
Letters in High Energy Physics LHEP-536, 2024

Physical States and Correction Terms of the Supersymmetric
c = 1 Model

Omar El Deeb
Department of Mathematics, University of Warwick, Coventry, UK

Abstract
In this article, we investigate the supersymmetric c = 1 model of superstring theory and demonstrate
how the spectrum of states is expanded and new symmetries of the theory are generated by the existence
of ghost cohomologies. As a result, we establish significant connections between two-dimensional super-
gravity and physical theories in higher dimensions. Additionally, we provide a comprehensive guide for
constructing BRST-invariant and nontrivial vertex operators and carry out explicit computations to deter-
mine the correction terms needed to maintain the BRST invariance of the corresponding currents.
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1. INTRODUCTION
The formalism of ghost cohomologies is an approach used to
study the nonperturbative dynamics of strings by exploring
the important information contained in physical operators that
are BRST- (Becchi-Rouet-Stora-Tyutin) invariant but not always
manifestly gauge-invariant. This approach allows researchers
to investigate the behavior of strings beyond the perturbative
regime and gain a better understanding of the nonperturba-
tive physics of gauge theories. In particular, it is used to study
the properties of special vertex operators and their relation to
nonperturbative strings. These vertex operators are not always
manifestly BRST-invariant, meaning they do not commute with
the supercurrent terms of the BRST charge. By adding b-c
ghost-dependent terms to the expressions of these operators,
researchers can restore their BRST invariance and better under-
stand their properties. In string theory, the b-c ghosts are aux-
iliary fields that are introduced to make the worldsheet theory
invariant under the BRST symmetry, which is a symmetry that
plays a crucial role in the quantization of gauge theories. The b
and c ghosts are worldsheet fields that satisfy a set of algebraic
relations and can be thought of as anticommuting fields. The b-
c ghost-dependent terms are terms that involve both the b and c
ghosts and are added to the expressions of certain vertex opera-
tors in string theory. The addition of b-c ghost-dependent terms
allows us to better understand the properties of these vertex
operators and gain insights into the nonperturbative dynamics
of strings. Overall, the formalism of ghost cohomologies pro-
vides a powerful tool for exploring the nonperturbative dy-
namics of strings and gaining insights into the physics of gauge
theories.

In the first section, we review the concepts of BRST quan-
tization and vertex operator formalism in the perturbative
Ramond-Neveu-Schwarz (RNS) superstring theory [1, 2, 3, 4].
We also examine global spacetime symmetries and the gen-
erator of this symmetry, which is given by a special type of
the worldsheet current violating the principle of ghost picture
equivalence [5]. The perturbative RNS superstring theory is
a type of string theory that describes the behavior of funda-
mental strings in terms of the motion of their worldsheet. The
theory incorporates both bosonic and fermionic fields on the

worldsheet and has supersymmetry, which allows for the can-
cellation of divergences that arise in the theory. In the RNS
formalism, the worldsheet fields include the spacetime coordi-
nates of the string, along with a set of fermionic fields known as
spinors, which describe the fermionic degrees of freedom of the
string. The theory has a set of symmetries, including Lorentz in-
variance and worldsheet reparametrization invariance, which
constrain the dynamics of the theory. The perturbative RNS su-
perstring theory is an important framework for studying the
properties of strings and their interactions. It provides a foun-
dation for the development of more advanced string theories,
such as the superstring theories and M-theory, which incorpo-
rate additional symmetries and degrees of freedom.

We explore the properties of special vertex operators and
their relation to nonperturbative strings, using examples of crit-
ical string theory and the supersymmetric c = 1 model [6, 7, 8].
The supersymmetric c = 1 model is a two-dimensional quan-
tum field theory that describes the behavior of strings in a
specific spacetime background. The theory incorporates both
bosonic and fermionic fields on the worldsheet and has super-
symmetry, which allows for the cancellation of divergences that
arise in the theory. The c = 1 model has a central charge of one,
which means that it has only one massless mode and is criti-
cal, meaning that it has no tachyons and is free of divergences.
The theory has a set of symmetries, including Lorentz invari-
ance and worldsheet reparametrization invariance, which con-
strain the dynamics of the theory. The supersymmetric c = 1
model is an important framework for studying the properties
of strings and their interactions in a specific spacetime back-
ground. It has applications in areas such as condensed matter
physics, where it can be used to model the behavior of certain
two-dimensional materials. The study of this model has also
led to insights into more general aspects of string theory and
its connections to other areas of physics [9, 10, 11, 12].

We introduce the notion of ghost cohomologies and discuss
their appearance based on the approach used in [13]. Section 2.3
explores the question of BRST invariance of vertex operators
from the ghost cohomologies of positive and negative ghost
numbers [14]. An interesting property of these vertex opera-
tors is that they are not manifestly BRST-invariant as they do
not commute with the supercurrent terms of the BRST charge
[15, 16, 17, 18]. The main importance of the general prescrip-
tion that we provide here is that it allows restoring their BRST
invariance by adding b-c ghost-dependent terms to the expres-
sions of these operators and demonstrate how this strategy
generally works on the example of the ghost-matter mixing
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five-form state of the critical NSR superstring theory in ten di-
mensions. More importantly, we provide an explicit calculation
of the correction terms restoring the BRST invariance of the T1,2
current. In the concluding section, we summarize our results,
discuss some possible implications of our results, and suggest
directions for future work.

