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1. INTRODUCTION
The laws of physics are often used to make solid inferences.
For example, Newton’s laws allow the determination of the
motion of a weight hanging on a spring. In other situations,
the laws may simply allow something to happen. For example,
Einstein’s theory allows backward time travel but does not im-
ply that backward time travel can actually be achieved. Similar
comments can be made about macroscopic traversable worm-
holes: while wormholes are just as good a prediction of Ein-
stein’s theory as black holes, they are subject to severe restric-
tions from quantum field theory. An example is the need to
violate the null energy condition, calling for the existence of
“exotic matter” (defined below) to hold a wormhole open. Its
problematical nature has caused many researchers to consider
such wormhole solutions to be completely unphysical.

The continuing interest in wormholes is based on the ob-
servation that the Schwarzschild solution and therefore black
holes describe a (nontraversable) wormhole. More recent de-
velopments involving entanglement have suggested that a spe-
cial type of wormhole, called an Einstein-Rosen bridge, may be
the best explanation for entanglement [1]. We will therefore as-
sume that a basic wormhole structure can be hypothesized.

While there had been some forerunners, macroscopic
traversable wormholes were first studied by Morris and
Thorne [2], who proposed the following static and spherically
symmetric line element for a wormhole spacetime:

ds2 = −e2Φ(r)dt2 + e2α(r)dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

, (1)

where
e2α(r) =

1

1 − b(r)
r

. (2)

(We are using units in which c = G = 1.) In the now custom-
ary terminology, Φ = Φ(r) is called the redshift function, which
must be finite everywhere to prevent the occurrence of an event
horizon. The function b = b(r) is called the shape function since
it determines the spatial shape of the wormhole when viewed,
for example, in an embedding diagram [2]. The spherical sur-
face r = r0 is the throat of the wormhole. In a Morris-Thorne
wormhole, the shape function must satisfy the following con-
ditions: b(r0) = r0, b(r) < r for r > r0, and b′(r0) < 1, called
the flare-out condition in [2]. In classical general relativity, the
flare-out condition can only be met by violating the null energy

condition (NEC), which states that for the energy-momentum
tensor Tαβ

Tαβkαkβ ≥ 0 for all null vectors kα. (3)

Matter that violates the NEC is called “exotic” in [2]. Applied
to a wormhole setting, observe that for the radial outgoing null
vector (1, 1, 0, 0), the violation reads

Tαβkαkβ = ρ + pr < 0. (4)

Here, Tt
t = −ρ(r) is the energy density, Tr

r = pr(r) is the
radial pressure, and Tθ

θ = Tϕ
ϕ = pt(r) is the lateral (trans-

verse) pressure. Our final requirement is asymptotic flatness:

lim
r→∞

Φ(r) = 0, lim
r→∞

b(r)
r

= 0. (5)

The problematical nature of exotic matter in conjunction
with the need to violate the NEC has suggested solutions be-
yond the classical theory. For example, it was proposed by Lobo
and Oliveira [3] that in f (R) modified gravity, the wormhole
throat could be lined with ordinary matter, while the viola-
tion of the NEC can be attributed to the higher-order curvature
terms. There exist a number of other modified theories of grav-
ity that could be called upon to address these issues.

The primary goal of this paper is to accommodate the en-
ergy violation without modifying Einstein’s theory.

2. MEETING THE GOAL: PRELIMINARIES
When dealing with a complex theory such as general relativity,
certain aspects can be viewed from a broader perspective that
stops short of a modification. For example, the extension of Ein-
stein’s theory to higher dimensions has a long history, eventu-
ally leading to the realization that Einstein’s theory is the low-
energy limit of string theory (with its extra dimensions), just as
Newton’s theory is the weak-gravity and low-velocity limit of
Einstein’s theory. To be consistent with our goal, we will con-
sider an extra dimension to be a natural extension of Einstein’s
theory, rather than a modification. So much of our interest is
going to be centered on [4, 5], which hypothesize an extra static
and time-dependent spatial dimension, respectively. These top-
ics are covered in Sections 3–5.

Another striking development is noncommutative geom-
etry, which may be viewed as another offshoot of string the-
ory. As described in Section 6, point-like particles are replaced
by smeared objects, which is consistent with Heisenberg’s un-
certainty principle. What is critically important for our pur-
poses is that the noncommutative effects can be implemented
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in the Einstein field equations by modifying only the energy-
momentum tensor while leaving the Einstein tensor intact,
once again avoiding a modification of Einstein’s theory. These
topics are discussed in Sections 6 and 8.2.

The realization that moderately sized wormholes are sub-
ject to an enormous radial tension suggests that wormholes
are actually compact stellar objects. A possible explanation is
sought in Section 7 by starting with a two-fluid model that was
previously proposed in [18]. Additional assumptions are un-
avoidable, however, as we will see in Section 7.

