Lepton Masses and Mixing in Modular A_5 Symmetry

Mohammed Abbas^{1,2}

¹Physics Department, Faculty of Science and Arts-Tabarjal, Jouf University, Al-Jouf, KSA ²Physics Department, Faculty of Sciences, Ain Shams University, Abbassiyah 11566, Cairo, Egypt

Abstract

A model based on the modular group A_5 is considered to account for lepton masses and mixing. We consider multimoduli scenario, in which charged leptons and neutrinos are assigned to different moduli. Various models are considered depending on different assignments of modular weights and the mechanism for producing the light neutrino masses.

Keywords: neutrino, modular flavor symmetries, discrete symmetries *DOI:* 10.31526/LHEP.2024.545

1. INTRODUCTION

The finite modular groups Γ_N have been considered to account for the flavor problems [1, 2]. In these groups, the coupling constants can transform nontrivially; in addition, extra symmetries under modular weights are considered. Some of Γ_N are isomorphic to finite permutation groups. For instance, $\Gamma_2 \cong S_3$ [3, 4, 5, 6], $\Gamma_3 \cong A_4$ [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], $\Gamma_4 \cong S_4$ [23, 24, 25, 26, 27, 28, 29, 30] and $\Gamma_5 \cong A_5$ [31, 32, 33]. Some approaches have been studied to consider two moduli with different VEVs of fixed points for charged leptons and neutrinos [34, 35]. On the other hand, multiple modular groups have been broken effectively into a single modular group with multimoduli discussed in [36]. In this work, we adopt the scenario of two moduli with modular group $\Gamma_5 \sim A_5$. This would allow us to assign different moduli to neutrino and charged lepton sectors.

2. MODULAR FORMS OF LEVEL 5

Group A_5 has 60 elements and five irreducible representations, namely, **1**, **3**, **3'**, **4**, and **5**, and is generated by two elements *S* and *T* satisfying the following conditions:

$$S^2 = T^5 = (ST)^3 = \mathbf{1}.$$
 (1)

The modular form of level 5 has the following form:

$$f_i(\gamma(\tau)) = (c\tau + d)^{2k} \rho_{ij}(\gamma) f_j(\tau), \quad \gamma \in \Gamma(5).$$
⁽²⁾

The modular forms of weight 2 have been calculated in [33, 31]:

$$Y_{3} = \begin{pmatrix} e_{1}(\tau) \\ e_{2}(\tau) \\ e_{3}(\tau) \end{pmatrix}, \quad Y_{3'} = \begin{pmatrix} e_{1}'(\tau) \\ e_{2}'(\tau) \\ e_{3}'(\tau) \end{pmatrix}, \quad Y_{5} = \begin{pmatrix} \tilde{e}_{1}(\tau) \\ \tilde{e}_{2}(\tau) \\ \tilde{e}_{3}(\tau) \\ \tilde{e}_{4}(\tau) \\ \tilde{e}_{5}(\tau) \end{pmatrix}, \quad (3)$$

where the elements of modular forms are written in terms of the Dedekind eta-function $\eta(\tau)$:

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \quad q = e^{2\pi i \tau},$$
(4)

and the Klein form

$$\mathfrak{t}_{(r_1,r_2)}(\tau) = q_z^{(r_1-1)/2} \left(1-q_z\right) \prod_{n=1}^{\infty} \left(1-q^n q_z\right) \left(1-q^n q_z^{-1}\right) \left(1-q^n\right)^{-2},$$
(5)

where $q_z = e^{2\pi i z}$.

