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Abstract
In this paper, a representation of fermions in the Pati-Salam model is suggested. The semileptonic and be-
yond standard model flavor changing neutral currents of the Lagrangian in this representation of fermions
are discussed. A pair of possible Cabibbo-Kobayashi-Maskawa and Pontecorvo-Maki-Nakagawa-Sakata
matrices are defined. An effective Lagrangian for this model is given.

Keywords: Pati-Salam model, fermion matrix, flavor mixing
lepton collider
DOI: 10.31526/LHEP.2024.520

1. INTRODUCTION
The Pati-Salam model [1] is a grand unified theory (GUT) [1,
2, 3, 4, 5, 6] and has the gauge group structure of SU(4)L ×
SU(4)R × SU(4′), where SU(4)L × SU(4)R is the chiral flavor
gauge group, and SU(4′) is the color gauge group. The gauge
group structure of the Pati-Salam model is beneficial in several
aspects

(i) The minimal simple group SU(5) GUT [3] encounters
the issue of proton decay, and the modifications used to
address the proton decay problem in SU(5) GUT always
encounter issues of naturalness.

(ii) If we use a semisimple group as the GUT gauge group
instead of a simple group, the standard model (SM)
particles phenomena could be unified with the Pati-
Salam gauge group SU(4)L × SU(4)R × SU(4′), where
SU(4)L × SU(4)R is the chiral flavor gauge group, and
SU(4′) is the color gauge group. While the gauge group
SU(2)L × SU(2)R × SU(4′) model could be used to
reproduce the neutral current (NC) and charge cur-
rent (CC) weak interaction phenomena, the six flavor
fermions and flavor mixing phenomena are difficult to
reproduce.

(iii) “Lepton number as the fourth color” [1] is a clean
and straightforward assumption when visualizing the
fermions from a unified viewpoint.

(iv) The fundamental representations of SU(4) are 4, 6, and
4̄. In a GUT, the fermions always fill in the fundamental
representation of a gauge group. We know that fermions
have six flavors and four colors, and each fermion
has a corresponding antifermion. Thus, fermions (an-
tifermions) can be filled in the Pati-Salam gauge group
fundamental representation 4 × 6 (4̄ × 6).

(v) Dirac matrices are 4 × 4 matrices. If we do not add (or
reduce) the degrees of freedom by hand, the fermions
should fill in the 4 × 4 matrix.

(vi) The flavor mixing matrices, i.e., Cabibbo-Kobayashi-
Maskawa (CKM) and Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrices, could arise naturally from SU(4)L ×
SU(4)R × SU(4′) Pati-Salam model.

(vii) Pati-Salam model [1] as the flat spacetime limits of
the Pati-Salam model in curved spacetime, can be de-
rived from the self-parallel transportation principle of
the square root Lorentz manifold [7], which is a pure ge-
ometry model. An explicit formulation of sheaf quanti-
zation [8, 9, 10, 11, 12, 13] on square root Lorentz mani-
fold is given, the relation between sheaf quantization and
path integral quantization is shown [14], and the canon-
ical quantization of Yang-Mills theory in curved space-
time which inspired by sheaf quantization can be seen
[15] also. The abstract category structure of sheaf quanti-
zation of square root Lorentz manifold is almost like La-
grangian submanifold on symplectic geometry [16, 17].

Gauge group structure SU(4)L × SU(4)R × SU(4′) of the
Pati-Salam model is the starting point of this paper. In an ex-
isting paper [1], the chiral flavor group SU(4)L × SU(4)R de-
generates into the chiral group SU(2)L × SU(2)R and repro-
duces the NC and CC weak interactions transported by Z and
W± weak gauge bosons, respectively. The left-right symmetry
of the Pati-Salam model predicts the existence of right handed
neutrinos. The SU(4′) color group from the conjecture “lepton
number as the fourth color” contains SU(3′) quantum chro-
modynamics (QCDs) and exotic semileptonic processes trans-
ported by X bosons. The semileptonic processes preserve B-
L symmetry and violate baryon lepton number conservation.
Topics such as B-L symmetry [18, 19], baryogenesis [20, 21, 22,
23, 24, 25, 26, 27, 28, 29], leptogenesis [26, 30, 31, 32, 33, 34, 35],
left-right symmetry [36], and right-handed neutrinos [37] have
been important topics in theoretical and experimental high en-
ergy physics for decades. Recent literature has discussed the
flavor violation [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52], neutral gauge boson [53, 54, 55], lepton quark col-
lider [56], lepton flavor universality [57], gravitational wave
imprints [58], muon g − 2 anomaly [59], and muon collider [60]
which relate to the Pati-Salam model and other models.