Exotic matter makes a brief comeback in Section 8. Small
amounts that may arise from, for example, the Casimir ef-
fect, call for striking a delicate balance between reducing the
amount of exotic matter and fine-tuning the metric coefficients.

Finally, it is shown in Section 9 that a noncommutative-
geometry wormhole in a static and spherically symmetric
spacetime admitting conformal motion is stable to linearized
radial perturbations. Furthermore, both the redshift and shape
functions are completely determined from the given condi-
tions.

In Section 10, we take another, more general, look at the
low energy density in a noncommutative-geometry setting by
comparing the outcome to other low-density models, including
the case ρ(r) ≡ 0; none of these have the special characteristics
of the former. Without these special features, the need for exotic
matter cannot be avoided, indicating that neither dark matter
nor dark energy can support traversable wormholes, at least
not as long as the latter does not cross the phantom divide.

Section 11 discusses the possible detection of wormholes
by means of gravitational lensing. This tool calls for additional
physical requirements beyond the existence of dark matter,
thereby confirming the above assertion.

3. AN EXTRA SPATIAL DIMENSION
(STATIC CASE)

In this section, our main interest will be centered on [4], which
involves an extra spatial dimension. The extended line element
is

ds2 = −e2Φ(r)dt2 +
dr2

1 − b(r)
r

+ r2
(

dθ2 + sin2 θ dϕ2
)
+ e2µ(r,l)dl2,

(6)

where l is the extra coordinate.
It is interesting to note that in the components of the Rie-

mann curvature tensor, µ(r, l) never occurs as a factor. Instead,
the factors are ∂µ(r, l)/∂r and ∂2µ(r, l)/∂r2 [4]. So, µ(r, l) could
have any magnitude, to be discussed further below.

According to [4],

(ρ + pr)|r=r0
=

1
8π

b′ (r0)− 1
r2

0

[
1 +

r0
2

∂µ (r0, l)
∂r

]
. (7)

To satisfy the condition ρ + pr > 0 at the throat, we must have

∂µ (r0, l)
∂r

< − 2
r0

, (8)

corresponding to the null vector (1, 1, 0, 0). Moving to the fifth
dimension, the null vector (1, 0, 0, 0, 1) yields

(ρ + pr)|r=r0
=

1
8π

1
2

rb′ − b
r2

[
− dΦ(r)

dr
+

∂µ(r, l)
∂r

]∣∣∣∣
r=r0

< 0,

(9)
provided that the redshift function satisfies a similar condition:

dΦ (r0)

dr
= −A <

∂µ (r0, l)
∂r

< − 2
r0

. (10)

We conclude that the NEC is satisfied at the throat in the four-
dimensional spacetime but violated in the five-dimensional
spacetime.

Remark 1. For the condition ρ(r0) + pr(r0) > 0 to hold for all
null vectors, we must also have b′(r0) > 1/3 [4].

Remark 2. Condition (10) can be readily satisfied if Φ = Φ(r)
is a positive differentiable decreasing function of r for all r. The
reason is that since Φ′(r) < 0, the assumption of asymptotic
flatness implies that limr→∞ Φ′(r) = 0.

4. ADDITIONAL CONSIDERATIONS
4.1. The Function µ = µ(r, l)
We have already seen that inequality (8) is a sufficient condition
for ensuring that the throat of a wormhole can be threaded with
ordinary matter, while the unavoidable violation of the NEC
can be attributed to the higher spatial dimension.

Here, we need to emphasize another aspect of µ(r, l): as
noted in the previous section, |µ(r, l)| can be large or small.
So, in our model, it is entirely possible that µ be negative with
a large absolute value, resulting in a small value for eµ(r,l). In
other words, the extra dimension could be compactified with-
out sacrificing inequality (8). The very existence of a compact-
ified extra dimension is consistent with string theory. So, the
assumptions regarding µ(r, l) are physically reasonable.

Summarizing the static case, Φ = Φ(r) is positive and de-
creasing, while b′(r0) > 1/3. Conditions (8) and (10) are physi-
cally reasonable and consistent with string theory.

4.2. The Radial Tension at the Throat
At this point, we need to return to [2] to discuss the radial ten-
sion at the throat. To that end, we need to recall that the radial
tension τ(r) is the negative of the radial pressure pr(r). Accord-
ing to [2], the Einstein field equations can be rearranged to yield
τ(r). Here, we need to reintroduce c and G temporarily to get

τ(r) =
b(r)/r − 2[r − b(r)]Φ′(r)

8πGc−4r2 . (11)

So, the radial tension at the throat becomes

τ(r0) =
1

8πGc−4r2
0
≈ 5 × 1041 dyn

cm2

(
10 m

r0

)2
. (12)

As pointed out in [2], for r0 = 3 km, τ(r) has the same magni-
tude as the pressure at the center of a massive neutron star. (For
further discussion of this problem, see [7].) So, it follows from
equation (12) that wormholes with a low radial tension could
only exist on very large scales.
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5. AN EXTRA SPATIAL DIMENSION
(TIME-DEPENDENT CASE)

So far, the wormhole geometry has been strictly static. Refer-
ence [5] discusses the case in which the extra dimension is a
function of time t, as well as r and l. If the shape and redshift
functions remain the same, then the line element becomes

ds2 = −e2Φ(r)dt2 +
dr2

1 − b(r)
r

+ r2
(

dθ2 + sin2 θ dϕ2
)
+ e2µ(r,l,t)dl2.