2. THE RNS SUPERSTRING THEORY
String theory has been always considered a promising model
that might be finally able to unify the fundamental interac-
tions of nature, and it is also one of the best candidates for the
construction of a consistent theory of quantum gravity. While
the perturbative theory of strings seems to be already well ex-
plored, we still lack a complete and adequate string-theoretic
formalism in the strongly coupled nonperturbative regimes.
Strings were initially introduced in an attempt to find a solution
for the problem of quark confinement as it is well-known that
quarks exist in the bound state only as the interaction force be-
tween them grows with increasing distance [19]. Up until now,
string theory has not been able to fully explain the quark con-
finement mechanism because it turned out to be hard to find
an open string model whose partition function can exactly re-
produce the expectation value of Wilson’s loop in Quantum
Chromodynamics (QCD) [19]. Nevertheless, several significant
acheivements have been made in the string-theoretic approach
to QCD in recent years [20, 21, 22]. AdS/CFT correspondence
between string energies on the AdS5 × S5 background with the
anomalous dimensions of gauge-invariant operators in super-
symmetric four-dimensional SU(N) gauge theory, with several
applications and extensions, has been successfully developed
and studied [23, 24, 25, 26, 27, 28, 29, 30, 31]. Possible appli-
cations of string theory go far beyond QCD and the theory of
strong interaction as well. This is why it is strongly believed
that string theory appears to be a candidate for a model unify-
ing gravity with the standard model.

String theory is a promising model that has the poten-
tial to unify fundamental interactions of nature and provide
a consistent theory of quantum gravity. While the perturba-
tive theory of strings has been extensively studied, a complete
and appropriate string-theoretic formalism is still lacking in
strongly coupled nonperturbative regimes. Originally, strings
were proposed as a solution to the problem of quark confine-
ment, which arises because quarks exist only in bound states
as their interaction force increases with distance [19]. How-
ever, string theory has not yet fully explained the quark con-
finement mechanism due to the difficulty in finding an open
string model that can accurately reproduce the expectation
value of Wilson’s loop in Quantum Chromodynamics (QCD).
Despite this, significant progress has been made in the string-
theoretic approach to QCD in recent years [20, 21, 22], particu-
larly through the AdS/CFT correspondence between string en-
ergies on the AdS5 × S5 background and the anomalous dimen-
sions of gauge-invariant operators in supersymmetric four-
dimensional SU(N) gauge theory [23, 24, 25, 26, 27, 30, 31].
This correspondence has numerous applications and exten-
sions, and the potential applications of string theory extend
beyond QCD and the theory of strong interactions. Therefore,
string theory is considered a promising candidate for a model
that unifies gravity with the standard model [32, 33, 34].

First, we provide an overview of the fundamental concepts
of string dynamics before extending them to the supersymmet-
ric scenario. We use local coordinates, ξ1 and ξ2, to parameter-
ize the worldsheet, and Xm (m = 0, 1, . . . , d − 1) to denote the
d-dimensional spacetime coordinates. The string action is de-
fined as follows:

Sstring = − 1
4π

∫
d2z

√
γγab∂aXm∂bXn (ξ1, ξ2) ηmn, (1)

where γab(ξ1, ξ2) (a, b = 1, 2) is the induced worldsheet metric
and ηmn is the Minkowski metric [35]. In addition, the action
is symmetric under the reparametrizations of the local world-
sheet coordinates:

ξ1 → f1 = f1 (ξ1, ξ2) ,

ξ2 → f2 = f2 (ξ1, ξ2) .
(2)

The reparametrization symmetry (2) is a crucial local
bosonic gauge symmetry in the framework of string theory.
By making use of these gauge transformations, the worldsheet
metric γab can be transformed into the conformally flat form
γab → eφ(ξ1, ξ2)δ

ab, where φ is a function of the worldsheet
coordinates. Additionally, action (1) is invariant under Weyl
rescalings of the metric, γab → eσ(ξ1, ξ2)γ

ab. It is possible to
eliminate the scale factor of eφ in the worldsheet metric, which
reduces action (1) to that with a flat metric. When subject to
reparametrizations and Weyl rescalings, the integration mea-
sure undergoes the following transformations [35]:

D
[
γab

]
→ D[φ]e−SLiouville D[b]D[c]e−Sb-c . (3)

The Faddeev-Popov determinant, which is similar to fixing
the conformal gauge, arises from the action of the fermionic
b-c reparametrization ghost fields Sbc = 1

4π

∫
d2z(b∂̄c + b̄∂c̄)

[1, 35, 36]. To make the calculation more convenient, the b and
c ghost fields are bosonized using a single free bosonic field
according to [37] with b = e−σ and c = eσ. The Liouville field
φ has an action given by

SLiouville =
D − 26

36π

∫
dzz

(
∂φ∂̄φ + 2µ0bebφ

)
, (4)

which reflects the anomaly of the functional integration mea-
sure D[φ] under the Weyl rescaling. The cosmological constant
constant is denoted by µ0, and b is a constant determined by

the Liouville field’s background charge Q = b + 1
b =

√
25−d

3 to
make the total central charge of the system zero cX + cb-c + cφ =
0 [1, 2, 35]. The central charge in conformal field theory (CFT)
is determined from the two-point correlation functions of the
stress-energy tensors of the appropriate fields [38, 39], such that

⟨T(z)T(w)⟩ =
c
2

(z − w)4 , (5)

where T is defined as Tzz and Tab = 2π(γ)
1
2 δS

δγab .
By using the expressions for the stress-tensors of X, φ, and

the ghost fields, the central charge can be calculated.

Tx = −1
2

∂Xm∂Xm,

Tφ = −1
2
(∂φ)2 +

Q
2

∂2 φ,

Tbc =
1
2
(∂σ)2 +

3
2

∂2σ

(6)
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together with the operator products:

Xm(z)Xn(w) ∼ −ηmn ln(z − w),

φ(z)φ(w) ∼ − ln(z − w),

σ(z)σ(w) ∼ ln(z − w).

(7)

It is possible to show that cX = d, cφ = 1 + 3Q2, and cb-c =
−26. The full matter-ghost action is then given by

S =
−1
4π

∫
d2z∂Xm∂Xm + SLiouville + Sb-c. (8)

The RNS model incorporates two additional anticommut-
ing Grassmann coordinates θ and θ̄ that extend the worldsheet
coordinates (z, z̄). These Grassmann coordinates are defined in
such a way that they satisfy certain conditions [40]:

θ2 = θ̄2 = 0, θ̄θ = −θθ̄,∫
dθ = 0,

∫
dθθ = 1.