The original fermion representation in the Pati-Salam
model [1] includes only two families of quarks and leptons. In
this paper, however, we suggest a representation of fermions
in the Pati-Salam model comprising all three families of quark
and lepton states as the eigenstates of Lagrangians. We discuss
the fermion-antifermion-boson vertex new physics of semilep-
tonic processes transported by X bosons and beyond stan-
dard model flavor changing neutral currents (FCNCs) pro-
cesses transported by neutral bosons Y, based on the novel rep-
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resentation of fermions. We also present a possible construction
of the CKM and PMNS matrices based on this representation
of fermions. Finally, we illustrate an effective total Lagrangian
density for this model.

2. REPRESENTATION OF FERMIONS
The well-established Pati-Salam model [1] has the following
gauge group

G = SU(4)L × SU(4)R × SU
(
4′
)

, (1)

where SU(4)L and SU(4)R are the chiral flavor gauge groups,
and SU(4′) is the color group.

Fermions have six flavors of quarks and leptons. If we
gauge the flavor symmetry according to the SU(6) group, the
fermions should fill in a 4 × 6 matrix. The SU(6) flavor sym-
metry will engage with nine gauge bosons at least that trans-
port flavor gauge interactions. To date, the experimental data
only showed us three flavor gauge interaction bosons, which
are W+, W−, and Z. The problem relates to how to reduce the
nine flavor gauge bosons naturally to three, reveal the Stan-
dard Model interaction vertices, and reproduce flavor mixing
phenomena. Furthermore, it will be hard to reproduce the Gell-
Mann-Nishijima formula and flavor mixing phenomena, and
the SU(6)× SU(4′) gauge group is not minimal for the GUT.

This SU(4)L × SU(4)R flavor gauge group symmetry re-
stricts the representation matrix of fermions to a 4 × 4 matrix.
For this 4 × 4 fermion matrix, whether the flavor degrees of
freedom will take on the shape of a column or row needs to be
established. A minimal coupling Lagrangian is constructed as
follows for the color and flavor interaction to answer this ques-
tion:

L = Tr
[
iΨ̄γµ∂µΨ + f Ψ̄γµVµΨ − gΨ̄γµΨWµ

]
, (2)

where f , g ∈ R are coupling constants. Vµ and Wµ are 4 × 4
Hermitian matrices and can be decomposed as follows:

Vµ =
15

∑
a=1

Va
µ Ta, Wµ =

15

∑
a=1

Wa
µTa, (3)

where Ta (a = 1, 2, . . . , 15) are generators of SU(4) and an ex-
ample can be found in Appendix A, and Va

µ and Wa
µ are gauge

bosons. The first term in Lagrangian (2) is a kinematic term. The
flavor interaction can be chiral decomposed but the color inter-
action cannot. We observe that the second term in Lagrangian
(2) is difficult to decompose due to chiral symmetry, but the
third term can be decomposed (the proof is presented in Ap-
pendix B) as follows:

L = Tr

[
iΨ̄γµ∂µΨ +

15

∑
a=1

(
f Ψ̄γµVa

µ TaΨ − gΨ̄LγµΨLWa
µTa

− gΨ̄RγµΨRWa
µTa

) ]
,

(4)

where the chiral fermions are defined

ΨL =
1 − γ5

2
Ψ, ΨR =

1 + γ5

2
Ψ, (5)

Ψ̄L = Ψ† 1 − γ5

2
γ0, Ψ̄R = Ψ† 1 + γ5

2
γ0. (6)

Accordingly, the second term in Lagrangian (2) describes the
SU(4′) color gauge interaction, and the third term in La-
grangian (2) describes the SU(4)L × SU(4)R chiral flavor gauge
interaction. We then derive that the column of the 4× 4 fermion
matrix corresponds to color and the row corresponds to flavor.

