)Y00

0

 .

(20)
The bispinor (20) contains the spherical harmonics Y00, Y10, and
Y11 with the azimuthal quantum number 0 and 1.

From (20), we obtain that the two-particle density is deter-
mined only in the second resonant region:

|ψ(p, q; θ)|2 =
(
|v|2 + |u|2

)
δ
(
E + εp − ωq

)
, (21)

with the normalization condition:∫
dp

∫
dq

(
|v|2 + |u|2

)
δ
(
E + εp − ωq

)
= 1. (22)

Substituting (20) into (16) and considering (18)-(19), we ob-
tain(

v(p, q)
u(p, q)

)
=

iα
4πεp

∫
Dk

dk
(k − p)2 δ

(
E + εk − ωq+p−k

)
×

((
εp − me

)
v (k; q + p − k)− pu(

εp + me
)

u(k; q + p − k)− pv

)
,

(23)

where the second resonant region Dk is now defined as

mp + (γ + 1)me +
√

m2
e + k2 =

√
m2

p + (q + p − k)2. (24)

Note that in this region the principal part is

P
E + εk − ωq+p−k

= 0. (25)

5. TRANSFORMATION OF EQUATION (23)
Equation (23) is the integral equation with the imaginary ker-
nel. So, the functions v = vr + ivi and u = ur + iui must be
complex. Then, in equation (23), there are four coupled integral
equations for the four real functions vr,i(p, q, θ) and ur,i(p, q, θ).
Without loss of generality, we can choose the vector p + q that
is directed along the z-axis. Then, equation (23) is rewritten as

vr(p, q, θ)
vi(p, q, θ)
ur(p, q, θ)
ui(p, q, θ)


=

α

4π

mp

εp|q + p|

∫ ∞

0
kdk

×
∫ π

0
sin θkδ

(
cos θk −

(q + p)2 + k2 − q2
∗

2k|q + p|

)
×

∫ 2π

0

dϕk
k2 + p2 − 2kp

(
cos θk cos θp + sin θk sin θp cos ϕk

)
×


−

(
εp − me

)
vi (k, q∗, θ∗) + pui (k, q∗, θ∗)(

εp − me
)

vr (k, q∗, θ∗)− pur (k, q∗, θ∗)
−

(
εp + me

)
ui (k, q∗, θ∗) + pvi (k, q∗, θ∗)(

εp + me
)

ur (k, q∗, θ∗)− pvr (k, q∗, θ∗)

 .

(26)

Here, using the property of the δ-function, q∗(k) = |p + q − k|
is given by

q∗(k) =
√

2mp [(γ + 1)me + εk], (27)

with γ = 1.531, θ∗ is the angle between the vectors k and q +
p − k,

cos θ∗ =
|q + p| cos θk − k

q∗
, (28)

ϕk and θk are the azimuthal and the polar angles of the vector
k,

cos θk =
(q + p)2 + k2 − q2

∗
2k|p + q| , (29)

4
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and θp is the polar angle of the vector p; simple geometric con-
siderations give us

sin θp =
q sin θ

|p + q| . (30)

After calculations of the integrals over the angles of the vec-
tor k, equation (26) takes the following form:

vr(p, q, θ)
vi(p, q, θ)
ur(p, q, θ)
ui(p, q, θ)


= α

mp

2
√

m2
e + p2|q + p|

×
∫

Dk

kdk√(
k2 + p2 − 2kp cos θk cos θp

)2 − 4k2 p2 sin2 θk sin2 θp

×


−

(
εp − me

)
vi (k, q∗, θ∗) + pui (k, q∗, θ∗)(

εp − me
)

vr (k, q∗, θ∗)− pur (k, q∗, θ∗)
−

(
εp + me

)
ui (k, q∗, θ∗) + pvi (k, q∗, θ∗)(

εp + me
)

ur (k, q∗, θ∗)− pvr (k, q∗, θ∗)

 .

(31)

6. THE EFFECTIVE INTERACTION
CONSTANT

Given p ∝ me and k ∝ me, the integral on the right side of (31)
is proportional to me. In the BIC state, the proton momentum
q ≫ p and q ∝ √mpme. Taking into account the latter, the di-
mensionless factor before the integral in (29) is proportional to

αeff = α

√
mp

me
= 0.313. (32)

This value αeff can be regarded as the effective interaction con-
stant. The fact that αeff ≫ α is caused by the resonance of the
electromagnetic interaction between particles in the BIC state.
Along with the angular correlations in the electron and proton
motion, which are defined by the angle θ, this resonance effect
determines the confinement mechanism of the composite par-
ticle in the BIC state [21].