(13)

(Reference [5] also assumes that b and Φ are functions of r and
l.) The expression for the null energy condition is given by

8π (ρ + pr)|r=r0
=

b′ (r0)− 1
r2

0

[
1 +

r0
2

∂µ (r0, l, t)
∂r

]

− e−2Φ(r0)

[
∂2µ (r0, l, t)

∂t2 +

(
∂µ (r0, l, t)

∂t

)2
]

.

(14)

To put this result to use, we can start with [8], which deals with
a wormhole model due to S.-W. Kim [9] in conjunction with a
generalized Kaluza-Klein model:

ds2 = −e2Φ(r)dt2 + [a(t)]2

×
(

dr2

1 − kr2 − b(r)
r

+ r2
(

dθ2 + sin2 θ dϕ2
)
+ e2Ψ(r)dq2

)
.

(15)

However, our primary concern is the effect of the time-
dependent extra dimension, rather than the overall cosmologi-
cal model. So, we can let k = 0 and assume that the line element
has the form

ds2 = −e2Φ(r)dt2 +
dr2

1 − b(r)
r

+ r2
(

dθ2 + sin2 θ dϕ2
)
+ [a(t)]2e2µ(r,l)dl2,

(16)

using our earlier notation for the last term. Since [a(t)]2e2µ(r,l) =

e2(ln a(t)+µ(r,l)), we let

U = ln a(t) + µ(r, l). (17)

Then, the line element becomes

ds2 = −e2Φ(r)dt2 +
dr2

1 − b(r)
r

+ r2
(

dθ2 + sin2 θ dϕ2
)
+ eU(r,l,t)dl2.

(18)

So, we can now rewrite equation (14) in the form

8π (ρ + pr)|r=r0

=
b′ (r0)− 1

r2
0

[
1 +

r0
2

∂U (r0, l, 1)
∂r

]

− e−2Φ(r0)

[
∂2U (r0, l, t)

∂t2 +

(
∂U (r0, l, t)

∂t

)2
]

.

(19)

We then observe that

∂2U
∂t2 +

(
∂U
∂t

)2
=

a′′(t)
a(t)

. (20)

There are now two possibilities, a′′(t) < 0 and a′′(t) > 0 for the
nonstatic case. In the first case, the second term on the right-
hand side of equation (19) is positive. It now becomes apparent
that inequality (8) can be replaced by the slightly more general

∂µ (r0, l, t)
∂r

≤ − 2
r0

(21)

since
∂U
∂r

=
∂µ

∂r
.

In other words, from equation (19), we now have

8π (ρ + pr)|r=r0
> 0, (22)

as in the static case.
If a′′(t) > 0, then

8π (ρ + pr)|r=r0
< 0, (23)

and we are back to the exotic matter, the case that was previ-
ously dismissed as unphysical.

Remark 3. It is shown in [5] that the NEC is violated in the five-
dimensionsl spacetime, as in the static case.

6. MACROSCOPIC WORMHOLES AS
EMERGENT PHENOMENA

In this section, our study of wormholes will move in a different
direction by starting with noncommutative geometry. Some-
times viewed as an offshoot of string theory, it assumes that
point-like particles are replaced by smeared objects, which is
consistent with the Heisenberg uncertainty principle. The orig-
inal idea was to eliminate the divergences that normally occur
in general relativity [10, 11, 12]. According to [11], this objec-
tive can be met by asserting that spacetime can be encoded in
the commutator [xµ, xν] = iθµν, where θµν is an antisymmetric
matrix that determines the fundamental cell discretization of
spacetime in the same way that Planck’s constant h̄ discretizes
phase space. More concretely, the smearing can be modeled by
using a so-called Lorentzian distribution of minimal length

√
β

instead of the Dirac delta function [13, 14]. As a consequence,
the energy density of a static and spherically symmetric and
particle-like gravitational source is given by

ρ(r) =
m
√

β

π2 (r2 + β)
2 . (24)

The implication is that the gravitational source causes the mass
m to be diffused throughout the region of linear dimension

√
β

due to the uncertainty.
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Returning to line element (1), let us list the Einstein field
equations next:

ρ(r) =
b′

8πr2 , (25)

pr(r) =
1

8π

[
− b

r3 + 2
(

1 − b
r

)
Φ′

r

]
, (26)

pt(r) =
1

8π

(
1 − b

r

) [
Φ′′ − b′r − b

2r(r − b)
Φ′

+ (Φ′)2 +
Φ′

r
− b′r − b

2r2(r − b)

]
.

