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Abstract
In this work, we describe the construction of a particle physics model where chiral symmetry, broken at the
UV scale by “irrelevant” d > 4 operators, is recovered at low energy. In the critical, chiral symmetric the-
ory, masses of elementary degrees of freedom are generated by a peculiar nonperturbative field-theoretical
mechanism and not as in the Higgs scenario. Consistency of mass formulae with phenomenology requires
the existence of a new sector of superstrongly interacting particles (denoted by Tera-particles), gauge in-
variantly coupled to Standard Model matter, living at an energy scale, ΛT , of the order of a few TeVs.
We give the expression of the full Lagrangian of a model encompassing quarks, Tera-quarks and W, as
well as leptons, Tera-leptons, and B gauge bosons when, besides strong, there are Tera-strong and weak
interactions, and also hypercharge is included. We prove that, upon integrating out the (heavy) Tera-DoFs,
the resulting low-energy effective Lagrangian of the critical model essentially coincides with the Standard
Model Lagrangian. This implies that the present model passes all the precision tests that the Standard
Model is able to pass. There are a number of good reasons for considering speculative and unorthodox
theories of this kind. First of all, unlike the Standard Model, in this scenario masses are not free parameters
but are determined by the dynamics of the theory. Secondly, we have a physical understanding of the ori-
gin of the electroweak scale as the scale of a new interaction. Thirdly, we envisage a solution to the strong
CP problem, and last but not least, the Higgs mass tuning problem does not even arise because there is no
fundamental Higgs.
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1. INTRODUCTION
In this letter, we outline the construction of a beyond-the-
Standard-Model model (bSMm) where chiral symmetry, bro-
ken at the UV scale by “irrelevant” d > 4 operators, is re-
covered at low energy. Elementary particle masses are not
generated via the Higgs mechanism, but emerge as a sort of
nonperturbative (NP) anomalies coming from a delicate inter-
play between residual chiral breaking effects surviving after
chiral symmetry restoration, and IR features originating from
the spontaneous breaking of the (recovered) chiral symmetry,
which occurs in any strongly interacting theory.

The model is built by extending results derived in [1]. In
particular, since NP elementary particle masses are propor-
tional to the RGI scale of the theory (see equation (16)), we are
lead to predict the existence of a superstrongly interacting sec-
tor of particles (denoted by Tera-particles as suggested in [2]) so
that the full theory encompassing SM matter and Tera-particles
will have an RGI scale ΛRGI ≡ ΛT ≫ ΛQCD in the few TeV
region, thus yielding top and electroweak (EW) boson masses
of the correct order of magnitude.

In this work, we give the expression of the Lagrangian of
this putative bSMm. We provide parametric formulae for the
masses of elementary standard and Tera-particles from which
interesting estimates of mass ratios and ΛT can be extracted. A
first account of these results is given in [3, 4].

Models of the kind developed here have a number of ap-
pealing theoretical features that allow solving some of the puz-

zling problems left open by the present formulation of the SM.
We list them below.

(1) Elementary particle masses are not unconstrained La-
grangian parameters, like in the SM, but are dynamically
determined. They are proportional to the RGI scale of
the theory, times coefficient functions depending on the
gauge couplings.

(2) There is no longer a Higgs mass tuning problem [5, 6] as
there is no fundamental Higgs.

(3) The EW scale is naturally interpreted as (a fraction of)
the scale of the new interaction, ΛT .

(4) One can get a cheap solution (i.e., without axions) for the
strong CP problem.

(5) It was proven in [7] that with a reasonable choice of
spectrum and hypercharges of Tera-particles, a model ex-
tending the SM degrees of freedom (DoFs) with the in-
clusion of the Tera-sector leads to a theory with the unifi-
cation of the running of the U(1)Y , SU(2)L, and SU(Nc =
3) gauge couplings at a scale ΛGUT ∼ 1018 GeV. Overall
unification of SM and Tera-gauge couplings can also be
achieved by suitably tuning the Tera matter content.

We end this Introduction with two observations. First of
all, as in [1, 3, 4], for now we mostly ignore weak isospin
splitting and the existence of flavor and it is intended that
our more phenomenological considerations refer to the heav-
iest of the flavor families. Secondly, we observe that the low-
energy effective Lagrangian (LEEL) of the model (see Section 6)
valid for (momenta)2 ≪ Λ2

T looks like the SM Lagrangian [3].
Indeed, in our scheme, the 125 GeV state detected at LHC,
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which we suggestively denote by h, is interpreted as a com-
posite W+W−/ZZ scalar resonance, bound by Tera-strong ex-
changes, left behind after integrating out the heavy Tera-DoFs.
As mh is very small compared to the conjectured value of
ΛT , the existence of h needs to be accounted for in describ-
ing low-energy physics. Ignoring EW perturbative corrections,
differences between the LEEL of this model and the SM La-
grangian may only appear in the effective trilinear and quadri-
linear couplings of the h self-interactions. Support for the in-
terpretation of the 125 GeV boson as a W+W−/ZZ bound state
emerges both from some nonrelativistic calculations (that we
do not repeat here [4]), as well as from an approximate Bethe-
Salpeter-like approach. From the two computations we get con-
sistent estimates of the WW binding energy of the order of
the W mass itself, in line with the large experimental value
Eb = 2MW −mh ∼ 160− 125 = 35 GeV.

1.1. Plan of the Paper
The plan of the paper is as follows. In Section 2, we provide the
expression of the Lagrangian of a putative bSMm including SM
as well as Tera-particles. Following the discussion in [1, 3, 4],
we prove that in the Nambu-Goldstone (NG) phase of the chi-
rally symmetric (critical) theory all elementary particles acquire
an NP mass from the interplay between residual chiral break-
ing effects at the UV scale and IR features coming from the
phenomenon of spontaneous chiral symmetry breaking. As a
result masses, unlike in the SM, will be proportional to the RGI
scale of the theory, ΛT . In Section 3, we provide the leading
loop order parametric expression of the masses of all the ele-
mentary particles. In Section 4, we illustrate a possible solution
to the strong CP problem. In Section 5, we present an approx-
imate Bethe-Salpeter-like calculation of the binding energy of
the W+W−/ZZ composite state. In Section 6, we give the ex-
pression of the d ≤ 4 quantum effective Lagrangian (QEL),
which yields the full quantum information of the physics of
the model, showing that it essentially coincides with the La-
grangian of the SM. In Section 7, we derive crude estimates of
ΛT and the mass of Tera-fermions and of the heaviest family
of SM fermions in units of MW , and we discuss the kind of
assumptions and approximations entering our phenomenolog-
ical mass estimates. Conclusions and a brief outlook of future
lines of investigation can be found in Section 8.