7. THE COORDINATE-SPACE WAVE
FUNCTION

The momentum-space wave function (20) satisfies the normal-
ization (22). The coordinate-space wave function is defined as

ψ
(
re, rp

)
=

1
(2π)3

∫
dq

∫
dpψ(p; q)e−ipre−iqrp . (33)

Here, re and rp are the radius vectors of the electron and pro-
ton, respectively. Taking into account (31), the coordinate-space
wave function is also normalized:∫

dre

∫
drp

∣∣ψ (
re, rp

)∣∣2 = 1. (34)

The function (33) can be presented in the following form:

ψ
(
re, rp

)
=

(
f
(
re, rp

)
g
(
re, rp

)) . (35)

Here, f and g are complex functions which are given by the
following equation:(

f
(
re, rp

)
g
(
re, rp

))
= N

∫
dq

∫
dpδ

(
q2 − q2

∗(p)
)(

v (p, q) cos θp
u (p, q)

)
e−ipre−iqrp ,

(36)

where N is the normalization factor.

8. DETAILS OF CALCULATIONS
It is convenient to use the dimensionless quantities: x = p/me,
y = q/√memp, z = k/me. Then, using the notation η =

√
me
mp

,

equation (31) takes the following form:
vr(x, y, θ)
vi(x, y, θ)
ur(x, y, θ)
ui(x, y, θ)


=

αeff

2
√

1 + x2
√

y2 + 2ηxy cos θ + η2x2

×
∫

Dz

zdz√
(z2 + x2 − 2xz cos θz cos θx)

2 − 4z2x2 sin2 θz sin2 θx

×


−

(√
1 + x2 − 1

)
vi (z, t∗, θ∗) + xui (z, t∗, θ∗)(√

1 + x2 − 1
)

vr (z, t∗, θ∗)− xur (z, t∗, θ∗)

−
(√

1 + x2 + 1
)

ui (z, t∗, θ∗) + xvi (z, t∗, θ∗)(√
1 + x2 + 1

)
ur (z, t∗, θ∗)− xvr (k, t∗, θ∗)

 .

(37)

The notations (27)–(30) are rewritten as

t∗(z) =
√

2
(

γ + 1 +
√

1 + z2
)

, (38)

cos θ∗(x, y, θ, z) =
1
t∗

[√
y2 + 2ηxy cos θ + η2x2 cos θz − ηz

]
,

(39)

cos θz(x, y, θ, z) =
y2 + 2ηxy cos θ + η

(
x2 + z2)− t∗(z)2

2ηz
√

y2 + 2ηxy cos θ + η2x2
,

(40)

sin θx =
y sin θ√

y2 + 2ηxy cos θ + η2x2
. (41)

From (22), we obtain the normalization condition:

8π2
∫ ∞

0
x2t∗(x)dx

∫ π

0
sin θdθ

[
|v (x, t∗(x), θ)|2

+ |u (x, t∗(x), θ)|2
]
= 1.

(42)

For the coordinate-space wave function, we introduce the
dimensionless variables, s = mere, t = √memprp and the angle
θr between re and rp. Assuming that, without loss of generality,
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rp is directed along the z-axis, equation (36) is rewritten as(
f (s, t, θr)
g (s, t, θr)

)
= N

∫ ∞

0
x2t∗(x)dx

×
∫ π

0
J0
(
sx sin θr sin θp

)
e−isx cos θp cos θr sin θpdθp

×
∫ π

0
e−it∗t∗(x) cos θq sin θqdθq

∫ 2π

0

(
v (x, t∗(x), θ) cos θp

u (x, t∗(x), θ)

)
dϕq.

(43)

Here, the normalization factor N is determined by the normal-
ization condition, which is easily found in (33), J0 is the Bessel
function of the first kind, and

cos θ = cos θp cos θq + sin θp sin θq cos ϕq. (44)

All the numerical values, which are given throughout the
paper, were obtained using the electron and proton masses and
the positive value of binding energy E = 1.531me. The reason
for this binding energy is discussed in Section 1. There are no
free or fitting parameters in the presented theory.

9. NUMERICAL RESULTS
9.1. Momentum-Space BIC Wave Function
According to equation (37), the momentum-space wave func-
tion ψ(p, q; θ) is determined by the four real functions vr, vi,
ur, and ui. They depend on three variables p, q, and θ and
are interrelated with each other. For the positive binding en-
ergy 1.531me, the solution of this equation was found numeri-
cally using the iteration method. The functions vr,i(p, q, θ) and
ur,i(p, q, θ) were represented with matrices of the dimension
201 × 201 × 101.