(9)

The worldsheet integration is replaced by the superspace
integral

∫
d2z →

∫
d2zd2θ while concurrently replacing the

derivatives in z and z̄ by their covariant counterparts:

∂z → Dz = ∂θ + θ∂z, ∂z̄ → Dz̄ = ∂θ + θ̄∂z̄. (10)

The expansions of the superfields are given by

Xm(z, z̄, θ, θ̄) = Xm(z, z̄) + θψm(z, z̄) + θ̄ψ̄m(z, z̄) + θθ̄Hm(z, z̄),
φ(z, z̄, θ, θ̄) = φ(z, z̄) + θλ(z, z̄) + θ̄λ̄(z, z̄) + θθ̄F(z, z̄),

C(z, θ) = c(z) + θγ(z),
C̄(z̄, θ̄) = c̄(z̄) + θ̄γ̄(z̄),
B(z, θ) = β(z) + θb(z),
B̄(z̄, θ̄) = β̄(z̄) + θ̄b̄(z̄).

(11)
Integrating out θ and θ̄, it can be shown that the full ghost-

matter action of the RNS superstring theory in the superconfor-
mal gauge is [41]

SRNS = − 1
4π

∫
d2z

(
∂Xm ∂̄Xm + ψm ∂̄ψm + ψ̄m∂ψ̄m)

+ Sghost + SLiouville,

Sghost =
1

2π

∫
d2z(b∂̄c + b̄∂c̄ + β∂̄γ + β̄∂γ̄),

SLiouville =
d − 10
36π

∫
d2z

(
∂φ∂̄φ̄ + λ∂̄λ + λ̄∂λ̄

− F2 + 2µ0bebφ(ibλλ̄ − F)
)

,

Q = b +
1
b
=

√
9 − d

2
.

(12)

We bosonize the superconformal β and γ ghosts in terms
of the pair of free 2d scalar bosons ϕ and χ. The bosonization
relations are given by [37]

γ = eϕ−χ, β = eχ−ϕ∂χ,

⟨χ(z)χ(w)⟩ = −⟨ϕ(z)ϕ(w)⟩ = ln(z − w)
(13)

and the full matter + ghost stress-energy tensor is

Tmatter = −1
2

∂Xm∂Xm − 1
2

∂ψmψm,

Tghost =
1
2
(∂σ)2 +

3
2

∂2σ +
1
2
(∂χ)2 +

1
2

∂2χ − 1
2
(∂ϕ)2 − ∂2ϕ,

TLiouville = −1
2
(∂φ)2 +

Q
2

∂2 φ.
(14)

Vertex Operators. In the string theory framework presented in
this section, the oscillation modes are typically interpreted as
fundamental particles, solitons, black holes, or D-branes. These
entities are commonly described by vertex operators [1, 2, 42]
with the following form:

V = P
(

∂Xm, ∂2Xm, . . . , ψm, ∂ψm, ghosts . . .
)

eikm Xm
. (15)

Here, P is a polynomial in the fields and their derivatives, and
km corresponds to the momentum. A vertex operator is deemed
physical if it belongs to the BRST cohomology. The noteworthy
characteristic of all gauge symmetries in such theories is that
any local gauge symmetry of the theory automatically encom-
passes its invariance under another type of symmetry transfor-
mations, referred to as BRST symmetry [42, 43]. This implies
that if an action of the theory is locally invariant under a cer-
tain local gauge symmetry, it would also be invariant under
transformations of the same form as the gauge transformations,
but with the local gauge parameter replaced by the correspond-
ing Faddeev-Popov ghost of the opposite statistics. For the RNS
model, the BRST charge expression is given precisely as

QBRST =
∮ dz

2iπ

{
cT − bc∂c − 1

2
γψm∂Xm − 1

4
γ2b

}
. (16)

To be considered physical vertex operators in the RNS
model, they must be invariant under BRST transformations,
meaning that they satisfy QBRST, V = 0. Operators that are
BRST-exact and can be written as V = Qbrst, W should be ex-
cluded. Open strings have an open line configuration, while
closed strings have a loop configuration, with the simplest
topology being a sphere. To be physical, these operators must
be primary fields of dimension 1 for open strings and (1, 1) for
closed strings. In conformal field theory (CFT), primary fields
of dimension (h, h̄) are observables φh,h̄ that transform under
conformal transformations as z → f (z); z̄ → f (z̄) according to

φh,h̄(z, z̄) →
(

d f
dz

)h ( d f̄
dz̄

)h̄ (
f (z), f̄ (z̄)

)
. (17)

Therefore, the operator product expansion (OPE) of the stress-
energy tensor has a simple form:

T(z)φh,h̄(w, w̄) =
hφh,h̄(w, w̄)

(z − w)2 +
∂φh,h̄(w, w̄)

z − w
+ O(z − w)0.

(18)

3. DISCRETE STATES AND CURRENTS
3.1. Ghost Cohomologies in the RNS Model
Physical states in the RNS superstring theory are vertex oper-
ators that are both nontrivial and BRST-invariant. These op-
erators can be defined up to transformations by the picture-
changing operator Γ = [Qbrst, ξ] and its inverse operator Γ−1 =
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c∂ξe−2ϕ, where ξ = eχ and ϕ, χ is the pair of the bosonized
superconformal ghosts, which consists of the product of the
BRST charge and the pair of bosonized superconformal ghosts.
The inverse of the picture-changing operator increments or
decrements the ghost number of the operator by 1. Thus, each
string excitation can be described by an infinite set of physically
equivalent operators.