2. THE bSMm LAGRANGIAN
The full bSMm Lagrangian can be obtained from equa-
tions (3.1)–(3.5) of [3] by adding kinetic, Yukawa and Wilson-
like terms for the new particles (leptons and Tera-leptons),
while at the same time appropriately extending the expres-
sion of the covariant derivatives to encompass U(1)Y interac-
tions. As we said, we restrict ourselves to the one-family case
and drop flavor indices. Since we lack at the moment a mecha-
nism to remove family degeneracy, appending a flavor index to
quarks and leptons would not add anything useful while mak-
ing notations more clumsy. Even restricting to the one-family
case and in the limit of unbroken weak isospin, one finds a

rather lengthy expression (for preliminary results see [8]):

LbSMm(q, ℓ, Q, L; Φ; A, G, W, B)
= Lkin(q, ℓ, Q, L; Φ; A, G, W, B) + V(Φ)

+ LYuk(q, ℓ, Q, L; Φ) + LWil(q, ℓ, Q, L; Φ; A, G, W, B),
(1)

where

Lkin(q, ℓ, Q, L; Φ; A, G, W, B)

=
1
4

(
FA · FA + FG · FG + FW · FW + FB ḞB

)
+

[
q̄L D̸BWAqL + q̄R D̸BAqR + ℓ̄L D̸BWℓL + ℓ̄R D̸BℓR

]
+

[
Q̄L D̸BWAGQL + Q̄R D̸BAGQR

+ L̄L D̸BWG LL + L̄R D̸BG LR

]
+

kb
2

Tr
[(
DWB

µ Φ
)†
DWB

µ Φ
]

,

(2)

V(Φ) =
µ2

0
2

kbTr
[
Φ†Φ

]
+

λ0
4

(
kbTr

[
Φ†Φ

])2
, (3)

LYuk(q, ℓ, Q, L; Φ) = ∑
f=q,ℓ,Q,L

η f
(

f̄LΦ fR + hc
)

, (4)

LWil(q, ℓ, Q, L; Φ; A, G, W, B)

=
b2

2
ρq

(
q̄L
←−D BWA

µ ΦDBA
µ qR + hc

)
+

b2

2
ρℓ

(
ℓ̄L
←−D BW

µ ΦDB
µ ℓR + hc

)
+

b2

2
ρQ

(
Q̄L
←−D BWAG

µ ΦDBAG
µ QR + hc

)
+

b2

2
ρL

(
L̄L
←−D BWG

µ ΦDBG
µ LR + hc

)
.

(5)

Following the notations of [1, 3, 4], we have indicated by DX
µ

the covariant derivative with respect to the group of transfor-
mations of which {X} are the associated gauge bosons. The
most general expression of the covariant derivative is

DBWAG
µ = ∂µ − iYgY Bµ − igwτrWr

µ − igs
λa

2
Aa

µ − igT
λα

T
2

Gα
µ,

(6)

where Y, τr (r = 1, 2, 3), λa (a = 1, 2, . . . , N2
c − 1), and λα

T (α =

1, 2, . . . , N2
T − 1) are, respectively, the U(1)Y hypercharge and

the generators of the SU(2)L, SU(Nc = 3), and SU(NT = 3)
groups with gY , gw, gs, and gT being the corresponding gauge
couplings. The scalar field, Φ, is a 2× 2 matrix with Φ = (ϕ |
ϕ̃), ϕ̃ = −iτ2ϕ⋆ and ϕ an iso-doublet of complex scalar fields,
which feels U(1)Y and SU(2)L, but neither SU(Nc = 3) nor
SU(NT = 3) gauge interactions. We immediately note that, de-
spite the appearances, Φ is not the Higgs boson, but rather an
effective way to describe an χL×χR-symmetric UV completion
of the model (see Section 2.1).

For the SU(2)L SM matter doublets we use the notation
qL = (uL, dL)

T and ℓL = (νL, eL)
T . Right-handed components

(qu
R, qd

R, and ℓu
R ≡ νR, ℓd

R ≡ eR) are SU(2)L singlets. However,
since we do not remove the up-down weak isospin degeneracy,
in equation (1), we have used for all fermions (including Tera-
fermions) a “doublet-like” notation also for Right-handed com-
ponents.
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The distinctive feature of the Lagrangian (1) is the presence
of the “irrelevant” (chiral breaking) d = 6 Wilson-like operator
LWil, which occurs multiplied by two inverse powers of the UV
cut-off, b2 ∼ Λ−2

UV . This makes LbSMm power counting renor-
malizable, similar to what happens in the case of Wilson lattice
QCD (WLQCD), despite the presence of the (chiral breaking)
d = 5 Wilson term. Here, it is like if in LbSMm the Wilson r
parameter was lifted to a field, i.e., r → bΦ.

2.1. Symmetries of the Lagrangian
Among other obvious symmetries, the Lagrangian (1) is exactly
invariant under the (global) transformations χL × χR, involv-
ing all fermions ( f = q, ℓ, Q, L), the W bosons, and the scalar,
Φ, given by the formulae (ΩL/R ∈ SU(2)):

χL × χR = [χ̃L × (Φ→ ΩLΦ)]×
[
χ̃R ×

(
Φ→ ΦΩ†

R

)]
, (7)

χ̃L :

{
fL → ΩL fL f̄L → f̄LΩ†

L
Wµ → ΩLWµΩ†

L,
(8)

χ̃R : fR → ΩR fR, f̄R → f̄RΩ†
R. (9)

A key consequence of the χL × χR invariance is that the
chiral noninvariant operators mψ̄ψ can never be quantum-
mechanically generated with either a finite or a linearly diver-
gent coefficient. Besides, we remark that Tera-interactions have
nothing to do with Technicolor. No mass can, in fact, be ever
generated via the chiral Tera-condensates since the latter van-
ish as a consequence of the exact χL × χR symmetry.

For generic η f and kb, LbSMm is not invariant under the
“chiral” transformations χ̃L × χ̃R (8)-(9) owing to the presence
of LWil, LYuk, and the scalar kinetic term. Invariance under
χ̃L × χ̃R can be recovered (up to O(b2) terms) enforcing the
conservation of the χ̃L × χ̃R currents by appropriately tuning
η f , f = q, ℓ, Q, L, and kb. According to the strategy suggested
in [9, 10] and adapted to the present situation in [1], this oc-
curs at the “critical” values of η f and kb that solve the tuning
equations:

η f = η̄L
f ({η}, kb; {g}, {ρ}, µ0, λ0) ,

η f = η̄R
f ({η}, kb; {g}, {ρ}, µ0, λ0) ,

kb = k̄L
b ({η}, kb; {g}, {ρ}, µ0, λ0)

(10)

with {g = gY , gw, gs, gT}, {η} and {ρ} denoting the set of
gauge couplings, Yukawa, and ρ coefficients, respectively. The
superscript L (R) refers to the condition derived by enforcing
the conservation of the χ̃L (χ̃R) current; see equation (8) (equa-
tion (9)). The function η̄L

f (η̄R
f ) is the mixing coefficient between

the χ̃L (χ̃R) rotations of the d = 6 Wilson-like operator of the
f fermion and the χ̃L (χ̃R) rotation of the corresponding d = 4
Yukawa term, while k̄L

b is the mixing coefficient with the χ̃L ro-
tation of the scalar kinetic operator. The derivation of the above
tuning conditions is given in Appendix A of [3].