It was obtained that for any given angle θ, all these func-
tions represent the single peak located in the same place on
the (p, q) plane. The height of the peak changes with the an-
gle. Moreover, it is a sign of alternating. The heights of peaks
are significantly different from zero only for a certain interval
of the angles θ.

The value q∗(p) =
√

2mp[(γ + 1)me + εp] with γ = 1.531
can be considered as the characteristic momentum of the pro-
ton in the bound state. The point (p, q∗) does not correspond
to the maximum of the peaks but falls within the location of
the peaks on the (p, q) plane. In Figures 2 and 3, we show these
four functions depending on the electron momentum p and the
angle θ for the given proton momentum q∗(p). It can be seen
that the main peaks cluster around the angles θ ≃ [π/18, π/4].
Outside this angular region, these four functions are very small.
Data shown in Figures 2 and 3 represent the momentum-space
BIC wave function of the electron-proton system.

This BIC state of the bound electron-proton system is not
the ground state, which is nondegenerate for any quantum sys-
tem. Excited states are, as a rule, degenerate. Therefore, equa-
tion (37) can have several solutions for the given binding en-
ergy.

In addition to the state shown in Figures 2 and 3, one more
solution of equation (37) has been obtained. For this second so-
lution, the functions vr, vi, ur, and ui also represent the single
peak with variable height depending on the angle θ.
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FIGURE 2: The functions ur(p, q∗(p), θ) (solid line) and
ui(p, q∗(p), θ) (dashed line).
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FIGURE 3: The functions vr(p, q∗(p), θ) (solid line) and
vi(p, q∗(p), θ) (dashed line).

The results for this second solution are demonstrated in
Figures 4 and 5. They are close to those presented in Figures 2
and 3. However, the angular positions of the peaks are shifted
relative to those for the first solution. The shift angle is approx-
imately equal to π/2.
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FIGURE 4: The functions ur(p, q∗(p), θ) (solid line) and
ui(p, q∗(p), θ) (dashed line) for the second solution of equation
(37).

The two momentum-space BIC wave functions, discussed
above, are the eigenfunctions of the integral equation (37) with
the eigenvalue E = mp + 2.531me.

9.2. Coordinate-Space BIC Wave Function
The coordinate-space BIC wave function ψ(re, rp, θr) was calcu-
lated from (43). Since the momentum-space wave functions are
normalized, the coordinate-space wave function must also sat-
isfy the normalization condition (34). For the numerical solu-
tion of equation (43), the function ψ(re, rp) was replaced by the
matrix with the dimension 121 × 121 × 17. Such small dimen-
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FIGURE 5: The functions vr(p, q∗(p), θ) (solid line) and
vi(p, q∗(p), θ) (dashed line) for the second solution of equation
(37).

sion is due to the many nested loops involved in the numerical
procedure. Of course, this small dimension could affect the ac-
curacy of the calculations. However, the use of matrices with
the dimension of 101 × 101 × 17 does not lead to a significant
change in the calculation results.

Note that we did not find a significant difference in the
coordinate-space wave functions which have been calculated
for these two momentum-space wave functions discussed
above.

As it follows from (18), in the BIC state, the proton is only
in the states of the upper continuum. The state of the electron is
determined by the bispinor (35), which contains two complex
functions f and g. These functions f and g determine the prob-
abilities of finding the electron in the states of the upper and
lower continua, respectively. It turned out that the function f is
very small compared to the function g.

For the sake of completeness, the real part of the function f
is shown in Figure 6 for the angle θr = π/2. For this angle, the
function f is close to maximal. Noteworthy are the very small
values of this function. These values are so small that cannot
affect the normalization of ψ.

Thus, the probability of finding the electron in the states of
the upper continuum is negligible. The electron with a proba-
bility close to one is in the states of the lower continuum.
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FIGURE 6: The functions fr(re, rp, θr = π/2).

Now, the complex function g = gr + igi is analyzed. It de-
pends on the angle θr between the electron (re) and the pro-
ton (rp) radius-vectors. According to the calculations, these two
functions gr and gi have similar dependencies on re and rp for
a given angle θr. However, the real part gr has, as a rule, large
values compared to gi.

The function gr is relatively small at small angles θr ≃ 0 and
for the angles near π. This function is shown in Figure 7 for the

angle θr = 0. Attention is drawn to the peak gr(0, 0). This peak
will be present at all other angles. According to Figure 7, with
the highest probability density, the electron and the proton are
near the positions re = 0 and rp = 0.