In this paper, we will use the basis where the triplet irreducible representation of A_5 generators is given by

$$S = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -\sqrt{2} & -\sqrt{2} \\ -\sqrt{2} & -\phi & 1/\phi \\ -\sqrt{2} & 1/\phi & -\phi \end{pmatrix},$$

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{\frac{2i\pi}{5}} & 0 \\ 0 & 0 & e^{-\frac{2i\pi}{5}} \end{pmatrix},$$
 (6)

where $\phi = \frac{1+\sqrt{5}}{2}$. The fixed points in the fundamental domain are

$$\tau_1 = e^{\frac{i2\pi}{3}} = \frac{-1}{2} + i\frac{\sqrt{3}}{2},$$

$$\tau_2 = i.$$
(7)

There are other fixed points but they are equivalent to the above points by modular transformation. For instant, $\tau_{1'} = \frac{1}{2} + i\frac{\sqrt{3}}{2} = T\tau_1, \tau_{2'} = -0.5 + 0.5i = ST\tau_2, \tau_{2''} = 0.5 + 0.5i = TST\tau_2.$

3. LEPTON MASSES AND MIXING

We consider the following scenarios that depend on different assignments of flavors under modular A_5 and modular weights. In each of these models, the charged lepton mass and mixing matrices are not changed.

3.1. Charged Lepton Sector

The assignments under A_5 and modular weights for the lepton and Higgs fields in this model are shown in Table 1. For the charged leptons, according to the modular invariance condition, for the modular forms of weight 2, the modular weights in the charged lepton sector must satisfy the following conditions:

$$k_L + k_{H_d} + k_E = 2. (8)$$

Fields	E^{c}	L	N^{c}	H_u	H_d	
A_5	3	3	3	1	1	
	1	1	0	0	0	model 1
k_I	0	2	0	0	0	model 2
	2	0	1	0	0	model 3

TABLE 1: Assignment of flavors under A_5 and the modular weight k_1 .

The invariant superpotential under the modular A_5 group is

$$v_e = g_1 \left(E^c H_d L \right)_3 Y_3 \left(\tau_e \right) + g_2 \left(E^c H_d L \right)_5 Y_5 \left(\tau_e \right). \tag{9}$$

The charged lepton mass matrix in this case is

$$m_e = v_d \begin{pmatrix} 2g_2\tilde{e}_1 & g_1e_3 - \sqrt{3}g_2\tilde{e}_5 & -g_1e_2 - \sqrt{3}g_2\tilde{e}_2 \\ -g_1e_3 - \sqrt{3}g_2\tilde{e}_5 & \sqrt{6}g_2\tilde{e}_4 & g_1e_1 - g_2\tilde{e}_1 \\ g_1e_2 - \sqrt{3}g_2\tilde{e}_2 & -g_1e_1 - g_2\tilde{e}_1 & \sqrt{6}g_2\tilde{e}_3 \end{pmatrix},$$
(10)

where v_d is the vacuum expectation value of H_d . The couplings g_1 and g_2 are complex in general, so we can write $g_2/g_1 = ge^{i\delta}$, where δ is the relative phase of g_1 and g_2 . It is convenient to work with the Hermitian matrix $M_e = m_e^{\dagger}m_e$, to deal only with the left-handed mixing. The matrix M_e can be diagonalized as

$$M_e^{\text{diag}} = U_e^{\dagger} M_e U_e. \tag{11}$$

At the fixed point $\tau_1 = e^{\frac{2\pi i}{3}}$, the matrix M_e is invariant under *ST* transformation:

$$(ST)^{\dagger}M_eST = M_e, \tag{12}$$

where

7

$$ST = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -\sqrt{2}e^{\frac{2i\pi}{5}} & \sqrt{2}e^{\frac{-2i\pi}{5}} \\ -\sqrt{2} & -\phi e^{\frac{2i\pi}{5}} & e^{\frac{-2i\pi}{5}} \\ -\sqrt{2} & e^{\frac{2i\pi}{5}} & -\phi e^{\frac{-2i\pi}{5}} \end{pmatrix}.$$
 (13)

Therefore, at the fixed point $\tau_1 = e^{\frac{2\pi i}{3}}$, the A_5 modular group is broken to a $Z_3 = \{1, ST, (ST)^2\}$ residual group. If $g \sim \mathcal{O}(1)$ GeV, $\delta = 0$, the charged lepton mass ratios are $\frac{m_e}{m_\tau} = 0.0003$, $\frac{m_\mu}{m_\tau} = 0.14$, which is consistent with the experimental results.