According to the ’t Hooft criterion [6], the tuning of η f and
kb at their critical values is a costless and “natural” step as it
leads to an enlargement of the theory symmetries.

In the next two subsections, we illustrate the nature and the
implications of the critical conditions (10) in the Wigner phase,
where the scalar potential V has a single minimum, and in the
NG phase, where V has a typical Mexican hat shape. We limit
for simplicity the discussion to the quark and Tera-quark sec-
tors. Similar considerations would apply to the lepton sector.

2.2. The Critical Conditions in the Wigner Phase
In the upper and middle panels of Figure 1, we illustrate at the
lowest 1-loop order the mechanism that in the Wigner phase
leads to the cancellation of the chiral breaking quark and Tera-
quark Yukawa terms, respectively. The figures show the mixing
between the quark (Tera-quark) Yukawa operator (grey disks)
and the quark (Tera-quark) Wilson-like operator (grey box). In
the lowest panel, we report the leading 1-loop order diagrams
yielding the cancellation between the scalar kinetic term (grey
disk) and the contribution from the sum of the quark and Tera-
quark Wilson-like operators (grey boxes). The empty boxes rep-
resent the insertion of Wilson-like vertices from the Lagrangian
necessary to close the fermion loops.

The key observation is that, a part from a quadratically di-
vergent scalar mass counter-term, the loop diagrams in Figure 1
yield finite results because loop UV power divergencies are ex-
actly compensated by b2 factors coming from Wilson-like ver-
tices.

L LR R
ηq ρqb

2+ = 0

L LR R
ηQ ρQb

2+ = 0

+ ρqb
2 = 0ρqb

2

νq = Nc

kb +

νQ = NcNT

ρQb
2 ρQb

2

FIGURE 1: Upper (middle) panel: the cancellation mechanism
of the quark (Tera-quark) Yukawa vertex implied by the tun-
ing conditions determining ηq cr (ηQ cr). The grey box, labeled
by ρq (ρQ), represents the quark (Tera-quark) Wilson-like ver-
tex. Lower panel: the cancellation mechanism of the scalar ki-
netic term implied by the tuning condition determining kb cr.
The integers νq and νQ are the multiplicities of quarks and
Tera-quarks running in the loops with Nc and NT being the
number of colors and Tera-colors. The grey disc, labeled by kb,
represents the insertion of the scalar kinetic term. The empty
boxes represent the insertion of Wilson-like vertices from the
Lagrangian. Single lines represent particles and double lines
Tera-particles. The figures show the lowest loop order Wigner
phase diagrams.

2.3. The Critical Conditions in the Nambu-Goldstone Phase
In the NG phase, the criticality conditions for ηq, ηQ, and kb im-
ply the cancellations shown in Figure 2. We see that enforcing
invariance under χ̃L × χ̃R implies that in the QEL of the critical
theory, precisely the Higgs-like masses of quarks, Tera-quarks,
and W’s are killed. The diagrams in the upper and middle pan-
els of Figure 2 are directly obtained from the corresponding di-
agrams in Figure 1 by setting the scalar field equal to its vev.
The diagrams in the lowest panel of Figure 2 follow from the
corresponding ones in Figure 1 using SU(2)L gauge invariance
and setting the scalar at its vev.

Again all the loop diagrams in Figure 2 yield finite results
because, as before, the loop UV power divergencies are exactly
compensated by the b2 factors coming from the insertion of
Wilson-like vertices.
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L LR R
ηqcr ρqb

2+ = 0[ ]v

L LR R
ηQcr ρQb

2+ = 0[ ]v

[ ρqb
2+ = 0ρqb

2 ]g2wv
2 kb cr

nq = Nc

+ ρQb
2 ρQb

2

nQ = NcNT

FIGURE 2: Upper (middle) panel: the cancellation mechanism
of the Higgs-like mass term of quarks (Tera-quarks). Lower
panel: the cancellation mechanism of the Higgs-like W mass
term. Wiggly lines are W’s. The rest of the notations are as in
Figure 1. The figures show the lowest loop order NG phase di-
agrams.

3. NONPERTURBATIVE EFFECTS
Following the NP diagrammatic analysis developed in [1, 3, 4],
one can derive the list of the formally O(b2) Symanzik opera-
tors that need to be taken into account to describe the NP ef-
fects coming from the spontaneous breaking of the recovered
χ̃L × χ̃R (chiral) symmetry. The list in equations (3.11)–(3.13)
of [3] must be extended to include the extra χL × χR invari-
ant d = 6 operators involving leptons, Tera-leptons, and the B
boson. Limiting to the operators entering the NP diagrams of
Figure 3, one finds the CP-invariant operators

OT
6,Q̄Q ∝ b2ΛTαT |Φ|

[
Q̄L D̸BWAGQL + Q̄R D̸BAGQR

]
, (11)

OT
6,L̄L ∝ b2ΛTαT |Φ|

[
L̄L D̸BWG LL + L̄R D̸BG LR

]
, (12)

O6,AA ∝ b2ΛT g2
s |Φ|FA · FA, (13)

OT
6,GG ∝ b2ΛT g2

T |Φ|FG · FG, (14)

OT
6,BB ∝ b2ΛT g2

Y |Φ|FB · FB. (15)

A physical interpretation of the NP origin of the Symanzik op-
erators (11)–(15), as well as a derivation of the ρ, Nc, and NT
dependence of the proportionality factors in front of them, is
provided in Appendix B of [4]. In Section 4, we prove that NP
effects can only generate CP-invariant Symanzik operators.

We stress that NP operators like those in equations (11)–
(15), though formally of O(b2), cannot be neglected in the limit
b → 0 if we want to get the correct description of the physics
of the model, including features of NP origin. In fact, as we
have repeatedly remarked, there is an exact compensation be-
tween the IR b2-behavior coming from the insertion of the NP
Symanzik operators and/or the Wilson-like vertices and the
UV power divergencies of loop integrals, eventually yielding
nonvanishing, finite contributions [1, 3, 4].

According to [11], the proper way to keep all these NP ef-
fects correctly into account is to construct an “augmented La-
grangian” by adding to the fundamental Lagrangian a linear
combination of the NP operators (11)–(15).