: ΓV(n) := V(n+1) + {Qbrst, . . .} ,

: Γ−1V(n) := V(n−1) + {Qbrst, . . .} .
(19)

The location of picture-changing operators inside correla-
tion functions can vary, resulting in a full derivative in the
supermoduli space. This ensures their picture invariance un-
der appropriate moduli integration. However, global singular-
ities arise if the correlation function contains vertex operators
that diverge faster than (z − zn)−2, where zn is the insertion
point on the worldsheet [44]. If such an operator is present, the
moduli integration of the full derivative term would result in
a nonzero boundary contribution, and the correlation function
would be picture-dependent. An example of such a vertex op-
erator in the critical RNS superstring theory is the five-form
state:

V5(k) ≡ Hm1···m5 (k)
∮ dz

2iπ
e−3ϕψm1 · · ·ψm5 eikX(z). (20)

This operator exists at all the negative pictures below −3
but has no versions at pictures −2 or higher [5]. Since V5 is
annihilated by Γ, we have

0 ≡ lim
w→z

Γ−1(u)Γ(w)V5(z)

= V5(z) + lim
w→z

{Qbrst, Λ(u, w)V5(z)} .
(21)

Hence, V5 is the BRST commutator: V5(z) = − limw→z{Qbrst,
Λ(u, w)V5(z)}. It can be written as

lim
w→z

{Qbrst, Λ(u, w)V5(z)}

= lim
w→z

{
Qbrst, Γ−1(u)(ξ(w)− ξ(u))V5(z)

}
= lim

w→z
Γ−1(u)(Γ(w)− Γ(u))V5(z)

(22)

and the commutator is given by V5(z) = {Qbrst, ξΓ−1(u)V5(z)}.
Since the derivatives of Γ are all BRST-trivial: ∂nΓ =
{Qbrst, ∂nξ}; n = 1, 2, . . ., and one can write

Γ(w) = Γ(z) +

{
Qbrst, ∑

n

(w − z)n

n!
∂nξ

}
. (23)

The nonsingular OPE of Γ with U5 is given by

Γ(z)U5(w)∼ (z − w)2e−2ϕψm1 · · ·ψm4 (i(kψ)ψm5 + ∂Xm5 ) eikX .
(24)

Our goal here is to derive the correction terms restoring the
BRST-invariance of W5 and to demonstrate the nonzero corre-
lator involving the V5 and W5 operators. We start with the BRST
invariance restoration, and we consider the BRST charge given
by

Qbrst =
∮ dz

2iπ

(
cT − bc∂c − 1

2
γψm∂Xm − 1

4
γ2b

)
. (25)

Using the operator L(z) = −4ce2χ−2ϕ ≡: ξΓ−1, we find that it
satisfies {Qbrst, L} = 1. Next, consider a noninvariant operator
V satisfying {Qbrst, V} = W, then W is BRST-exact, and the
transformation V → Vinv = V − LW restores BRST-invariance.
Applying the same scheme for W5, we have

[Qbrst, W5] = Hm1···m5 (k)
∮ dz

2iπ
e2ϕ−χ+ikX Rm1···m5

1 (z)

+ be3ϕ−2χ+ikX Rm1···m5
1 (z),

(26)

where

Rm1···m5
1 (z) = −1

2
ψm1 · · ·ψm5 (ψ∂X)

− 1
2

ψ[m1···m4
(

∂2Xm5] + ∂Xm5](∂ϕ − ∂χ)
)

− i
2

ψm1 · · ·ψm5 (kψ)(∂ϕ − ∂χ) + (k∂ψ),

(27)

Rm1···m5
1 (z) = −1

4
(2∂ϕ − 2∂χ∂σ)ψm1 · · ·ψm5 . (28)

Evaluating the OPE of L, we obtain

W5inv(k, w)

= Hm1···m5 (k)
{∮ dz

2iπ
eϕψm1 · · ·ψm5 eikX − 1

2

∮
w

dz
2iπ

(z − w)2

: L∂2
z

(
e2ϕ−χRm1···m5

1 + e3ϕ−2χRm1···m5
2 (z)

)
:
}

= Hm1···m5 (k)
{∮ dz

2iπ
eϕψm1 · · ·ψm5 eikX

− 2
∮

w

dz
2iπ

(z − w)2ceχRm1···m5
1 (k, z)

}
.

(29)
There are three types of ghost cohomologies: positive ghost

number cohomology, negative ghost number cohomology, and
zero ghost cohomology. A formal definition of ghost cohomolo-
gies was given in [5, 13] and is summarized by

(1) The positive ghost number cohomology, denoted as HN
(where N is a positive integer), consists of physical vertex
operators that exist at positive superconformal ghost pic-
tures n ≥ N and are annihilated by the inverse picture-
changing operator Γ−1 at picture N. This means that pic-
ture N is the minimal positive picture at which the oper-
ators V ⊂ HN can exist.

(2) The negative ghost number cohomology, denoted as
H−N (where N is a positive integer), consists of physi-
cal vertex operators that exist at negative superconfor-
mal pictures n ≤ N and are annihilated by the direct
picture-changing at picture −N.

(3) By definition, zero ghost cohomology, denoted as H0,
consists of operators that exist in all pictures. Standard
string perturbation theory involves elements of H0. The
standard string perturbation theory thus involves the el-
ements of H0. The picture −3 and picture +1 five-forms
considered above are the elements of H−3 and H1, re-
spectively.

(4) There is a generic isomorphism between positive and
negative ghost cohomologies: H−N−2 ∼ HN ; N ≥ 1.
This means that to any element of H−N−2, there cor-
responds an element from HN obtained by replacing
e−(N+2)ϕ with eNϕ and then adding the appropriate b-c
ghost terms in order to restore the BRST-invariance.
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The example of the picture −3 and picture +1 five-forms dis-
cussed earlier belongs to H−3 and H1, respectively. By under-
standing ghost cohomologies, and researchers in string the-
ory can better understand the behavior of strings in different
spacetime backgrounds and calculate various physical quanti-
ties such as scattering amplitudes and correlation functions.