(27)

Equation (24) now provides a physical basis for checking the
NEC, i.e.,

Tαβkαkβ = ρ(r) + pr(r) =
m
√

β

π2 (r2 + β)
2

+
1

8π

[
− b

r3 + 2
(

1 − b
r

)
Φ′

r

]∣∣∣∣
r=r0

=
m
√

β

π2
(
r2

0 + β
)2 − 1

8π

b(r0)

r3
0

< 0

(28)

since
√

β ≪ m. So, the violation of the NEC can be attributed to
the noncommutative-geometry background, rather than some
hypothetical “exotic matter,” at least locally. (We will return to
this point at the end of the section.)

For our purposes, it is sufficient to note that, according to
[6], the shape function B is given by

B

(
r√
β

)

=
4m
π

1
r

 r√
β

tan−1 r√
β
−

(
r√

β

)2

(
r√

β

)2
+ 1

− r√
β

tan−1 r0√
β
+

r√
β

r0√
β(

r0√
β

)2
+ 1

+
r0√

β

(29)

and meets all the requirements of a shape function. In particu-
lar,

B

(
r0√

β

)
=

r0√
β

, (30)

which corresponds to b(r0) = r0. It follows that the throat ra-
dius is macroscopic. (See [6] for details.)

This outcome naturally raises the question whether a mod-
ification of Einstein’s theory has really been avoided. It is ar-
gued in [6] that noncommutative geometry in the form dis-
cussed above is a fundamental property and that the outcome,
a macroscopic throat size, is an emergent property. By definition,
emergent phenomena are derived from some fundamental the-
ory, an idea that dates at least from the time of Aristotle. For ex-
ample, life emerges from totally lifeless objects, such as atoms
and molecules. This process is not reversible: living organisms

tell us little about the particles in the fundamental theory. Simi-
larly, our emerging macroscopic scale does not yield the smear-
ing effect in the fundamental theory. In the usual terminology,
we have obtained an effective model for a macroscopic worm-
hole in the sense that the short-distance effects have been dis-
carded: these are meaningful only in the fundamental theory.
The above local violation of the NEC, Tαβkαkβ < 0, can there-
fore be viewed as a fundamental property. So, the emergent
macroscopic phenomenon in equation (30) avoids a modifica-
tion of Einstein’s theory.

7. NEUTRON STARS
With Section 4.2 in mind, wormholes should be viewed as com-
pact stellar objects. The reason is that τ(r) has the same mag-
nitude as the pressure at the center of a massive neutron star.
Moreover, equation (12) implies that a wormhole with a low
radial tension could only exist on a very large scale, i.e., with a
sufficiently large r = r0. According to [15], for smaller worm-
holes, even the boundary condition b(r0) = r0 only makes
sense if the wormhole is a compact stellar object.

It is interesting to note that a combined model consisting of
neutron-star matter and a phantom/ghost scalar field yields a
wormhole solution [16]. Another example of a two-fluid model
can be found in [18]. For this approach to work, we need to fol-
low [17] which assumes that quark matter exists at the center
of neutron stars. While this may seem like a strong assumption,
it is by no means unreasonable: the extreme conditions could
presumably cause the neutrons to become deconfined, result-
ing in quark matter. Armed with this assumption, the energy-
momentum tensor of the two-fluid model is given by [18]

T0
0 ≡ ρeffective = ρ + ρq, (31)

T1
1 = T2

2 ≡ −peffective = −
(

p + pq
)

. (32)

Here, ρ and p correspond to the respective energy density and
pressure of the baryonic matter, while ρq and pq correspond to
the respective energy density and pressure of the quark matter.
The left-hand sides are the effective energy density and pres-
sure, respectively, of the combination.

The two-fluid model is based on the MIT bag model [19]. In
this model, the equation of state is given by

pq =
1
3
(
ρq − 4B

)
, (33)

where B is the bag constant, which is given as 145 MeV/(fm)3

in [19]. For normal matter, we can use the rather idealized equa-
tion of state [20]

p = mρ, 0 < m < 1. (34)

For our purposes, it is sufficient to note that [17] gives the fol-
lowing solution:

ρ = ρ0e−Φ(1+m)/2m, (35)

ρq = B + ρ(q,0)e
−2Φ, (36)

where ρ0 and ρ(q,0) are integration constants. Reference [17]
then goes on to derive the shape function b = b(r), as well
as its derivative

b′(r) = 1 − e−α(r) + r
[
− d

dr
e−α(r)

]
, (37)
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where eα(r) = 1/(1 − b(r)/r). (See [17] for details.) It is subse-
quently shown that the flare-out condition is met, indicating a
violation of the null energy condition, a necessary condition for
the existence of wormholes. This violation can be attributed to
the extreme conditions at the center of neutron stars.