3.1. Mass Generation
The “augmented Lagrangian” allows constructing a com-
pletely new class of diagrams. Among them, at the lowest loop
order, one finds the typical (amputated) vertices shown in the
six panels of Figure 3 where the dandling double dotted lines

are the U factors which remain after |Φ| contraction. From top
to bottom, these diagrams provide NP mass terms to leptons,
quarks, Tera-leptons, Tera-quarks, charged W’s, and neutral
EW bosons (see equation (27)). Blobs represent the appropri-
ate Symanzik operators among those in equations (11)–(15) and
boxes the Wilson-like vertex insertions necessary to close the
loops.

b2ΛTρLαT

gT

ζ0

L

Gµ

L
b2ρLgT

b2ΛTρQαT b2ρQgs
gs

ζ0

Q

Aµ

Q

b2ΛTρQαT b2ρQgT
gT

ζ0

Q

Gµ

Q

Aµ

b2ΛTρQg
2
s

gs

ζ0

q

q

q

Aµ

b2ρqgs

L

b2ΛTρQ/Lg
2
T

gT

ζ0

L

L

Gµ Gµ

b2ρLgT

Q
b2ΛTρQ/Lg

2
T

b2ρQgT
gT

ζ0

Q

Q

Gµ Gµ

ζ0

Bµ Bµ

b2ΛTρQ/Lg
2
Y b2ρℓgY

gY

ℓ

ℓ

ℓ

ζ0

Bµ Bµ

b2ΛTρQ/Lg
2
Y

b2ρqgY
gY

q

q

q

b2ΛTρQg
2
s

gs

ζ0

Q

Q

Q

Aµ Aµ

b2ρQgs

U

U U

U U

U U

U U

W±
µ

b2ΛTρQ/LαT

W±
µ

b2ΛTρQ/LαT

b2ρQ/Lgw

ζ0

ζ0
b2ρQ/Lgw

Q/L

Q/L

W 0
µ/Bµ

b2ΛTρQ/LαT

W 0
µ/Bµ

b2ΛTρQ/LαT

b2ρQ/Lgw/gY

ζ0

ζ0

b2ρQ/Lgw/gY

Q/L

Q/L
U

U †

U

U †

FIGURE 3: Examples of lowest order loop NP diagrams con-
tributing (from top to bottom) to the mass terms of leptons,
quarks, Tera-leptons, Tera-quarks and EW bosons. The symbol
Q/L means that either hidden Tera-quarks or Tera-leptons run
inside the blob, as explained in [4]. The notation W0

µ/Bµ means
that either a neutral W or a U(1)Y boson is emitted/absorbed,
accompanied by a gw or gY gauge factor. Vertical dotted lines
mean external leg amputation. The rest of the notation is as ex-
plained in the text and Figures 1 and 2.

Again all these diagrams are finite, because of the exact
matching between the UV power divergency of multiloop inte-
grals and the b2-factors brought in by the insertion of (11)–(15)
operators and Wilson-like terms. As this compensation is es-
sentially based on dimensional arguments, we expect it to hold
at all loops. A careful analysis of the expression of the building
blocks making up the diagrams in Figure 3 yields the following
parametric mass formulae:

mℓ = CℓΛT , Cℓ = cℓO
(

α2
Y

)
,

mq = CqΛT , Cq = cqO
(

α2
s

)
,

mL = CLΛT , CL = cLO
(

α2
T

)
,

mQ = CQΛT , CQ = cQO
(

α2
T

)
,

MW± = CW±ΛT , CW± = gwcw, cw = kwO (αT) ,

MZ = CZΛT , CZ =
√

g2
w + g2

Ycw,

MA0 = 0.

(16)
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Two important remarks are in order here. (1) Since the kine-
matical region responsible for the emergence of nonvanishing
masses is where all loop momenta are O(b−1), the running
masses produced by the diagrams of Figure 3 should then be
viewed as evaluated at an asymptotically large UV cut-off, or
more realistically, if the theory unifies, at the unification scale,
ΛGUT. In Section 7, exploiting this observation, we work out
from equation (16) some crude phenomenological estimates of
ΛT and elementary particle mass ratios. (2) We stress that in
the model described by the Lagrangian (1), elementary parti-
cle masses are independent of the vev of Φ. They are, instead,
proportional to ΛT , times a power expansion in the gauge cou-
plings. Naturally, the EW boson masses carry explicit gw, gY
factors. Owing to custodial symmetry, which is unbroken at the
leading order in the EW interactions, the diagonalization of the
self-energy matrix represented by the bottom-right diagrams
of Figure 3 yields, just like in the SM, a massive Z boson and a
massless photon.

3.2. ρ Dependence, Universality, and Predictive Power
In the mass formulae (16), we have not indicated the depen-
dence on the ρ parameters present in the Lagrangian (1). Ac-
tually, one can prove [4] that all physical observables are only
functions of ρ ratios. Symmetries can put constraints on the ρ
values, possibly mitigating the dependence upon their ratios.
For instance, if ρ f = ρ, f = q, ℓ, Q, L, then the ρ dependence
completely drops out from all physical quantities.

The issue of the ρ dependence of the NP-ly generated
masses impacts the problem of universality because it looks
that generically masses depend on the values we assign to their
ratios. Actually, the situation is somewhat more complicated
than that. In particular, one can see that the mass of the fermion
f depends on the dimension of the associated Wilson-like term.
One can show, in fact, that generically the larger the dimension
of the Wilson-like operators, the higher the power of the gauge
coupling controlling the leading behavior of the coefficients C f
( f = q, Q, ℓ, L) and cw. However, rather than a problem for uni-
versality, this feature might provide a handle to understand
family mass hierarchy (from heavier to lighter) as associated
with Wilson-like terms of different dimensions (from smaller
to larger) and perhaps also weak isospin splitting. The use of
this observation is made in Section 7.

4. THE STRONG AND TERA-STRONG
CP PROBLEM

The cancellation mechanism entailed by the criticality condi-
tions outlined in Sections 2.2 and 2.3 offers an interesting and
cheap (i.e., without axions) solution to the strong CP problem
which in the present case is apparently even more severe than
in QCD because in equation (1) we have two kinds of non-
abelian strong gauge bosons, namely, gluons and Tera-gluons.

We want to argue that actually in the critical model (1) there
is neither a strong nor a Tera-strong CP problem. The reason
can be traced back to the structure of the criticality conditions
illustrated in the first two panels of Figure 1 (and Figure 2).
In fact, suppose we are in a situation where terms like iθs F̃F
and/or iθTG̃G are presented in equation (1). Let us imagine
performing anomalous U(1)q

A and/or U(1)Q
A axial phase ro-

tations on quarks and/or Tera-quarks with angles that would

cancel the corresponding topological density terms in the La-
grangian. Naturally, these phases (obviously depending on θs
and/or θT) would appear in the Yukawa and Wilson-like terms.
The key observation is that the dependence on such U(1)q

A
and/or U(1)Q

A phases only shows up in overall factors in front
of the sums of the fermionic diagrams of Figure 1 (and for that
matter also of Figure 2). Thus, at the critical point, where these
sums vanish there is no longer a dependence on the U(1)q

A
and/or U(1)Q

A rotation angles, hence on θs and/or θT . The ar-
gument shows that the CP breaking terms iθs F̃F and/or iθTG̃G
cannot appear in the QEL of the critical theory (see equation
(27)).