Such as “lepton number as the fourth color”, it was then
easy to fill four colors of fermions, i.e., R, G, B, and L, into the
four rows of the fermion matrix. The next approach was to de-
rive how to fill the six flavor fermions into the four columns of
the fermion matrix. The six flavor fermions were divided into
three families, and each family included two flavor fermions.
The action in the path integral formulation of quantum field
theory is a phase

S =
∫

d4xL, (7)

each phase term should with 0-dimension and 0-charge, and
the fermion matrix should be result in the model being
anomaly free. Consider that the fermions in quantum field the-
ory are the operator-valued field, and the quantum states are
the eigenstates of operator-valued field. In quantum mechan-
ics, one operator can correspond to several eigenstates. Then,
we suggest a representation of fermions

Ψ =


√

2uR
√

2cR
√

2tR d′R√
2uG

√
2cG

√
2tG d′G√

2uB
√

2cB
√

2tB d′B
e µ τ ν′

 , (8)

where C = R, G, B = 1, 2, 3 are color indices; u, c, and t are
the operator-valued fields of three flavor quarks; e, µ, and τ
are the operator-valued fields of the electron, mu and tau. Fur-
thermore, ν′ and d′C are the operator-valued fields of neutrinos
and d family quarks. Additionally, the |νe⟩, |νµ⟩, |ντ⟩ neutrino
states and |dC⟩, |sC⟩, |tC⟩ quark states are eigenstates related to
flavor interaction Lagrangian terms containing ν′ and d′C, re-
spectively.

3. GAUGE BOSONS IN THE MINIMAL
COUPLING LAGRANGIAN

The possibility of chiral decomposition infers that Wa
µ are gauge

bosons transporting flavor gauge interactions, and Va
µ trans-

porting color gauge interactions. We will discuss the decom-
position of the Lagrangian of the flavor and color interactions
in detail using the minimal coupling model (2).

3.1. Chiral Flavor SU(4)L × SU(4)R Processes
The gauge boson bears the exchange of quantum numbers
charge. For two different fermion-antifermion-boson vertices,
when the exchange of the charge is the same, the quantum
numbers of two gauge bosons in two fermion-antifermion-
boson vertices are the same, except the possibility of mass
difference (thanks to the comments from anonymous referees
pointing out that even though the quantum numbers of the par-
ticles are the same, the masses of the particles might not be the
same). The Z boson is a charge-free gauge boson and transports
weak NC in the SM, Z boson should be on the diagonal of ma-
trix Wµ, i.e.,

Zµ = W3
µ = W8

µ = W15
µ , (9)
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FIGURE 1: In this suggested representation of fermions of the
Pati-Salam model, the Lagrangian (11) gives us the fermion-
antifermion-boson vertices of weak Z boson interaction with
left-handed fermions. For right-handed fermions, the L symbol
should be alternated by R.

then the Lagrangian

−gTr

[
Ψ̄LγµΨL ∑

a=3,8,15
Wa

µTa + {L → R}
]

(10)

can be decomposed as follows (see Figure 1):

− gTr

[
Ψ̄LγµΨL ∑

a=3,8,15
Wa

µTa + {L → R}
]

= −gTr

[
∑

C=R,G,B

(
ζ1ūLCγµuLCZµ

+ ζ2 c̄LCγµcLCZµ + ζ3 t̄LCγµtLCZµ
)

+
1
2
(
ζ1 ēLγµeLZµ + ζ2µ̄LγµµLZµ

+ ζ3τ̄LγµτLZµ + ζ4ν̄′Lγµν′LZµ
)

+ ζ4 ∑
C=R,G,B

d̄′LCγµd′LCZµ + {L → R}
]

,

(11)

where

ζ1 = 1 +

√
3

3
+

√
6

6
, ζ2 = −1 +

√
3

3
+

√
6

6
,

ζ3 = −2
√

3
3

+

√
6

6
, ζ4 = −

√
6

2
.

(12)

According to the fermion matrix and Lagrangian charge-
free assumption, it is easy to find that W±

µ in this model is

W±
µ = W9

µ ± iW10
µ = W11

µ ± iW12
µ = W13

µ ± iW14
µ . (13)

Furthermore, W± transports the CC in the weak interaction.
Then, the Lagrangian, i.e.,

−gTr

[
Ψ̄LγµΨL

14

∑
a=9

Wa
µTa + {L → R}

]
(14)

can be decomposed as follows (see Figure 2):

− gTr

[
Ψ̄LγµΨL

14

∑
a=9

Wa
µTa + {L → R}

]

=
−g
2

Tr

[
√

2 ∑
C=R,G,B

(
ūLCγµd′LCW+

µ + c̄LCγµd′LCW+
µ

+ t̄LCγµd′LCW+
µ + d̄′LCγµuLCW−

+ d̄′LCγµcLCW− + d̄′LCγµtLCW−
)

+ ēLγµν′LW+
µ + µ̄Lγµν′LW+

µ + τ̄Lγµν′LW+
µ

+ ν̄′LγµeLW−
µ + ν̄′LγµµLW−

µ

+ ν̄′LγµτLW−
µ + {L → R}

]
.