3.2. Extended Discrete States in c = 1 Supersymmetric
Model

Noncritical one-dimensional string theory is known to include
discrete states with nonstandard b-c ghost numbers 0 and 2 in
its physical state spectrum. If we consider the c = 1 model,
which is supersymmetrized on the worldsheet and coupled to
the super Liouville field, the action of the system on the world-
sheet in conformal gauge is given by

S = Sχ−ψ + SL + Sb-c + Sβ−γ,

Sχ−ψ =
1

4π

∫
d2z

{
∂X∂̄X + ψ∂̄ψ + ψ̄∂ψ̄

}
,

SL

=
1

4π

∫
d2z

{
∂φ∂̄φ + λ∂̄λ + λ̄∂λ̄− F2 + 2µ0bebφ(ibλλ̄ − F)

}
,

Sb-c + Sβ−γ =
1

4π

∫
d2z

{
b∂̄c + b̄∂c̄ + β∂̄γ + β̄∂γ̄

}
,

(30)
where Q ≡ b+ b−1 is the background charge. The stress tensors
of the matter and the ghost systems and the standard bosoniza-
tion relations for the ghosts are given by

Tm = −1
2
(∂X)2 − 1

2
∂ψψ − 1

2
(∂φ)2 +

Q
2

∂2 φ,

Tgh =
1
2
(∂σ)2 +

3
2

∂2σ +
1
2
(∂χ)2 +

1
2

∂2χ − 1
2
(∂ϕ)2 − ∂2ϕ,

c = eσ, b = e−σ,

γ = eϕ−χ, β = eχ−ϕ∂χ.
(31)

According to the prescription provided by [13], the SU(2) alge-
bra is generated by the currents:

T0,0 =
∮ dz

2iπ
∂X,

T0,1 =
∮ dz

2iπ
eiXψ,

T0,−1 =
∮ dz

2iπ
e−iXψ.

(32)

It is important to note the currents of the form

T−n,m =
∮ dz

2iπ
P−n,m

(
∂X, ∂2X, . . . , ψ, ∂ψ, . . .

)
e−nϕ+imX ,

|m| ≤ n − 1
(33)

The Virasoro primary states with negative ghost number
−n, which are typically not BRST invariant, are usually anni-
hilated by the picture-changing operator. The states P−n,m are
polynomial expressions in ∂X, ψ, and their derivatives, with a
conformal weight of h = 1/2(n2 − m2) + n + 1, ensuring that
the integrals have a total dimension of 1. To begin, one starts
with the Liouville-dressed tachyonic Virasoro primaries for a
given n ∮ dz

2iπ
Vl =

∮ dz
2iπ

eilX+(l−1)φ(lψ − i(l − 1)φ)

with integer l and acts on them with various combinations of
the lowering T-operators. The obtained operators will be the
multiplets of SU(n), including the operators of BRST coho-
mologies with nontrivial ghost dependence.

3.2.1. Ghost Dependent Discrete States
We consider here three SU(2) currents taken at different ghost
pictures. The first example is the generator given by the world-
sheet integral

T−3,2 =
∮ dz

2iπ
e−3ϕ+2iXψ(z). (34)

This operator is annihilated by the picture-changing transfor-
mation. By taking the lowering operator T0,−1 =

∮ dz
2iπ e−iXψ(z)

of SU(2), we obtain the following extra five generators in the
ghost number −3 cohomology:

T−3,2 =
∮ dz

2iπ
e−3ϕ+2iXψ(z),

T−3,1 =
∮ dz

2iπ
e−3ϕ+iX

(
∂ψψ +

1
2
(∂X)2 +

i
2

∂2X
)
(z),

T−3,−1 =
∮ dz

2iπ
e−3ϕ−iX

(
∂ψψ +

1
2
(∂X)2 − i

2
∂2X

)
(z),

T−3,0 =
∮ dz

2iπ
e−3ϕ

(
∂2Xψ − 2∂X∂ψ

)
(z),

T−3,−2 =
∮ dz

2iπ
e−3ϕ−2iXψ(z).

(35)

The following step involves demonstrating that when com-
bined with the three standard SU(2) generators T0,0, T0,1, and
T0,−1, the operators form eight generators of SU(3), where T0,0
and T−3,0 create the Cartan subalgebra of SU(3). The computa-
tion of the commutators of some of the generators can be com-
plicated. However, it can be simplified by noting that the op-
erators T−n,m of ghost cohomology −n (where n = 3, 4, . . .) are
equivalent to operators from the positive ghost number n − 2
cohomologies, up to certain b-c ghost terms necessary for main-
taining the BRST-invariance of the operators with positive su-
perconformal ghost numbers. To simplify the process, it is con-
venient to redefine the operators

L =
i
2

T0,0,

H =
i

3
√

2
T−3,0,

G+ =
1

2
√

2

(√
2T0,1 + T−3,1

)
,

G− =
1

2
√

2

(√
2T0,1 − T−3,1

)
,

F+ =
1

2
√

2

(√
2T0,−1 + T−3,−1

)
,

F− =
1

2
√

2

(√
2T0,−1 − T−3,−1

)
,

G3 =
1√
2

T−3,2,

F3 =
1√
2

T−3,−2.

(36)
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Consequently, the commutators of the operators L and H
are given by

[L, H] = 0,

[L, G+] =
1
2

G+; [L, G−] =
1
2

G−; [L, F+] = −1
2

F+;

[L, F−] = −1
2

F,

[L, G3] = G3; [L, F3] = −F3,

[H, G+] = −G+; [H, G−] = G−; [H, F+] = F+;

[H, F−] = −F−,

[H, G3] = [H, F3] = 0.