One might suspect that CP-violating effects can be resur-
rected by some CP-violating O(b2) NP Symanzik operator, just
like it happens for the CP-conserving operators (11)–(15) rele-
vant for mass terms generation. Actually, this is not so because
the possible NP candidates, namely, Õ6,AA ∝ b2ΛT g2

s |Φ|FA · F̃A

or Õ6,GG ∝ b2ΛT g2
T |Φ|FG · F̃G, cannot occur. The reason is that

Tera-fermions only have CP-invariant interactions with glu-
ons and Tera-gluons and thus, only CP-invariant O(b2) NP
Symanzik operators can be generated (see Appendix B in [4]).

5. THE W+W−/ZZ COMPOSITE STATE
In this section, we want to provide support for the conjec-
ture that the 125 GeV resonance is a W+W−/ZZ state bound
by Tera-strong exchanges. A theoretically sound approach to
the calculation of the binding energy, Ebind, of the composite
h = W+W−/ZZ state is represented by the use of the Bethe-
Salpeter (BS) equation. The latter requires the knowledge of the
effective WW-WW coupling which can be extracted from the
four-point amputated correlator1

G4 (p1, p2, p3, p4) =
〈

Ŵ (p1) Ŵ (p2) Ŵ (p3) Ŵ (p4)
〉

amp
(17)

= g4
w

〈
ĴL (p1) ĴL (p2) ĴL (p3) ĴL (p4)

〉
, (18)

where Ŵ(p) and ĴL(p) are the Fourier transforms of W(x) and
JL(x). G4 is dominated by the sum of Tera-strong exchanges.

An estimate of the WW binding energy, Ebind, due to Tera-
exchanges, can be obtained under the key assumption that
Ebind is (parametrically) small compared to 2MW . As we see
from equation (18), Ebind is, indeed, expected to be propor-
tional to g4

w. In this situation, the dominant contribution in the
BS equation is the iteration of the amputated kernel (see upper
panel in Figure 4)

∆
(

s = 4E2, t = 0
)

δ( p⃗− p⃗′)δ(E− E′) (19)

= g4
w

〈
ĴL( p⃗, E) ĴL(− p⃗, E) ĴL( p⃗ ′, E′) ĴL(− p⃗ ′, E′)

〉
(20)

with attached (almost) on-shell W legs.
∆ is directly related to the energy shift of the initial free

state due to the interaction. In the case at hand, in fact, the BS
iteration can be cast in the approximated form (see the lower

1We do not display Lorentz and weak isospin indices in the formulae below,
because at the crude level of this discussion, we are unable to assess their role.
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=
s

t

+ πWW πWW∆ + . . .AWW→WW = πWW πWW

FIGURE 4: Upper panel, the amputated kernel ∆(s, t). Lower panel,
the iteration of equation (21). Notations are as in Figure 3.

panel of Figure 4)

AWW→WW(s)⇒ (πWW(s))2

s + 4M2
W

[
1− ∆(s, 0)

s + 4M2
W

+ · · ·
]

=
(πWW(s))2

s + 4M2
W + ∆(s, 0)

s→spole−→ g2
w M2

W
s + m2

h
,

(21)

where

πWW(s)|spole
= O

(
g2

wΛT

)
= O (gw MW) (22)

is the price one needs to pay to have two W sufficiently close to
each other to be able to feel Tera-interactions. The resummation
in equation (21) is very similar to the one that it is encountered
in the Witten-Veneziano derivation of the η′ mass formula [13,
14].

The obvious difference is that here the iterated, exchanged
intermediate state is not the pion but the state of two loosely in-
teracting W’s, whose invariant mass we approximate by simply
setting mass2

WW ∼ 4M2
W . The role of the topological suscepti-

bility is here played by ∆. From the second line of equation (21),
one concludes that ∆(s, 0)|spole is the WW binding energy.

Owing to dimensional arguments and g2
w counting, we can

write for the value of ∆(s) at the pole the parametric expression
∆(spole, 0) = cg4

w4M2
W . The crucial assumption we make in this

formula is the sign of c that we conjecture to be negative if it
has to give rise to binding. We remark that the g2

w dependence
of the pole residue in equation (21) correctly fits with the g2

w de-
pendence of the SM WW-WW scattering amplitude for which
one gets

ASM
4 (s)

∣∣∣
pole

=
g2

hWW
s + m2

h
=

4g2
w M2

W
s + m2

h
. (23)

This consistency supports the correctness of the gw dependence
of the coefficient πWW(s)|spole assumed in equation (22). In con-
clusion, from (21), one has for the h-(mass)2

m2
h = 4M2

W + cg4
w4M2

W . (24)

Taking equation (24) at face value with gw ∼ 0.62 and c neg-

ative and O(1), one obtains from mh = 2MW

√
1 + cg4

w =

2MW − Ebind the interesting estimate

Ebind = −cg4
w MW

[
1 + O

(
g4

w

)]
∼ 12 GeV. (25)

We have found a value of Ebind parametrically of the order of
the W mass itself times four powers of the weak coupling, like

in the nonrelativistic approximation described in Appendix D
of [4]. The precise numerical magnitude of the estimate (25) de-
pends on an “at this moment unknown” coefficient c in equa-
tion (24) whose size and sign, however, could be extracted from
unquenched LQCD-like simulations of the four-point correla-
tor (20).

It is interesting to note, in fact, that, neglecting weak and
strong loop corrections, compared to Tera-strong effects (as
well as the impact of Tera-leptons), ∆ could be extracted from
lattice simulations of the QCD type. The idea is that, pretend-
ing that the Tera-particles in the diagrams in the upper panel
of Figure 4 are quarks and gluons, one can obtain the physical
value of ∆ by rescaling the four-current amplitude evaluated
in unquenched LQCD simulations by the ratio ΛT/ΛQCD. In
the approximation we are working on, one can take for JL the
naive, continuum-like expression of the Left-handed weak cur-
rent. We can limit to simulate the amplitude ∆ in QCD, and not
in the much more costly toy-model introduced in [1], because
NP effects do not appear to be relevant in the formation of the
h-bound state. It will be enough to introduce by hand quark
masses of appropriate values.