(15)

The electric charges of W+ and W− are 1 and −1, respectively.

FIGURE 2: The fermion-antifermion-boson vertices of W boson
derived by Lagrangian (15), where all three external legs of ver-
tices in this figure are momentum in.

There are new physics chiral flavor processes described by
the Lagrangian

− gTr

[
Ψ̄LγµΨL ∑

a=1,2,4,5,6,7
Wa

µTa + {L → R}
]

= −gTr

[
∑

C=R,G,B
ūLCγµ

(
cLCY1

∗µ + tLCY2
∗µ

)
+

1
2

ēLγµ
(

µLY1
∗µ + τLY2

∗µ

)
+

1
2

µ̄Lγµ
(

eLY1
µ + τLY1

∗µ

)
+ ∑

C=R,G,B
c̄LCγµ

(
uLCY1

µ + tLCY1
∗µ

)
+ ∑

C=R,G,B
t̄LCγµ

(
uLCY2

µ + cLCY1
µ

)
+

1
2

τ̄Lγµ
(

eLY2
µ + µLY1

µ

)
+ {L → R}

]
.

(16)
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For example, the predicted beyond SM FCNCs [61, 62, 63]

Y1
∗ → uC + c̄C, (17)

Y1
∗ → e+ + µ−, (18)

have not yet been observed and the mass-generating mecha-
nism of gauge bosons Y1, Y2, Y1

∗ , and Y2
∗ is interesting. The

electric charges of gauge bosons Y1, Y2, Y1
∗ , and Y2

∗ are 0. The
fermion-antifermion-boson vertices about Y are shown in Fig-
ure 3. Two examples of beyond SM tree-level FCNCs are in Fig-
ure 8.

FIGURE 3: The fermion-antifermion-boson vertices of Y are de-
rived by Lagrangian (16), where all three external legs of the
vertices are momentum in.

The Wµ matrix is

Wµ =
1
2


ζ1Zµ Y1

µ Y2
µ W−

µ

Y1
∗µ ζ2Zµ Y1

µ W−
µ

Y2
∗µ Y1

∗µ ζ3Zµ W−
µ

W+
µ W+

µ W+
µ ζ4Zµ

 . (19)

The corresponding electric charge matrix of Wµ is

QW =


0 0 0 −1
0 0 0 −1
0 0 0 −1
1 1 1 0

 . (20)

3.2. Color SU(4′) Processes
We selected V15

µ as the photon. Then, the vertices of the photon
from Lagrangian (2) are written as

f Tr
[
Ψ̄γµV15

µ T15Ψ
]

= f
√

6
4

Tr

[
2
3 ∑

C=R,G,B

(
ūCγµV15

µ uC + c̄CγµV15
µ cC + t̄CγµV15

µ tC

)
−

(
ēγµV15

µ e + µ̄γµV15
µ µ + τ̄γµV15

µ τ
)

+
1
3 ∑

C=R,G,B
d̄′CγµV15

µ d′C − ν̄′γµV15
µ ν′

]
.

(21)

Except the neutrinos, the electric charge number preceding
each flavor fermion Lagrangian term is correct. As an example,

the 2
3 preceding the Lagrangian term ūCγµV15

µ uC is the electric
charge number of quark u. The experiments show that the neu-
trino is charge free, such that the neutrino should satisfy the
formulas

ν′ = eiθ′ , θ′† = θ′. (22)

Under the restriction (22), the Lagrangian of neutrinos and pho-
ton interaction vertices degenerates into

− f
√

6
4

Tr
[
ν̄′γµV15

µ ν′
]
= − f

√
6

4
Tr

[
γ0γµV15

µ

]
. (23)

Then, the fermion-antifermion-boson vertices about photon γ
on this minimal coupling model are shown in Figure 4.