(37)

In summary, it has been demonstrated that the operators
L and H are in the Cartan subalgebra of SU(3). Thus, the op-
erators L, H, F±, G±, F3, and G3 define the Cartan-Weyl basis
of SU(3). Therefore, just like in the case of usual SU(2) dis-
crete states of two-dimensional supergravity, this operator is
V =

∮ dz
2iπ eilX+(l−1)φ(lψ − i(l − 1)λ). In particular, to include

the currents of ghost numbers up to −4, one has to start with
the generator T−4,3 =

∮ dz
2iπ e−4ϕ+3iXψ. A similar procedure can

be used to include the currents of higher ghost numbers, such
as T−4,3, which generates seven new currents T−4,m, |m| ≤ 3
that are the BRST-invariant super Virasoro primaries. These
currents can be obtained by repeatedly applying T0,−1 to T−4,3.
The resulting operators are described in [13]:

T−4,±3 =
∮ dz

2iπ
e−4ϕ±3iXψ(z),

T−4,2

=
∮ dz

2iπ
e−4ϕ+2iX

(
1
2

∂2ψψ − i
6

∂3X +
i
6
(∂X)3 − 1

2
∂X∂2X

)
,

T−4,1

=
∮ dz

2iπ
e−4ϕ+iX

(
1
2

ψ∂ψ∂2ψ +
1

24
P(4)
−iXψ

−1
4

P(2)
−iX∂2ψ − 1

4

(
P(2)
−iX

)2
ψ

)
,

T−4,−1

=
∮ dz

2iπ
e−4ϕ−iX

(
1
2

ψ∂ψ∂2ψ +
1

24
P(4)

iX ψ

−1
4

P(2)
iX ∂2ψ − 1

4

(
P(2)

iX

)2
ψ

)
,

T−4,−2

=
∮ dz

2iπ
e−4ϕ−2iX

(
1
2

∂2ψψ +
i
6

∂3X − i
6
(∂X)3 − 1

2
∂X∂2X

)
,

T−4,0

=
∮ dz

2iπ
e−4ϕ

{
2i∂X∂ψ∂2ψ + P(2)

−iXψ∂2ψ − 2
3

P(3)
−iXψ∂ψ

− 1
6

P(3)
−iX P(2)

−iX + (∂X)2ψ∂2ψ +
7i
8

∂XP(4)
−iX

− i(∂X)3ψ∂ψ − i
2

∂XP(2)
−iXψ∂ψ

+
i
4

∂X
(

P(2)
−iX

)2
− 1

4
(∂X)2P(3)

−iX

}
.

(38)
Here, P(n)

±iX ; n = 2, 3, 4 are the conformal weight-n

polynomials in the derivatives of X defined as P(n)
f (X(z)) =

e− f (X(z)) ∂n

∂zn e f (X(z)) for a given function f (X). When one ap-
plies the lowering subalgebra of SU(4) to the dressed tachy-
onic vertex multiple times, the set of ghost-dependent discrete
states is extended, and they become the multiplets of SU(4). It
seems reasonable to assume that this process can be general-
ized to include generators of higher ghost numbers.

3.2.2. Nontriviality of the T−n,m-Currents
The BRST charge of the one-dimensional NSR superstring the-
ory is given by the usual worldsheet integral

Qbrst =
∮ dz

2iπ

{
cT − bc∂c + γGmatter −

1
4

bγ2
}

, (39)

where Gmatter is the full matter supercurrent. The BRST-
invariant currents are given by Tn−2,m = Z(: Γ2n−2cS−n,m :)
[44] while S−n,m are the integrands of T−n,m and Z is the picture
changing operators for the b-c ghost terms [37] which simply
follow from the invariance of Γ and Z. If we can demonstrate
that any operator creates nonzero correlations, we can prove its
BRST nontriviality. The T-currents automatically demonstrate
the BRST nontriviality of new discrete states in SU(n) multi-
plets. There are two ways to express the Wn operator, which,
when its commutator with the BRST charge is taken, may gen-
erate the T-currents

Wn = W(1)
n + W(2)

n ,

W(1)
n =

n−1

∑
k=1

αk

∮ dz
2iπ

e−(n+1)ϕ+i(n−1)X∂(k)ξ∂(n−k)X,

W(2)
n =

k,l=n,k+l≤2n

∑
k,l=1,k ̸=l

αkl

∮ dz
2iπ

e−(n+2)ϕ+i(n−1)Xψ∂(k)ξ∂(2n−k−l)c

(40)
with αk and αkl being some coefficients and ξ = eχ. The oper-

ators W(1)
n and W(2)

n are the conformal one-dimensional opera-
tors satisfying the relations[∮ dz

2iπ
γ2ψ∂X, W(1)

]
∼ T−n,n+1,[∮ dz

2iπ
γ2b, W(2)

n

]
∼ T−n,n−1,[∮ dz

2iπ
γ2ψ∂X, W(2)

]
=

[∮ dz
2iπ

γ2b, W(21)
n

]
= 0.

(41)

Therefore, the T-currents are BRST-trivial if and only if there
exists at least one combination of the coefficients αk or αkl such
that [∮ dz

2iπ
(cT − bc∂c), W(1)

n

]
= 0, (42)[∮ dz

2iπ
(cT − bc∂c), W(2)

n

]
= 0. (43)

3.3. SU(n) Multiplets and Structure Constants
We create sets of ghost-related specific states belonging to
SU(N) and determine their structure constants when N is
equal to 3. The discrete states resulting from the lower oper-
ators of the current algebra lead to a variety of SU(3) represen-
tations. We start with the decomposition of the current algebra
[45]

SU(3) = N+ ⊕ N0 ⊕ N− (44)
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with the operators L and H being in the Cartan subalgebra N0,
the subalgebra N+ consisting of 3 operators G± and G3 with
the unit positive momentum and with 3 lowering operators F±
and F3 with the unit negative momentum being in N−.

The discrete states forming the SU(3) multiplets can be ob-
tained by the various combinations of the N− operators with
the highest weight vector states. The highest weight vectors
are given by the dressed tachyonic operators

∮ dz
2iπ Vl(z) =∮ dz

2iπ eilX+(l−1)φ(lψ(z) − i(l − 1)λ), where l is an integer. It is
easy to see that all the Vl ’s with l ≥ 2 are annihilated by N+

since their OPE’s with the integrands of G± and G3 are nonsin-
gular. Furthermore, all these tachyons have a weight of 1

2 with
respect to the L and N0 operators. We need to examine how the
hypercharge generator H of N0 acts on these operators. Simple
calculation gives[

H,
∮ dz

2iπ
Vl

]
=

[
i

3
√

2
dz

2iπ
e−3ϕ

(
∂2Xψ − 2∂X∂ψ

)
,∮ dw

2iπ
eilX(lψ − i(l − 1)λ)(w)

]
=

i
3
√

2
dw
2iπ

e−3ϕ+ilX+(l−1)φ

×
{

3il2∂ψψ − 3l∂2X +
1
2

il2P(2)
−3ϕ

+ (6l∂X − 3l(l − 1)ψλ)∂ϕ + 3l(l − 1)∂ψλ

}
.