8. EXOTIC MATTER REVISITED
8.1. Fine-Tuning
Given our main goal, demonstrating the possible existence of
wormholes without modifying Einstein’s theory, it seems sur-
prising that an earlier attempt by the author required no more
than sufficient fine-tuning of the metric coefficients [21].

First, we need to recall that in classical general relativity, a
wormhole can only be held open by violating the NEC, calling
for the need for exotic matter. Such matter is confined to a small
region around the throat. By itself, this is not a conceptual prob-
lem, as shown by the Casimir effect [22], to be discussed further
in the next section. In other words, exotic matter can be made
in the laboratory, but only in small quantities that may not be
sufficient for keeping a wormhole open. One of the goals in [21]
is to strike a balance between two conflicting requirements, re-
ducing the amount of exotic matter and fine-tuning the values
of the metric coefficients.

The key to the problem is the discovery by Ford and Ro-
man that quantum field theory places severe constraints on the
wormhole geometries [23, 24]. Of particular interest to us is
equation (95) in [24]:

rm

r
≤
(

1
v2 − b′ (r0)

)1/4 √
δ

f

(
lp

r0

)1/2
, (38)

where δ = 1/
√

1 − v2, lp is the Planck length, f is a small-
scale factor, b′0 = b′(r0), and rm is the smallest of several length
scales:

rm ≡ min
[

b(r),
∣∣∣∣ b(r)
b′(r)

∣∣∣∣ ,
1

|Φ′(r)| ,
∣∣∣∣ Φ′(r)
Φ′′(r)

∣∣∣∣] , (39)

referring once again to line element (1). Finally, v is the velocity
of a boosted observer relative to a static frame. For the right-
hand side of inequality (38) to be defined and real, we must
have v2 > b′0. So, if b′0 ≈ 1, the inequality is trivially satis-
fied, thereby meeting the Ford-Roman constraints. However,
to study the region away from the throat, where b′(r0) < 1,
inequality (38) has to be extended, as we will see shortly.

Before continuing, we need to take a closer look at the exotic
region

l(r) =
∫ r

r0

eα(r′)dr′. (40)

So, l(r1) is the amount of exotic matter in the interval [r0, r1].
(This is a more precise way of saying that the exotic matter is
confined to the spherical shell of inner radius r = r0 and outer
radius r = r1.)

Now, consider the extended quatum inequality from [21]:

rm

r
≤

 1

v2 b(r)
r − b′(r)− 2v2Φ′(r)

(
1− b(r)

r

)
1/4 √

δ

f

(
lp

r

)1/2
.

(41)
At r = r0, inequality (41) reduces to inequality (38). As a result,
we are still interested in the case where b′(r0) is close to unity

because this leads to our main result: since b′(r) < 1, for r > r0,
inequality (38) is not necessarily satisfied, but in the extended
inequality (41), Φ′(r) can be fine-tuned so that the condition
is satisfied in the interval [r0, r1], thereby reducing the proper
thickness of the exotic region, perhaps indefinitely. (Reference
[21] discusses additional models and gives several numerical
estimates.)

The conclusion is that one must strike a balance between
the thickness [r0, r1] of the exotic region and the degree of fine-
tuning required to achieve this reduction. It is also shown in
[21] that the degree of fine-tuning is a generic feature of a
Morris-Thorne wormhole. This unexpected finding could be
viewed as an engineering challenge that some day might even
be met.

8.2. The Casimir Effect and Noncommutative Geometry
The Casimir effect mentioned in Section 8.1 has shown that
exotic matter can exist on a small scale. While this may not
be enough to guarantee that the Casimir effect can support a
macroscopic wormhole, the fine-tuning scheme in Section 8.1
seems to allow such a possibility. Another possibility is dis-
cussed in [22]: the Casimir effect can be connected to noncom-
mutative geometry, which also deals with small-scale effects, as
discussed in Section 6.

The Casimir effect is usually described by starting with two
closely spaced parallel metallic plates in a vacuum. These can
be replaced by two closely spaced concentric spheres to pre-
serve the spherical symmetry. According to [25], if a is the mag-
nitude of the separation, then the pressure p as a function of a
is given by

p(a) = −3
h̄cπ2

720a4 (42)

and the density is

ρC(a) = − h̄cπ2

720a4 . (43)

Here, h̄ is Planck’s constant and c is the speed of light.
At this point we are going to return to noncommutative ge-

ometry by recalling the form of the energy density in equation
(24) and its interpretation: the gravitational source causes the
mass m of a particle to be diffused throughout the region of lin-
ear dimension

√
β due to the uncertainty. Here, we are going to

be more concerned with a smeared spherical surface of which
the throat of a wormhole is our primary example. According to
[22], the energy density ρs is given by

ρs (r − r0) =
µ
√

β

π2
[
(r − r0)

2 + β
]2 , (44)

where µ now denotes the mass of the surface. So, the smeared
particle is replaced by a smeared surface.