FIGURE 4: The fermion-antifermion-boson vertices of photon
derived by Lagrangian (21).

The gauge bosons V1
µ , V2

µ , . . . , V8
µ are gluons and transport

color SU(3′) strong interaction and reveal QCD.
There are exotic semileptonic processes [51] transported by

X±C
µ particles and the related Lagrangian is

f Tr

[
Ψ̄γµ

14

∑
a=9

Va
µ TaΨ

]

= f
√

2
2 ∑

C=R,G,B
Tr
[√

2
(

ūCγµX−C
µ e + c̄CγµX−C

µ µ + t̄CγµX−C
µ τ

)
+ d̄′CγµX−C

µ ν′ + ν̄′γµX+Cd′C

+
√

2
(

ēγµX+CuC + µ̄γµX+CcC + τ̄γµX+CtC

) ]
,

(24)

where

X±C
µ = V8+C

µ ± iV9+C
µ . (25)

The related fermion-antifermion-boson vertices about X bosons
are shown in Figure 5.

FIGURE 5: The fermion-antifermion-boson vertices derived by
Lagrangian (24), where all three external legs of the vertices are
momentum in.
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The Lagrangian charge-free restriction derives that the
charges of X−C and X+C particles are − 1

3 and 1
3 , respectively.

The Vµ matrix is

Vµ =


GRR

µ + V15
µ GRG

µ GRB
µ X−R

µ

GGR
µ GGG

µ + V15
µ GGB

µ X−G
µ

GBR
µ GBG

µ GBB
µ + V15

µ X−B
µ

X+R
µ X+G

µ X+B
µ −3V15

µ

 ,

(26)

where GCC′
µ (C, C′ = R, G, B = 1, 2, 3) are gluons and V15

µ is the
photon. Then, the electric charge matrix of Vµ is

QV =


0 0 0 −1/3
0 0 0 −1/3
0 0 0 −1/3

1/3 1/3 1/3 0

 . (27)

Three examples of the nonzero semileptonic Feynman dia-
grams in the tree-level amplitudes are shown in Figure 9, where
Figures 9(a) and 9(b) are the t-channel and u-channel of

ūC + cC → e− + µ. (28)

In addition, Figure 9(c) is the s-channel of the quark lepton in-
teraction

cC + µ− → uC + e−. (29)

The masses of X±C bosons must have been very large because
the s, t, and u-channels were still not observed.

The amplitudes in Figure 6 are zero at least on the one-loop
level in the model described by Lagrangian (2) because

Mtotal ∝
14

∑
a=9

Ta
LCTa

LC −
14

∑
a,b=9

Ta
LCTa

CLTb
LCTb

LC

−
14

∑
a,b=9

Ta
LCTa

LCTb
CLTb

LC + · · ·

= 0 − 0 − 0 + · · · .

(30)

Note that all external fermions in Figure 6 are not antiparticles.
The electric charge is not conserved in the process shown in
Figure 6 such that the total amplitude Mtotal = 0, which means
electric charge conservation avoids quark pair slips to lepton
pairs in the minimal coupling model (2).

= + + ···

FIGURE 6: The amplitude of the quark pair slips to the lepton
pair is zero because of electric charge conservation. The qC, q̃C,
and l, l̃ are particular quarks and leptons. The vertices in the di-
agram are described by Lagrangian (2), especially Lagrangian
(24).

4. FLAVOR MIXING
The left-handed flavor eigenstates of d, s, and b quark states can
be defined as follows:

−
√

2
2

gTr
[
ūLCγµd′LCW+

µ

] ∣∣d′LC
〉
= α1

∣∣d′LC
〉

, (31)

−
√

2
2

gTr
[
c̄LCγµd′LCW+

µ

] ∣∣s′LC
〉
= α2

∣∣s′LC
〉

, (32)

−
√

2
2

gTr
[
t̄LCγµd′LCW+

µ

] ∣∣b′LC
〉
= α3

∣∣b′LC
〉

, (33)

where |d′LC⟩, |s′LC⟩, and |b′LC⟩ are flavor eigenstates of d, s, and b
quarks with left-handed chirality and C color, respectively. The
kinematic term of fermions in the Lagrangian (2) is

Tr
[
iΨ̄γµ∂µΨ

]
= iTr

[
Ψ̄Lγµ∂µΨL + Ψ̄Rγµ∂µΨR

]
. (34)

The kinematic term of fermions can be decomposed as follows:

iTr
[
Ψ̄Lγµ∂µΨL + Ψ̄Rγµ∂µΨR

]
= iTr

[
∑

C=R,G,B

[
2
(
ūLCγµ∂µuLC + c̄LCγµ∂µcLC + t̄LCγµ∂µtLC

)
+ d̄′LCγµ∂µd′LC

]
+ ēLγµ∂µeL + µ̄Lγµ∂µµL

+ τ̄Lγµ∂µτL + ν̄′Lγµ∂µν′L + {L → R}
]

.