(45)

Performing the partial integration, we get[
H,

∮ dz
2iπ

Vl

]
=

i
3
√

2

∮ dz
2iπ

e−3ϕ+ilX+(l−1)φ

×
{

3il2∂ψψ − l(1 +
l2

2
)∂2X + il2(l − 1)∂2 φ

+ l(l − 1)(2∂ψλ − ψ∂λ)

+ (il∂X + (l − 1)∂φ)(2l∂X − l(l − 1)ψλ)

+
il2

2
(il∂X + (l − 1)∂φ)2

}
.

(46)

The expression on the right side of the equation is the
dressed tachyon in picture −3, with the exception of a factor
that is related to hypercharge. For the purposes of this analysis,
we only need to examine the matter component of the picture-
changing operator.

Γ =: δ(β)Gmatter := − i√
2

eϕ(ψ∂X + λ∂φ + ∂λ). (47)

Applying the picture-changing operator gives

: Γ ::
[

H,
∮ dz

2iπ
Vl

]
:

= − i√
2

i
3
√

2

∮ dz
2iπ

e−2ϕ+ilXψ(z)× (2 − 2l),
(48)

i.e., the tachyon at the picture −2. We can also show that [13]

: Γ3 :
[

H,
∮ dz

2iπ
Vl(z)

]
=

l(l − 1)
6

∮ dz
2iπ

Vl (49)

and this proves that the tachyons with the integer momenta
l ≥ 2 are the highest weight vectors of SU(3). Once we have
identified the highest weight vectors, we can obtain the physi-
cal states spectrum, which consists of the SU(3) multiplets, by
straightforwardly constructing the corresponding vertex oper-
ators: ∮ dz

2iπ
Vl;p1,p2,p3 = Fp1

+ Fp2
− Fp3

3

∮ dz
2iπ

Vl(z) (50)

with all possible integer values of p1, p2, and p3 such that p1 +
p2 + 2p3 ≤ 2l.

4. CORRECTION TERMS OF THE T1,2
CURRENT

At this stage, it is crucial to demonstrate that the new dis-
crete states of the model’s currents are BRST-invariant. This is
achieved through correction terms associated with the current.
Here, we perform a specific calculation of the correction terms
that restore the BRST invariance for T1,2, which is the current
in ghost cohomology +1 and the dual current of the T−3,2 cur-
rent that exists in ghost cohomology −3. Using the prescription
V → Vinv = V − LW, with W = {QBRST, V}, we start by calcu-
lating

{Qbrst, T1,2}

=
∮ dz

2iπ

{
−1

2
eϕ−χψ∂X − 1

4
e2ϕ−2χb

} ∮ dw
2iπ

eϕ+2iX

= −1
2

∮ dw
2iπ

e2ϕ−χ+2iX
(

∂2X + ∂X(∂ϕ∂χ)
)

− 1
4

∮ dw
2iπ

e3ϕ−2χ+2iXψP(1)
2ϕ−2χσ,

(51)

where P(n)
( f (z)) = W(1) + W(2). As proved before, there exists an

operator L(z) = −4ce2χ−2ϕ satisfying {QBRST, L} = 1. Making
the transformation: Tinv

1,2 = T1,2 − LW, it is straightforward to
notice that {Q, Tinv

1,2 } = 0. The process for calculating the cor-
rection terms goes as follows:

(i) Take : L(z)W(w) : and expand around the midpoint z+w
2

up to the second order (z − w)2 terms.

(ii) Calculate the limit limz→w{ 1
2
∮ dz

2iπ (z − u)2∂2
z L(z)U(z)}.

(iii) Integrate the obtained answer by parts to get an answer
of the form:

a
∮ dz

2iπ
eϕ+2iXψ +

∮ dz
2iπ

eϕ+2iXψ(z − u) (extra terms)

+
∮ dz

2iπ
eϕ+2iXψ(z − u)2 (extra terms).

(52)

These terms are the correction terms of T1,2 which are ex-
plicitly calculated from:

: L(z)W(1)(w) :

= lim
z→w

2
∮

e2χ−2ϕ+σ(z)e2ϕ−χ+2iX

×
(

∂2X + ∂X(∂ϕ − ∂χ)
)
(w)

dz
2iπ

= 2
∮
(z − u)2ceχ+2iX

(
∂2X + ∂X(∂ϕ − ∂χ)

) dz
2iπ

,

(53)
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: L(z)W(2)(w) :

= lim
z→w

∮
e2χ−2ϕ+σ(z)e3ϕ−2χ+2iXψ(2∂ϕ − 2∂χ − ∂σ)(w)

dz
2iπ

.

(54)

Performing the expansion around z+w
2 and keeping the

terms up to the second order, we obtain the following.

z − w terms:

lim
z→w

∮ dz
2iπ

eϕ+2iX(z − w)

×
{

ψ(2∂ϕ − 2∂χ − ∂σ)

+ ψ

(
∂χ − ∂ϕ +

∂σ

2
− 3

2
∂ϕ + ∂χ − iX +

∂σ

2

)
− ∂ψ

2

}
.

(55)
Further integration implies that

lim
z→w

−
∮

(z − u)2

2
∂z

{
eϕ+2iX

(
ψ

(
− ∂ϕ

2
− iX

)
− ∂ψ

2

)}
dz

2iπ

=
∮ dz

2iπ
(z − u)2

2
eϕ+2iX

×
{

ψ

(
∂2ϕ

2
+ i∂2X − (∂ϕ + 2i∂X)

(
− ∂ϕ

2
− i∂X

))
− ∂ψ(−∂ϕ − 2iX) +

∂2ψ

2

}
.