To connect the Casimir effect to the noncommutative-
geometry background, we first observe from equation (24) that
the energy density ρ as a function of the separation a is

ρ(a) =
m
√

β

π2 (a2 + β)
2 . (45)

According to equation (44), in the vicinity of the throat, i.e.,
whenever r − r0 = a, we get

ρs(a) =
µ
√

β

π2 (a2 + β)
2 . (46)
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So, it follows from equation (43) that

µ
√

β

π2 (a2 + β)
2 = |ρC(a)| = h̄cπ2

720a4 , (47)

which is the sought-after connection. More precisely, it is ar-
gued in [22] that the separation a, although small, is still macro-
scopic. So, we can assume that β = (

√
β)2 ≪ a2. Moreover,

since β is an additive constant, it becomes negligible in the de-
nominator of equation (47); thus,

√
β =

h̄cπ4

720µ
. (48)

Since h̄ = 1.0546 × 10−34 J · s, we obtain

√
β =

4.28 × 10−27

µ
. (49)

Given that µ is the mass of the throat r = r0, a spherical surface
of negligible thickness, it is hard to quantify, but it does have a
definite value, thereby defining

√
β in equation (49).

It is proposed in [22] that we could give a direct physical
interpretation to the smearing effect by letting

√
β = a. Then,

equation (47) yields

µa

π2 (a2 + a2)
2 =

h̄cπ2

720a4 (50)

or

µa =
h̄cπ4

180
, (51)

a fixed quantity. So, there are many possible choices for a and
µ.

Successfully connecting the experimentally confirmed
Casimir effect to noncommutative geometry has some impor-
tant consequences. Here, we can follow the arguments pro-
posed in [11], starting with the assertion that the noncommuta-
tive effects can be implemented in the Einstein field equations
Gµν = 8πG

c4 Tµν by modifying only the energy-momentum ten-
sor Tµν, while leaving the Einstein tensor Gµν intact. The reason
given in [11] is that a metric field is a geometric structure de-
fined over an underlying manifold whose strength is measured
by its curvature, but the curvature, in turn, is nothing more
than the response to the presence of a mass-energy distribu-
tion. Moreover, the noncommutativity is an intrinsic property
of spacetime, rather than a superimposed geometric structure.
So, it stands to reason that noncommutative geometry has an
effect on the mass-energy and momentum distributions, which,
in turn, determines the spacetime curvature. None of this af-
fects the Einstein tensor. So, the length scales can be macro-
scopic. (Recall that we already saw in Section 6 that the throat
radius can be macroscopic.)

In summary, by invoking noncommutative geometry, we
have seen that the Casimir effect, although a small effect, may
very well support a macroscopic wormhole.

9. STABILITY
The possible existence of macroscopic traversable wormholes
has naturally led to numerous studies regarding the stability
of such structures. We are going to confine ourselves to [26]

because the assumption of conformal symmetry in [26] can be
combined with the noncommutative-geometry background to
produce a complete wormhole solution. It is assumed in [26]
that our static and spherically symmetric spacetime admits a
one-parameter group of conformal motions. This assumption
is equivalent to the existence of conformal Killing vectors such
that

Lξ gµν = gην ξ
η

;µ + gµη ξ
η

;ν = ψ(r) gµν, (52)

where the left-hand side is the Lie derivative of the metric ten-
sor and ψ(r) is the conformal factor [26]. According to the usual
terminology, ξ generates the conformal symmetry and the met-
ric tensor gµν is said to be conformally mapped into itself along
ξ. This type of symmetry has been used extensively in classical
general relativity.

Before returning to the stability question, we need to recall
the usual strategy in the theoretical construction of a Morris-
Thorne wormhole: retain complete control over the geome-
try by specifying the redshift and shape functions and then
manufacture or search the Universe for materials or fields that
produce the required stress-energy tensor. Reference [27] ad-
dresses this problem in a direct manner: the noncommutative-
geometry background produces the shape function and the
conformal symmetry yields the redshift function. Adding the
assumption of the conservation of mass energy then yields the
stress-energy tensor. The result is a complete wormhole solu-
tion determined from the given conditions. Finally, it is shown
that the wormhole is stable to linearized radial perturbations.

10. OTHER LOW-ENERGY-DENSITY
WORMHOLES

Returning to equation (28), we have seen that the local viola-
tion of the NEC can be viewed as a fundamental property in
a noncommutative-geometry setting from which emerges the
violation on a macroscopic scale. This observation is consistent
with equation (25), restated here for convenience:

b′(r)
8πr2 = ρ(r); (53)

the left-hand side is the Gtt component of the Einstein ten-
sor, which, as we saw in Section 8.2, is unaffected in a
noncommutative-geometry setting. So, we are justified in us-
ing ρ(r) from equation (24) in equation (53). It is interesting to
note that the small value of ρ(r) typically leads to b′(r) < 1. So,
the flare-out condition is met automatically.