(35)

The left-handed mass eigenstates of the d, s, and b quarks are

iTr
[
d̄′LCγµ∂µd′LC

]
|dLC⟩ = mdL |dLC⟩ , (36)

iTr
[
d̄′LCγµ∂µd′LC

]
|sLC⟩ = msL |sLC⟩ , (37)

iTr
[
d̄′LCγµ∂µd′LC

]
|bLC⟩ = mbL |bLC⟩ . (38)

The CKM matrix is
∣∣d′LC

〉∣∣s′LC
〉∣∣b′LC
〉
 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

|dLC⟩
|sLC⟩
|bLC⟩

 . (39)

The right-handed d, s, and b quark states can be defined after
L → R.

Similarly, the left-handed flavor eigenstates of neutrinos are

−1
2

gTr
[
ēLγµν′LW+

µ

]
|νeL⟩ = α4 |νeL⟩ , (40)

−1
2

gTr
[
µ̄Lγµν′LW+

µ

] ∣∣νµL
〉
= α5

∣∣νµL
〉

, (41)

−1
2

gTr
[
τ̄Lγµν′LW+

µ

]
|ντL⟩ = α6 |ντL⟩ . (42)

The left-handed mass eigenstates of neutrinos are

iTr
[
ν̄′Lγµ∂µν′L

]
|ν1L⟩ = m1L |ν1L⟩ , (43)

iTr
[
ν̄′Lγµ∂µν′L

]
|ν2L⟩ = m2L |ν2L⟩ , (44)

iTr
[
ν̄′Lγµ∂µν′L

]
|ν3L⟩ = m3L |ν3L⟩ . (45)

The PMNS matrix is |νeL⟩∣∣νµL
〉

|ντL⟩

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

|ν1L⟩
|ν2L⟩
|ν3L⟩

 . (46)

The right-handed eigenstates of neutrinos can be defined simi-
larly after L → R.
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5. EFFECTIVE TOTAL LAGRANGIAN AND
GAUGE INVARIANCE

An effective total Lagrangian for color, flavor, and Higgs inter-
actions is

L = Tr
[

iΨ̄γµ∂µΨ + f Ψ̄γµVµΨ − gΨ̄γµΨWµ

+ Ψ̄ϕΨ + V(ϕ)− f 2

2
Hµν Hµν −

g2ξ

2
FµνFµν

− igFµνΨ†
(

γµγν − γν†γµ†
)

Ψ

+ i f Ψ† Hµν

(
γµγν − γν†γµ†

)
Ψ
]

,

(47)

where ϕ is the Higgs field; V(ϕ) is Higgs potential; f , g, ξ ∈ R

are coupling constants, and the gauge field strength tensors are

Hµν = ∂µVν − ∂νVµ − i f VµVν + i f VνVµ, (48)

Fµν = ∂µWν − ∂νWµ − igWµWν + igWνWµ. (49)

The second line of Lagrangian (47) represents Yang-Mills the-
ory terms, and the third line is magnetic moment terms. La-
grangian (47) is invariant under local gauge transformations of
color space and flavor space rotation Ũ and U, respectively,

Ψ′ = ŨΨU, (50)

where

Ũ ∈ SU
(
4′
)

, U ∈ SU(4), (51)

such that

γµ′ = ŨγµŨ† ⇒ γ0′γµ′ = Ũγ0γµŨ†, (52)

V′
µ = ŨVµŨ† −

(
∂µŨ

)
Ũ†, (53)

W ′
µ = U† (∂µU

)
− U†WµU. (54)

6. GAUGE ANOMALY
The Lagrangian (47) is a flat spacetime version of Yang-Mills
theory (Pati-Salam type) in curved spacetime and Einstein-
Cartan gravity[14]. The curved version theory has deep moti-
vation from the point of view of logic and geometry, which de-
rived from square root metric and self-parallel transportation
principle and quantized by sheaf quantization and path inte-
gral quantization. The anomaly in quantum field theory always
means a symmetry is preserved in classical theory but violated
in the quantum version. The global symmetry anomaly might
be accessed by quantum field theory, but the local gauge sym-
metry anomaly (gauge anomaly) is believed to be a consistency
condition for a gauge theory. We have to check the anomaly-
free condition for the Pati-Salam model with this representation
of fermions.