6. THE QEL OF THE CRITICAL THEORY
The form of the QEL, ΓNG

cr , which describes the physics of the
critical theory in the NG phase, including the NP mass terms
identified in Section 3, is essentially dictated by geometrical
considerations. It is, in fact, highly constrained by dimensional
and symmetry arguments, in particular by the exact invariance
under χL × χR and the observation that at the critical point nei-
ther the scalar field kinetic term nor the Yukawa terms, which
both would break χ̃L × χ̃R, should be present in the QEL, ΓNG

cr ,
of the theory [1, 3]. Focusing on the d ≤ 4 part, the expression
of the ΓNG

4 cr is obtained by including all the operators of dimen-
sion d ≤ 4, invariant under χL × χR that can be constructed in
terms of the matter and gauge fields of the theory and the non-
analytic field U, defined by the standard polar decomposition

Φ = RU, R = v + ζ0, U = exp
[
i⃗τ ζ⃗/cwΛT

]
. (26)

The choice of the (arbitrary) mass scale in the exponent has
been conveniently made with an eye to equation (27), i.e., so as
to have the NG bosons, ζ i, i = 1, 2, 3, canonically normalized.
From the constraints imposed by the above considerations, one
obtains

ΓNG
4 cr =

1
4

(
FA · FA + FG · FG + FW · FW + FB · FB

)
+

[
q̄L D̸BWAqL + q̄R D̸BAqR

]
+ CqΛT

(
q̄LUqR + q̄RU†qL

)
+

[
ℓ̄L D̸BWℓL + ℓ̄R D̸BℓR

]
+ CℓΛT

(
ℓ̄LUℓR + ℓ̄RU†ℓL

)
+

[
Q̄L D̸BWAGQL + Q̄R D̸BAGQR

]
+ CQΛT

(
Q̄LUQR + Q̄RU†QL

)
+

[
L̄L D̸BWALL + L̄R D̸BALR

]
+ CLΛT

(
L̄LULR + L̄RU†LL

)
+

1
2

c2
wΛ2

TTr
[(
DBW

µ U
)†
DBW

µ U
]

.

(27)
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We explicitly note that in equation (27) only U appears and not
Φ. Expanding U around the unit, we get the mass identifica-
tions (16). We stress that the “mass terms” in equation (27) do
not depend on v. They have a somewhat unusual expression
and a peculiar conceptual status. They appear, in fact, as a sort
of NP anomalies preventing the full recovery of χ̃L× χ̃R invari-
ance. Like in the SM, the NG bosons ζ i, i = 1, 2, 3 become the
longitudinal W DoFs, as explicitly demonstrated in [3].

6.1. The LEEL of the Critical Model and the SM
We show in this subsection that, upon integrating out the
(heavy) Tera-DoFs, the resulting LEEL of the critical model (1)
in the NG phase closely resembles the SM Lagrangian. The ar-
gument rests on the conjecture (see Section 5) that the 125 GeV
resonance detected at LHC is a W+W−/ZZ composite state
bound by Tera-particle exchanges and not an elementary parti-
cle.

This state, denoted by h, is a singlet under all the symme-
tries of the theory. As its mass is 125 GeV ≪ ΛT , it must be
included in the LEEL, valid for (momenta)2 ≪ Λ2

T . Ignoring
for simplicity families, U(1)Y interactions, leptons, and weak
isospin splitting (extending the argument poses no problem),
in these kinematical conditions the most general LEEL invari-
ant under the symmetries of the critical model (1), including h,
takes the form

LNG
LE (q; A, W; U, h)

=
1
4

(
FA · FA + FW · FW

)
+

(
q̄L D̸AW qL + q̄R D̸AqR

)
+

(
yqh + kqkv

) (
q̄LUqR + q̄RU†qL

)
+

1
2

∂µh∂µh

+
1
2

(
k2

v + 2kvk1h + k2h2
)

Tr
[(
DW

µ U
)†
DW

µ U
]

+ Ṽ(h) + · · · ,

(28)

where dots represent χ̃L × χ̃R violating operators with d > 4.
The scalar potential Ṽ(h) comprises the cubic and quartic self-
interactions of the h field, as well as the h mass term, m2

hh2/2.
The kv, k1, k2, yq, and kq coefficients and the Ṽ-couplings are pa-
rameters that need to be fixed by matching onto the underlying
(renormalizable and unitary) fundamental critical theory (1).

Tree-level matching of LNG
4,LE in equation (28) with the QEL

ΓNG
4 cr in equation (27) requires the identifications

mq = CqΛT = kqkv, MW = gw cwΛT = gwkv, (29)

while the unitarity of the mother theory (1) implies [15, 16]

yq = kq, k1 = k2 = 1. (30)

With these choices, neglecting small loop effects controlled by
the couplings gw and yq, one recognizes that, with the exception
of Ṽ(h), it is just the combination Φ ≡ (kv + h)U that enters the
d ≤ 4 part of LNG

LE (see equation (28)). The latter can thus be
rewritten in the suggestive form

LNG
4,LE(q; A, W; U, h)

=
1
4

(
FA · FA + FW · FW

)
+

(
q̄L D̸AW qL + q̄R D̸AqR

)
+ yq

(
q̄LΦqR + q̄RΦ†qL

)
+

1
2

Tr
[(
DW

µ Φ
)†
DW

µ Φ
]
+ Ṽ(h).

(31)

We see that (up to O(αw) or O(y2
q) corrections) LNG

4,LE looks like
the SM Lagrangian. In particular, just like it happens in the case
of the Higgs mechanism in the SM, the effective Yukawa cou-
pling of h to fermions is given by

yq = kq =
mq

kv
=

mq

cwΛT
, (32)

where kv = cwΛT is what in the SM is the Higgs vev. Thus, also
here Yukawa couplings are proportional to fermion masses.

There are, however, two key differences between the LEEL
of our model (see equation (31)) and the SM Lagrangian. First
of all, the proportionality factor between the Yukawa cou-
pling (32) and the fermion mass is not in our hands but it is
completely fixed by the NP dynamics. Secondly, since Ṽ(h) de-
scribes, besides the mass, the self-interactions of the (compos-
ite) h state, there is no reason why it should have the same form
as the SM Higgs potential. This implies that differences with
the SM case may well appear in the trilinear and quadrilinear h
self-couplings.

7. A BIT OF PHENOMENOLOGY
The key questions we need to address in order to put the
present model on a solid basis and make it useful for phe-
nomenology are (1) how we can make contact between the
theoretical mass estimates provided by equation (16) and the
phenomenological values of elementary particle masses and (2)
whether we can access the value of the scale of the new inter-
action from the knowledge of the available low energy physics
data. In the next subsections, we will show that it is possible to
get from equation (16) crude, but encouraging, phenomenolog-
ical estimates of ΛT and masses of the fermions of the heaviest
family in the unit of the W mass.

7.1. Mass Estimate Strategy
As we already observed, the values of the masses given by
equation (16) refer to asymptotically large UV cut-off, or more
realistically, if the theory unifies, to the unification scale, ΛGUT.
Consequently, if the mass generation mechanism is realized in
a model that yields gauge coupling unification (like the one dis-
cussed in [7] that we are focusing on here), then at the unifica-
tion scale, the fermion masses given by equation (16) will be
close to each other, owing to the fact that the gauge couplings
are evaluated at the same scale ΛGUT where they are essentially
all equal. As we shall see, the phenomenological situation is,
however, a bit more complicated than that.

The running of masses from ΛGUT down to lower energy
scales will be different for different fermion species reflecting
the RGI evolution of the fermion bilinear operator from which
each mass is factorized out and the different running of the
coupling of the gauge interactions each fermion is subjected to.
One can hope to arrive in this way at the correct order of mag-
nitude of the phenomenological values of elementary particle
masses.