The real question now becomes, what if ρ(r) has a small
value but is otherwise arbitrary? While we still have b′(r) <
1, without the special features from the noncommutative-
geometry background, we cannot simply and uncritically draw
the same conclusions. To see why, consider an extreme exam-
ple, the zero-density case ρ ≡ 0, treated in Visser’s book [28].
We get a valid wormhole solution only if we go back to requir-
ing the usual exotic matter. Unfortunately, similar comments
can be made about various dark-matter models all of which
have a very low energy density. Consider, for example, the
Navarro-Frenk-White model in [29]:

ρ(r) =
ρs

r
rs

(
1 + r

rs

)2 , (54)

6



Letters in High Energy Physics LHEP-469, 2023

where rs is the characteristic scale radius and ρs the corre-
sponding density. Since ρ(r) in equation (54) is very small, we
would normally satisfy the flare-out condition b′(r) < 1 for
all r, thereby yielding a wormhole solution. However, with-
out the noncommutative-geometry background and its many
special properties, we can no longer assume the validity of
equation (53) for an arbitrary ρ(r), unless, of course, we return
to the exotic matter requirement once again. While this out-
come does not invalidate the solutions, it does call into ques-
tion their relevance: if exotic matter is needed anyway, then
what is the role of dark matter, if any? In other words, if ex-
otic matter cannot be eliminated, then dark matter alone could
not support traversable wormholes. The same comments apply
equally well to dark-energy models that do not cross the phan-
tom divide. To clarify this point, we need to recall that for phan-
tom dark energy, the (isotropic) equation of state is p = ωρ,
ω < −1, which implies that ρ + p = ρ + ωρ = ρ(1 + ω) < 0.
Since the NEC has been violated, phantom dark energy could
in principle support traversable wormholes [30]. Such worm-
holes could only exist on very large scales, however, as we al-
ready noted in Section 4.2.

11. A SOLUTION UNCOVERED VIA
GRAVITATIONAL LENSING

We know from the previous section that neither dark mat-
ter alone nor dark energy alone can support a Morris-Thorne
wormhole: the former requires the existence of exotic matter
and the latter the equation of state p = ωρ, ω < −1. Another
possibility is a noncommutative-geometry background, as we
saw in Section 6. This section considers yet another approach,
discussing the effect of gravitational lensing. While primarily a
tool for detecting wormholes, it has its own physical require-
ments, as described in [31]. To facilitate the discussion, the line
element is written in the following more convenient form:

ds2 = −A(x) dt2 + B(x) dx2 + C(x)
(

dθ2 + sin2 θ dϕ2
)

, (55)

where x is the radial distance defined in terms of the
Schwarzschild radius x = r/2M. Then,

x0 =
r0

2M
(56)

denotes the closest approach of the light ray. As noted in [31],
the deflection angle α(r0) is given by

α (r0) = I(x0) + a, (57)

where a is a constant that depends on the size of the wormhole.
Next,

I (x0) = 2
∫ ∞

x0

√
B(x) dx√

C(x)
√

C(x)A(x0)
C(x0)A(x) − 1

=
∫ a

x0

Q(x) dx.

(58)

Here, Q(x) depends on the parameters in the Navarro-Frenk-
White model, equation (54). (See [31] for details.)

So, while we are still dealing with dark matter, the worm-
hole solution requires several other conditions besides the sim-
ple existence of dark matter as previously claimed. In particu-
lar, the deflection angle depends on both the redshift and shape
functions.

12. CONCLUSION
Given that wormholes are just as good a prediction of Ein-
stein’s theory as black holes, we can assume that Morris-Thorne
wormholes, as proposed in [2], are theoretically possible, but
subject to severe restrictions from quantum field theory. The
purpose of this paper is to show that these restrictions can be
met without a modification of Einstein’s theory.

Adhering to the widely held view that the need for exotic
matter renders any wormhole solution unphysical, we follow
[6] which proposes the following static and spherically sym-
metric line element to describe a wormhole spacetime:

ds2 = −e2Φ(r)dt2 +
dr2

1 − b(r)
r

+ r2
(

dθ2 + sin2 θ dϕ2
)
+ e2µ(r,l)dl2,

where l is the extra coordinate. The extra dimension can be ei-
ther static or time dependent. For this approach to work, we
do need to make some additional assumptions. For the static
case, the redshift function is positive and decreasing for all r.
(Asymptotic flatness is part of the structure of a Morris-Thorne
wormhole.) Furthermore, inequalities (8) and (10) have to be
met, while the condition b′(r0) > 1

3 ensures that the NEC is
satisfied at the throat for all null vectors. So, the throat of the
wormhole can be lined with ordinary matter, while the un-
avoidable violation of the NEC can be attributed to the higher
spatial dimension. Finally, the extra dimension can be small or
even curled up.