The values of the g function increase with the angle. As
shown in Figure 8, for θr = π/4, the function gr(re, rp, θr =
π/4) has also a narrow peak near re ≃ 0 and rp ≃ 0 . Out-
side this peak, this function has significantly smaller values. As
re and rp increase, the behavior of gr corresponds to damped
oscillations around zero.
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FIGURE 7: The functions gr(re, rp, θr = 0).
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FIGURE 8: The functions gr(re, rp, θr = π/4).

The structure of the function g is the same up to the an-
gle π/2. So, the differences between the functions at θr = π/4
and θr = π/2 are quite insignificant. Further, as the angle in-
creases, the situation changes. The central peak is preserved.
However, outside the peak, the oscillatory behavior of the g
function becomes stronger. This behavior for the angle 3π/4 is
demonstrated in Figure 9.
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FIGURE 9: The functions gr(re, rp, θr = 3π/4).

The function decreases as the angle θr approaches π. Figure
10 shows the function gr for θr = π. The characteristic values of
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the function are an order of magnitude smaller than those for
the angle θr = 3π/4. The central peak has been transformed
into a deep dip on the undulating surface gr(re, rp).
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FIGURE 10: The functions gr(re, rp, θr = π).

The electron-proton BIC state with the positive binding en-
ergy can be characterized by the average values of the electron
radius ⟨re⟩ and the proton radius ⟨rp⟩. These averages were cal-
culated as follows:(

⟨re⟩〈
rp
〉) =

∫
dre

∫
drp

(
re
rp

) ∣∣ψ (
re, rp

)∣∣2 . (45)

The integration in equation (45) is carried out over the plan
re ≤ 10/me and rp ≤ 10/√memp. According to the obtained
data for the wave function, which are partially presented in
Figures 6–10, the values of ⟨re⟩me and ⟨rp⟩

√memp are very
close. We obtained ⟨re⟩ = 0.124/me = 48 Fm and ⟨rp⟩ =
0.120/√memp = 1.1 Fm.

10. CONCLUSION
In the present work, the theory of BIC states of composite par-
ticles was supplemented with the conception of the resonance
of interaction between the constituent particles. Using the two
particle Bethe-Salpeter equation, the resonant regions in mo-
mentum space are found with the sharp increase in the electro-
magnetic interaction between the electron and the proton. This
increase is so strong that the effective coupling constant is equal
to α

√
mp/me = 0.313. Along with correlations in the electron

and proton motion, this resonance effect determines the con-
finement mechanism of the composite particle in the BIC state
with the positive binding energy of 1.531 of the electron mass.
It was obtained that, in the BIC state, the average radius for the
electron is equal to 48 Fm, and the average radius for the proton
is equal to 1.1 Fm.

This BIC state must represent a real particle. In the BIC state
which is found, the boson mass mB is greater than the sum
of the electron and proton masses, mB = mp + 2.531me. The
charge of the boson is zero, and its spin is an integer, but the bo-
son will demonstrate the one-half spin in the Stern-Gerlach-like
experiments. This is due to the fact that the nuclear magneton
is very small compared to the Bohr magneton. That is, this com-
posite particle could be the free neutron. Here, the word “free”
is very important.

Experimental data on the charge and magnetic form factors
of the neutron would allow us to determine the structure of the
neutron. Of course, one means the structure of the free neutron.
However, to my knowledge, there are no direct measurements

of free-neutron form factors. As a rule, electron scattering cross-
section measurements on the deuteron (d) and helium-3 (3

2He)
targets are intensively carried out [22, 23, 24]. Then, using pro-
ton form factors and the fitting procedure [25], the neutron
form factors have been extracted from this scattering data. In
these experiments, the properties of the free neutron are not
studied.

The neutron is a composite particle both in the quark model
and in the BIC electron-proton model that we are considering.
All fundamental properties of the neutron are determined only
for the free neutron [26]. The free particle is characterized by
the wave function that determines the properties of the com-
posite, such as its mass, charge, and spin form factors. When
the composite particle interacts with other particles, or when
it combines with other composites, its structure changes, the
free-state wave function vanishes, and the properties of the free
composite are lost. Therefore, composite particles exist only in
the free state. That is, the compound neutron in the free state
and what it was transformed, for example, in the helium nu-
cleus or the carbon nucleus are different objects.

Using the wave function obtained in the BIC model of the
neutron, we can calculate, for example, its charge form factor.
However, there is nothing to compare it with, since we did not
find any experimental works on measuring the form factors of
free neutrons in the literature. Despite all the complexity, the
physical properties of such particles should be studied only
when they are free.
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