The formula describing the fermion mass running from,
say, Λ1 = ΛGUT down to a scale Λ2, that we take somewhat
larger than ΛT (see equation (48)), and equal, as a try, to 5 TeV,
at leading order reads

m f (5 TeV) = m f (ΛGUT)∏
p

[
αp(5 TeV)

αp (ΛGUT)

]γ
f
0p/2β0p

, (33)
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where the product is over all the interactions felt by the fermion
f . In [7], it is shown that the unifying couplings gn, n = 1, 2, 3, 4
are related to the physical ones by the relations

g2
1 =

4
3

g2
Y , g2

2 = g2
w, g2

3 = g2
s , g2

4 =
8 + NS

12
g2

T . (34)

For the first coefficient of the β functions one finds [7]

β0T =
11
3

NT −
4
3
(Nc + 1) , (35)

β0s =
11
3

Nc −
4
3

(
NT + N f

)
, (36)

β0w = 2
11
3
− 1

3
N f (Nc + 1)− 1

3
NT (Nc + 1) , (37)

β0Y = −2
3

[(
22
36

Nc +
3
2

)
N f +

1
2

NT (Nc + 1)
]

. (38)

Unification of U(1)Y , SUL(2), and SU(Nc) occurs with the (es-
sentially unique) choice NT = Nc = N f = 3. To get unifi-
cation with also Tera-strong interactions, the best choice is to
take NS = 5, as the number of extra Tera-particles endowed
with only Tera-strong interactions [7]. The estimates that follow
have a mild dependence on NS. One should also notice that in
the present unifying scheme β0w is negative so, unlike the case
of the SM, weak interactions are not asymptotically free. From
equation (37), one finds β0w = −2/3 leading to a very slow and
flat g2

w running.
The running of masses under EW interactions can be esti-

mated to give some 10÷ 20% contribution in equation (33). We
neglect these corrections as they are well below the accuracy of
our approximations. Focusing on strong and Tera-strong run-
ning, we get from equations (35)-(36) and the PDG quark mass
review

β0s = 3, β0T =
17
3

, γQ
0s = γL

0s = γ
q
0s = 8, γQ

0T = γL
0T = 8.

(39)

We determine the values of the gauge couplings at the scale
of 5 TeV in the mass-independent MS scheme from the plot
reported in Figure 6 of [7]. We find αs(5 TeV) ∼ 1/13 and
αT(5 TeV) ∼ 2. With NS = 5 we obtain from equation (34)

α3(5 TeV) = αs(5 TeV) ∼ 1
13

, (40)

α4(5 TeV) =
8 + NS

12
αT(5 TeV) =

13
12

αT(5 TeV) ∼ 13
12
· 2. (41)

On the basis of the previous considerations, we propose to es-
timate the value of Tera-fermion masses and the masses of the
fermions of the heaviest of the SM families in the MS scheme,
starting from the asymptotic formulae

m f (ΛGUT) = C f α
u f
s g2

s ΛT , f = t, b (42)

mτ (ΛGUT) = Cτα uτ

Y g2
YΛT , (43)

mQ/L (ΛGUT) = CQ/Lα
uQ/L
T g2

TΛT , (44)

where overlining means that the gauge couplings are taken at
the scale ΛGUT, where g2

1, g2
2, g2

3, and g2
4 (see equation (34))

unify. The exponents u are integers for which we make the “ad
hoc” choice, ut = uQ = uL = 1 for top, Tera-quarks, and Tera-
leptons, respectively, as implied by the mass formula (16). We

recall that the choice u f = 1 means that Wilson-like operator
of the fermion f has d = 6. For the τ lepton we take instead
uτ = 2 which means that Wilson-like operator of the τ lepton
has d = 8 [4]. As we shall see in Section 7.2.4, the similar choice
ub = 2 is necessary if one wants to reproduce the mass splitting
of the top-bottom weak iso-doublet.

We note [3, 4] that the factors α come either from the inser-
tion of the operators (11) and (12) or from the loop integration
involving the Wilson-like term associated with the fermion in
consideration, while g2 factors (with no (4π)−1 rescaling) come
from the insertion of the operators (13)–(15). For the numerical
values of the physical α couplings at the GUT scale, we get

αY ∼
3
4
· 1

28
=

3
112

,

αw ∼
1

28
,

αs ∼
1

28
,

αT ∼
12
13
· 1

28
=

12
364

.

(45)

These numbers are extracted from the unifying behavior dis-
played in Figure 6 of [7] with NS = 5, recalling the prefactors in
equation (34). For the corresponding gauge couplings we find

gY ∼ 0.58, gw ∼ 0.67, gs ∼ 0.67, gT ∼ 0.64. (46)

7.2. Some Numerics
To get estimates of ΛT and masses we need to fix a scale. We de-
cided to express everything in terms of MW because the latter
turns out to be given by the most robust of our mass formulae.
First of all, MW only depends upon the Tera-sector Wilson-like
operators that we take as d = 6 operators. Secondly, one can
recognize (see Appendix C of [4]) that MW has a weak depen-
dence on Nc, NT , and ρ ratios which actually disappears for
large Nc and NT .

7.2.1. MW Mass
Using the fifth relation in equation (16) where, we recall, the
factor αT comes from the insertion of the operators (11) and (12)
and the factor gw from the external weak coupling to which the
W is attached, our theoretical estimate for the W pole mass is

MW = kwαT gwΛT , (47)

where, as we mentioned above, kw is an (almost) Nc, NT , and
ρ independent coefficient. Using the numerical estimates in
equations (45)-(46) and MW ∼ 80 GeV as an input, we can ex-
tract the value of the product kwΛT finding

80 GeV = kwαT gwΛT = kw
12
364

0.67ΛT → kwΛT ∼ 3.6 TeV.

(48)

In fixing the W mass, we have ignored the effects of the loops
that, just like in the SM, also here would give corrections to the
MW tree level value. Although these corrections are very small,
they are crucial for SM precision tests. In the present context,
we ignore them as we are only interested in the order of mag-
nitude of the bulk contribution to the W mass, i.e., of the term
that in our approach replaces the SM formula MW ∼ gwv.
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7.2.2. Tera-Fermion Mass Running
Using equation (33), we obtain for the running of the Tera-
quark mass

mQ(5 TeV) = CQαT g2
TΛT

(
2

12/364

)8 3
17

1
2
(

1/13
1/28

) 8
3

1
2

∼ CQ

kw

12
364

(0.64)2 · 18.15 · 2.78 · 3600

∼ CQ

kw
2500 GeV.

(49)

This formula is obtained by multiplying equation (44) by the
factor in equation (33) representing the running of the fermion
mass under Tera-strong and strong interactions.