For the time-dependent case, we obtain a similar conclu-
sion using the slightly more general condition ∂µ(r0, l, t)/∂r ≤
−2/r0, provided that a′′(t) < 0.

The next part of this paper invokes a noncommutative-
geometry background, thereby assuming that point particles
are replaced by smeared objects, as detailed in Section 6.
This assumption is consistent with the Heisenberg uncertainty
principle and therefore independent of Einstein’s theory. The
particle-like gravitational source is given by

ρ(r) =
m
√

β

π2 (r2 + β)
2 . (59)

So, the gravitational source causes the mass m of the particle to
be diffused throughout the region of linear dimension

√
β due

to the uncertainty.
The shape function B meets all the usual requirements; in

particular,

B

(
r0√

β

)
=

r0√
β

. (60)

The throat radius r0/
√

β is therefore macroscopic.
It is argued in Section 6 that the noncommutative-geometry

background is a fundamental property and the outcome, a macro-
scopic wormhole, is an emergent phenomenon. The result is an
effective model that does not depend on the short-distance ef-
fect that is characteristic of noncommutative geometry, thereby
avoiding a modification of Einstein’s theory. It is interesting to
note that the compactified extra spatial dimension in Section
4.1 can also be viewed as a fundamental property, again mak-
ing the macroscopic wormhole an emergent phenomenon.
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It was pointed out in Section 4.2 that for a wormhole with
a throat radius of 3 km, the radial tension has the same mag-
nitude as the pressure at the center of a massive neutron star,
suggesting that a Morris-Thorne wormhole should be viewed
as a compact stellar object. This case is taken up in Section 7
by first noting that quark matter is believed to exist near the
center of neutron stars, thereby calling for a combined model
consisting of quark matter and ordinary matter. For this type
of wormhole, the violation of the null energy condition can be
attributed to the extreme conditions at the center of the neutron
star.

In Section 8.1, we saw a return to exotic matter, motivated
in part by the fact that small amounts of exotic matter can be
made in the laboratory, as exemplified by the Casimir effect. To
get a valid wormhole solution, the wormhole has to satisfy the
Ford-Roman inequality (38) or the extended version, inequal-
ity (41). The conclusion is that one must strike a balance be-
tween the thickness [r0, r1] of the exotic region and the degree
of fine-tuning required to achieve this reduction. The degree
of fine-tuning is a generic feature of a Morris-Thorne worm-
hole. Section 8.2 then connects the aforementioned Casimir ef-
fect with noncommutative geometry, suggesting that the for-
mer may be able to support a macroscopic wormhole in spite
of being a small effect.

Finally, it is shown in Section 9 that given a noncommutative-
geometry background, a Morris-Thorne wormhole in a static
and spherically symmetric spacetime admitting conformal mo-
tion is stable to linearized radial perturbations. Furthermore,
the redshift and shape functions are completely determined
from the given conditions.

In Section 10, we return to equation (53) to observe that
b′(r) = 8πr2ρ(r) < 1 whenever ρ(r) is extremely small, which
is actually true in a dark-matter or dark-energy setting, as well
as for the zero-density case ρ(r) ≡ 0. So, the NEC is automat-
ically violated. The same is true for ρ(r) in equation (24), the
noncommutative-geometry case. The difference is that the use
of ρ(r) in equation (24) can be justified by appealing to the spe-
cial properties of the noncommutative-geometry background,
thereby producing a valid wormhole solution. Since these key
properties are not possessed by any of the other cases, we con-
clude that neither dark matter nor dark energy can support a
Morris-Thorne wormhole, as long as the latter does not cross
the phantom divide. Other possible exceptions are noted in
[31].

Section 11 discusses the detection of wormholes by means
of gravitational lensing. An application of the method calls for
additional physical requirements beyond the simple existence
of dark matter, confirming the earlier assertion that dark matter
alone cannot support traversable wormholes.
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[26] C. G. Böhmer, T. Harko, and F. S. N. Lobo, Phys. Rev. D 76,

084014 (2007).
[27] P. K. F. Kuhfittig, Indian J. Phys. 90, 837 (2016).
[28] M. Visser, Lorentzian wormholes: from Einstein to Hawk-

ing. (New York: American Institute of Physics, 1995), Sec-
tion 13.4.2.

[29] F. Rahaman, P. K. F. Kuhfittig, S. Ray, and M. Islam, Eur.
Phys. J. C 74, 2750 (2014).

[30] S. Sushkov, Phys. Rev. D 71, 043520 (2005).
[31] P. K. F. Kuhfittig, Eur. Phys. J. C 74, 2818 (2014).

8