In 4-dimensional spacetime, the quantum gauge anomaly-
free condition can be checked by the triangle Feymann diagram
in Figure 7.

The amplitude of Figure 7 is proportional to

iMabcµνρ ∝ Tr
(

TaTbTc
)
+ Tr

(
TaTcTb

)
= 2Tr

(
TaT(bTc)

)
=

1
2

d(abc).
(55)

FIGURE 7: The Feynman diagrams about triangle anomaly.

Then, for SU(4)L × SU(4)R chiral Yang-Mills theory, the cur-
rent conservative equation has the formulation

∂µ Jµ,a(x) ∝ d(a[bc])ϵ[µνρσ]Fb
µνFc

ρσ, (56)

such that the indices bc satisfy commutation and anticommu-
tation relations

d(a[bc]) =
1
4

(
dabc − dacb + dacb − dabc

)
= 0. (57)

The analysis of SU(4′) color gauge Yang-Mills theory is simi-
lar. Note that a fermions loop cannot interact with flavor and
color gauge bosons in one triangle anomaly Feymann diagram
at the same time. So, the SU(4)L × SU(4)R × SU(4′) Pati-Salam
model is anomaly free.

7. MONOPOLE AND THE TOPOLOGY OF
SPACETIME

As an example, we choose SU(4)L × SU(4)R flavor gauge
bosons to analyze the problem of monopole. We can com-
bine the SU(4)L × SU(4)R minimal coupling, Yang-Mills, and
tolopogical terms of flavor gauge bosons as follows related to
monopole:

Ltopology = −gΨ̄γµΨWµ − g2ξ

2
FµνFµν −

ηg2ξ

2
F̃µνFµν, (58)

where

F̃µν = ϵµνρσFρσ (59)

are electro-magnetic dual gauge strength tensors of Fµν. The
Euler-Lagrangian equation of Wµ for the Lagrangian (58) is

2gξ∂µFµν + 2ηgξ∂µ F̃µν = Jν, Jν = Ψ̄γνΨ = Jν
e + Jν

m. (60)

We decompose equation (60) as follows:

∂µFµν =
1

2gξ
Jν
e , (61)

∂µ F̃µν =
1

2ηgξ
Jν
m, (62)

where Jν
e is electro current and Jν

m is monopole current. The fun-
damental thing in quantum field theory is action S

S = −
∫

M
ω

(
ηg2ξ

2
F̃µνFµν

)
, (63)
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where ω is volume form and M is the base manifold of space-
time.Note that the monopole-related topological term in (58) is
the second Chern class, and the action S about the topological
term only relies on the topological structure of the manifold M
and is proportional with the second Chern number C2

S ∝ C2, C2 ∈ Z. (64)

We can easily calculate the second Chern number C2 with M
equals topologies S4 and S1 × S3:

C2 = 2, M = S4, (65)

C2 = 0, M = S1 × S3. (66)

This means that, for base manifold M with topology S4, the
monopole about flavor gauge bosons Wµ, there are monopole
currents; for base manifold M with topology S1 × S3, the
monopole currents are depressed. The analysis in this section
could apply equally to SU(4′) color gauge bosons Vµ, and
SU(5) GUT also.

8. CONCLUSIONS AND DISCUSSION
Based on the gauge group SU(4)L × SU(4)R × SU(4′) of the
Pati-Salam model, a representation of fermions is suggested
in this paper. The boson-fermion-antifermion vertices brought
by the SU(4)L × SU(4)R chiral flavor and the SU(4′) color
gauge group were discussed. The electric charge of each par-
ticle was consistently defined, and a pair of possible CKM and
PMNS matrix formulations were illustrated. An effective total
Lagrangian of the model was given.

The experimental data restricts the masses of particles X±C,
Y1, Y1

∗ , Y2, and Y2
∗ were superheavy. How the masses be gener-

ated for these particles requires further discussion.