By dropping the last factor in the first line of equation (49),
which represents the contribution from strong interaction run-
ning, we find from the running of the Tera-lepton mass

mL(5 TeV) = CLαT g2
TΛT

(
2

12/364

)8 3
17

1
2

∼ CL
kw

900 GeV. (50)

7.2.3. mt running
Similarly, by dropping the first factor, for the top mass, we get

mt(5 TeV) = Ctαsg2
s ΛT

(
1/13
1/28

) 8
3

1
2

∼ Ct
kw

1
28

(0.67)2 · 2.78 · 3600 ∼ Ct
kw

160 GeV.

(51)

7.2.4. mb Running
To describe the top-bottom weak isospin breaking we conjec-
ture that the Wilson-like operator associated with the b quark
is of dimension 8 giving, as we observed below equation (46),
ub = 2. This leads in the b mass formula to the presence of
an extra α factor with respect to the top mass formula, which
we take to be αY(ΛGUT) = αY , with the idea that weak isospin
splitting is related to EW effects. We thus obtain

mb(5 TeV) = Cbαsg2
s αYΛT

(
1/13
1/28

) 8
3

1
2

∼ Cb
kw

1
28

(0.67)2 3
112
· 2.78 · 3600 ∼ Cb

kw
4.3 GeV.

(52)

7.2.5. mτ Mass
For the calculation of the τ lepton pole mass we will assume
that the associated Wilson-like operator is of dimension 8, lead-
ing, as we said below equation (46), to uτ = 2. Thus, also
in the τ mass formula we have to include an extra α factor
with respect to the top mass formula, wich again we take to
be αY(ΛGUT) = αY , with the idea that leptons are lighter than
quarks because they are only charged under EW interactions.
From (43), we obtain

mτ ∼ Cτα2
Y g2

YΛT ∼
Cτ

kw

(
3

112

)2
(0.58)2 · 3600 ∼ Cτ

kw
0.87 GeV.

(53)

Given the level of the approximations we had to inject in these
estimates (we ignore diagram multiplicities and O(1) factors),
if one imagines taking all constant ratios, C f /kw, equal to the

unit, the numbers we are getting are even too good. Perhaps
only the lepton masses are a bit too low. Naturally, there would
be no problem in bringing the running fermion masses down
to their respective self-consistent mass scale.

7.3. Comments
We conclude Section 7 by summarizing the simplifying as-
sumptions and approximations we have made in the mass es-
timates we have presented above.

(1) First of all, for each particle, the starting point mass for-
mula was the lowest loop order expression of the ampu-
tated self-energy diagrams displayed in Figure 3. As we
observed previously, this calculation yields the value of
the running masses at the GUT scale.

(2) We set to unit all multiplying factors, like C f /kw, occur-
ring in the above numerical estimates.

(3) We set to unit the factors associated with the EW mass
running.

(4) We assumed that the family mass hierarchy (from heav-
ier to lighter) is induced by Wilson-like operators of in-
creasing dimensions from dt = 6, yielding ut = 1 to
larger dimensions. We neglect possible mixing effects
if more than one Wilson-like operator with d ≥ 6 is
present.

(5) As for the quark weak isospin breaking, we assumed
that the Wilson-like operators associated with the light-
est partner of the doublet have dimensions of two units
larger than the one of the heavier partner. This means
db = 8, yielding ub = 2. We attribute weak isospin split-
ting to EW interactions.

(6) Similarly, we assumed that the dimension of Wilson-like
operators associated with leptons has dimensions larger
than two units compared to the one of the corresponding
quark, thus dτ = 8, yielding uτ = 2.

8. CONCLUSIONS AND OUTLOOK
In this paper, we have constructed a putative bSMm where
all elementary particles get a dynamical mass from a unique
NP field-theoretical feature, an alternative to the Higgs mecha-
nism.

Masses for elementary fermions and EW bosons are gener-
ated in the NG phase of the theory, where the exact χL × χR
symmetry (7) is spontaneously broken. The resulting mass
terms appear in the QEL of the critical chiral invariant the-
ory as a sort of NP anomalies preventing the full restoration of
χ̃L × χ̃R invariance. This peculiar NP scenario was confirmed
in [12] by direct numerical investigations based on lattice simu-
lations of the model identified in [1] which is the simplest field-
theoretical model displaying this NP mass generation mecha-
nism.

Since, as shown in (16), all masses are proportional to the
RGI scale of the theory, we have argued that to get the top
quark and W, Z mass in the right ball-park, there must exist, be-
sides SM matter, a superstrongly interacting sector of particles,
gauge invariantly coupled to SM DoFs, so that the RGI scale of

9
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the whole theory, ΛT , will lie in the few TeV region. From equa-
tion (16), encouraging estimates of ΛT and elementary particle
mass ratios can be obtained in the unit of MW .

In the present formulation of the model, neutrinos are
massless. In fact, with the SM hypercharge assignment yνR = 0,
νR = ℓu

R is “sterile” and the Wilson-like term associated with
it in (1) is not able to give the neutrino a mass. Though we do
not discuss here the crucial question of how to lift the neutrino
mass, we note that in the present scenario there is a natural
seesaw-like scale for neutrino masses, namely, Λ2

T/ΛGUT ∼
[(1 ÷ 10)TeV]2/1017÷18 TeV ∼ 10−5 ÷ 10−3 eV, with ΛT ∼
(1 ÷ 10)TeV and ΛGUT ∼ 1017÷18 TeV being reasonable esti-
mates of the RGI scale of the theory (see Section 7) and unifica-
tion scale of [7], respectively.

We have noted that, as a consequence of the structure of the
criticality conditions, the present scheme offers a cheap (with-
out axions) solution of the strong CP problem.

The 125 GeV resonance detected at LHC is interpreted as a
W+W−/ZZ state bound by Tera-particle exchanges. This inter-
pretation is supported by the BS-like analysis presented in Sec-
tion 5 where an estimate of the Eb = 2MW −mh binding energy
is provided. Despite the crudeness of various approximations,
a reasonable value of Eb is obtained.

Upon integrating out the heavy Tera-DoFs, one is left with
SM matter DoFs, the U field plus this “light” (on the ΛT
scale) h boson. We have shown that including h and enforcing
χL×χR invariance as well as unitarity leads to a LEEL valid for
momenta2 ≪ Λ2

T that looks like the SM Lagrangian [3]. This
means that the model we are advocating in this work passes all
the precision tests that the SM is able to pass.

In conclusion, in this letter we have outlined the construc-
tion of an economic bSMm, in which (1) we can give a simple
solution to the naturalness problem (lacking a Higgs field re-
sponsible for mass generation, the Higgs mass tuning problem
does not even arise), (2) elementary fermion masses are not free
parameters like in the SM (they are instead dynamically deter-
mined), (3) we get an understanding of the physical origin of
the EW scale (as the scale of a new interaction), and (4) we ob-
tain a solution of the strong CP problem (as a consequence of
criticality).

Needless to say, the key issues of the origin of flavor and
weak isospin splitting and of how to possibly compute the
CKM matrix are open questions under active investigation
from our side. In any case, the detection of Tera-hadrons would
be an unmistakable sign of New Physics.
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