(56)

(z − w)2 terms:
The (z − w)2 correction terms are obtained from

lim
z→w

∮ dz
2iπ

eϕ+2iX(z − w)2

×
{
−1

2

(
2∂2ϕ − 2∂2χ − ∂2σ

)
ψ

− ∂ψ

2
(2∂ϕ − 2∂χ − ∂σ) + ψ(2∂ϕ − 2∂χ − ∂σ)

×
(

∂χ − ∂ϕ +
∂σ

2
− 3

2
∂ϕ + ∂χ − iX +

∂σ

2

)
− ∂ψ

2

+
1
8

{(
2∂2χ − 2∂2ϕ + ∂2σ

)
+ (2∂χ − 2∂ϕ + ∂σ)2

}
ψ

+
1
8

{(
3∂2ϕ − 2∂2χ + 2i∂2X − ∂2σ

)
+(3∂ϕ − 2∂χ + 2i∂X − ∂σ)2

}
ψ

+
1
4
(3∂ϕ − 2∂χ + 2i∂X − ∂σ)∂ψ +

1
8

∂2ψ

− 1
4
(2∂χ − 2∂ϕ + ∂σ)(3∂ϕ − 2∂χ + 2i∂X − ∂σ)ψ

− 1
4
(2∂χ − 2∂ϕ + ∂σ)∂ψ

}
.

(57)

Collecting terms and integrating over a closed loop, then
taking the term involving ∂2ψ and integrating by parts twice,
and then involving the ∂ψ term and integrating by parts once,
we obtain the following.

∂2ψ term:
3
8

∮ dz
2iπ

(z − u)2eϕ+2iX∂2ψ

=
3
8

∮ dz
2iπ

eϕ+2iX

×
{

2 + 4(z − u)(∂ϕ + 2i∂X)

+ (z − u)2
(

∂2ϕ + 2i∂2X + (∂ϕ + 2i∂X)2
)}

ψ.

(58)

∂ψ term:
1
2

∮ dz
2iπ

(z − u)2eϕ+2iX∂ψ

{
5
2

∂ϕ + 3i∂X
}

= −1
2

∮ dz
2iπ

eϕ+2iX

×
{

ψ(z − u)2
(

5
2

∂2ϕ +3i∂2X +

(
5
2

∂ϕ + 3i∂X
)
(∂ϕ + 2i∂x)

)
+ 2(z − u)

(
5
2

∂ϕ + 3i∂X
)}

.

(59)

ψ term:
1
2

∮ dz
2iπ

(z − u)2eϕ+2iX

×
{

ψ

{
−∂2ϕ +

9
4

∂2χ +
3
2

i∂2X + ∂2σ +
1
2
(∂ϕ + 2i∂X)2

+ (2∂ϕ − 2∂χ − ∂σ)

(
7
4

∂χ − 9
2

∂ϕ +
7
4

∂σ − 2i∂X
)

+ (3∂ϕ − 2∂χ + 2i∂X − ∂σ)

×
(
−3

2
∂χ +

5
4

∂ϕ − 3
4

∂σ +
i
2

∂X
)}}

.

(60)
Further computation from the terms just obtained shows

that the correction terms of the current implied by equation (51)
finally simplify into

3
8

∮ dz
2iπ

eϕ+2iXψ +
∮ dz

2iπ
(z − u)eϕ+2iXψ(−∂ϕ)

+
1
2

∮ dz
2iπ

(z − u)2eϕ+2iXψ

×
{
−11

4
∂2ϕ +

9
4

∂2χ + ∂2σ − (∂ϕ + i∂X)(∂ϕ + 2i∂X)

+ (2∂ϕ − 2∂χ − ∂σ)

(
7
4

∂χ − 9
2

∂ϕ +
7
4

∂σ − 2i∂X
)

+ (3∂ϕ − 2∂χ + 2i∂X − ∂σ)

×
(
−3

2
∂χ +

5
4

∂ϕ − 3
4

∂σ +
i
2

∂X
)}

.

(61)

In this passage, we have described a new result that has
been obtained by fully determining the correction terms of the
T1,2 current, which is a current that carries the ghost cohomol-
ogy +1 and is dual to the T−3,2 current at ghost cohomology
−3. The importance of this result lies in its ability to restore the
BRST invariance of the current, which is a crucial property for
any physically meaningful operator in the context of the super-
symmetric c = 1 model being investigated.

Furthermore, we note that this algorithm can be applied to
all current cohomologies, providing a general prescription for
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finding the additional terms that restore the BRST invariance of
any noninvariant current carrying ghost cohomology at a given
picture. This approach is therefore significant in that it proves
the existence of new discrete physical states in the supersym-
metric c = 1 model and can be used as a general method for
investigating other similar models.

5. CONCLUSION
This article discussed the enhancement of the current algebra
of spacetime generators in noncritical RNS superstring theories
due to the appearance of new physical ghost-dependent gener-
ators from the first nontrivial ghost cohomology. The current
algebra of spacetime generators has significant applications in
string theory, enabling the calculation of various physical quan-
tities such as scattering amplitudes and correlation functions.
Additionally, the current algebra has connections to other ar-
eas of physics such as conformal field theory and quantum field
theory, making it an important area of study.

The author demonstrated that the SU(2) ∼ SL(3, R) al-
gebra of currents is isomorphic to volume-preserving diffeo-
morphisms in three dimensions. This suggests that there are
holographic relations between two-dimensional supergravity
and field-theoretic degrees of freedom in three dimensions. The
conjecture is that by including currents from the cohomologies
of ghost numbers up to N, the current algebra can be extended
to SU(N + 2), corresponding to volume-preserving diffeomor-
phisms in d = N + 2 dimensions. Thus, each new cohomology
corresponds to opening up a theory to a new hidden spacetime
dimension in the c = 1 supersymmetric model. The authors
proved this fact for N = 1 and conjecture for higher N val-
ues. They also provide an explicit construction of the correction
terms for the currents with higher ghost cohomologies, which
gives an isomorphism between positive and negative ghost co-
homologies. The c > 1 case is not discussed in this work as it is
more complicated.
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