(a) (b)
FIGURE 8: Examples of nonzero tree level amplitudes of the be-
yond SM FCNCs transported by neutral gauge bosons Y1 and
Y2.

FIGURE 9: Nonzero tree-level amplitudes of semileptonic ver-
tices. The e and µ are electron and mu leptons, and the uC
and cC are u and c quarks with color C. These processes were
still not being observed in the experiments, indicating that the
masses of X bosons must have been superheavy. The u, e, and
c, µ can be replaced with t, τ or d′, ν′ according to Lagrangian
(24).

Appendix A. SU(4) GROUP
Generators of the SU(4) group are as follows:

T1 =
1
2


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , T2 =
1
2


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 ,

T3 =
1
2


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

 , T4 =
1
2


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,

T5 =
1
2


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , T6 =
1
2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,

T7 =
1
2


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , T8 =

√
3

6


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

 ,

T9 =
1
2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , T10 =
1
2


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 ,

T11 =
1
2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 , T12 =
1
2


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 ,

T13 =
1
2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 , T14 =
1
2


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 ,

T15 =

√
6

12


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

 .

(A.1)
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Appendix B. THE POSSIBILITY OF THE
CHIRAL SYMMETRY
BREAKING OF FLAVOR
GAUGE INTERACTION

γ5 = iγ0γ1γ2γ3 such that

γ5† = γ5. (B.2)

The gamma matrices satisfy

1 − γ5†

2
1 + γ5

2
= 0,

1 + γ†

2
1 − γ5

2
= 0,

1 − γ5†

2
γ0γµ 1 + γ5

2
= 0,

1 + γ5†

2
γ0γµ 1 − γ5

2
= 0,

(B.3)

such that Lagrangian −gΨ̄γµΨWµ can be decomposed into two
chiral components in any Dirac matrix representation, i.e.,

−gTr
[
Ψ̄γµΨWµ

]
= −gTr

[
Ψ̄LγµΨLWa

µTa + Ψ̄RγµΨRWa
µTa

]
.

(B.4)

Appendix C. CROSS SECTIONS
The cross section in Figure 8(a) can be represented as follows:

|M|2 =
16g2(

t − m2
Y1

)2

((
s − m2

e − m2
µ

) (
s − m2

u − m2
c

)
+

(
u − m2

e − m2
µ

) (
u − m2

u − m2
c

)
+ 8memµmumc + 2memµ

(
t − m2

u − m2
c

)
+ 2mumc

(
t − m2

e − m2
µ

))
.

(C.5)

The cross section in Figure 8(b) replaces mY1 , mµ, and mc with
mY2 , mτ , and mt, respectively.

The cross sections in Figures 9(a) and 9(b) are

|Mt|2 =
288 f 4(

t − m2
X
)2

((
s − m2

µ − m2
c

) (
s − m2

e − m2
u

)
+

(
u − m2

µ − m2
c

) (
u − m2

e − m2
u

)
+ 8memµmumc+2memµ

(
t − m2

µ − m2
c

)
+ 2mµmc

(
t − m2

e − m2
u

))
,

(C.6)

|Mu|2 =
288 f 4(

u − m2
X
)2

((
s − m2

µ − m2
c

) (
s − m2

e − m2
u

)
+

(
t − m2

µ − m2
c

) (
t − m2

e − m2
u

)
+ 8memµmumc + 2memµ

(
t− m2

µ − m2
c

)
+ 2mµmc

(
t − m2

e − m2
u

))
,

(C.7)

where mX , me, mµ, mu, and mc are the masses of the X±C

bosons, e, µ leptons, and u and c quarks. The s, t, and u are

defined as follows:

s = (p1 + p2)
2 = (p3 + p4)

2 , (C.8)

t = (p1 − p3)
2 = (p2 − p4)

2 , (C.9)

u = (p1 − p4)
2 = (p2 − p3)

2 . (C.10)

The cross section of Figure 9(c) is given as follows:

|Ms|2 =
288 f 4(

s − m2
X
)2

((
t − m2

µ − m2
c

) (
t − m2

e − m2
u

)
+

(
u − m2

µ − m2
c

) (
u − m2

e − m2
u

)
+ 8memµmumc + 2memµ

(
s− m2

µ − m2
c

)
+ 2mµmc

(
s − m2

e − m2
u

))
.

(C.11)
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