3.2. Neutrino Sector

For the neutrino sector, we can consider more than one scenario to produce neutrino mass.

(i) Model 1

In this model, the neutrino masses are obtained via the nonrenormalizable 5-dimension operator. The neutrino modular A_5 invariant superpotential can be written as

$$w_{\nu} = \frac{h}{\Lambda} \left(L L H_u H_u \right)_5 Y_5(\tau_{\nu}) \,. \tag{14}$$

After spontaneous symmetry breaking, the scalar fields H_u acquire vev, namely, v_u . The neutrino mass in this case is

$$m_{\nu} = h v_{u}^{2} / \Lambda \begin{pmatrix} 2\tilde{e}_{1}(\tau) & -\sqrt{3}\tilde{e}_{5}(\tau) & -\sqrt{3}\tilde{e}_{2}(\tau) \\ -\sqrt{3}\tilde{e}_{5}(\tau) & \sqrt{6}\tilde{e}_{4}(\tau) & -\tilde{e}_{1}(\tau) \\ -\sqrt{3}\tilde{e}_{2}(\tau) & -\tilde{e}_{1}(\tau) & \sqrt{6}\tilde{e}_{3}(\tau) \end{pmatrix}.$$
 (15)

The overall factor hv_u^2/Λ can be chosen to get the physical neutrino masses. The matrix m_v is symmetric but not Hermitian, so it can be diagonalized by two unitary matrices. To deal with the left-handed rotation, one can use the Hermitian matrix

$$M_{\nu} = m_{\nu}^{\dagger} m_{\nu}. \tag{16}$$

This matrix can be diagonalized by one unitary matrix:

$$m_{\nu}^{\text{diag}} = U_{\nu}^{\dagger} M_{\nu} U_{\nu}. \tag{17}$$

At the fixed point $\tau_2 = i$, the matrix M_{ν} is invariant under *S* transformation:

$$(S)^{\dagger} M_{\nu} S = M_{\nu}. \tag{18}$$

Consequently, A_5 modular group is broken into a $Z_2 = \{1, S\}$ residual group. In this case, the largest two eigenvalues are degenerate and the lightest mass eigenvalue vanishes. So $\tau_2 = i$ does not lead to a physical model. Therefore, deviation from this fixed point should be made to break mass degeneracy. The lepton mixing U_{PMNS} matrix is given by

$$U_{\rm PMNS} = U_e^{\dagger} U_{\nu}. \tag{19}$$

The mixing angles can be calculated from the relations

$$Sin^{2}(\theta_{13}) = |(U_{PMNS})_{13}|^{2},$$

$$Sin^{2}(\theta_{12}) = \frac{|(U_{PMNS})_{12}|^{2}}{1 - |(U_{PMNS})_{13}|^{2}},$$

$$Sin^{2}(\theta_{23}) = \frac{|(U_{PMNS})_{23}|^{2}}{1 - |(U_{PMNS})_{13}|^{2}}.$$
(20)

For inverted neutrino mass hierarchy, at $\tau_e = e^{2\pi i/3}$, $\tau_{\nu} = 0.085 + 0.978i$, $g \sim \mathcal{O}(1)$, $hv_u^2/\Lambda \sim \mathcal{O}(10^{-2})$ eV, $\delta = 0$,

$$\Delta m_{12}^2 = 7.6 \times 10^{-5} \,\mathrm{eV}^2, \quad \Delta m_{23}^2 = 2.1 \times 10^{-3} \,\mathrm{eV}^2, \\ \frac{m_e}{m_\tau} = 0.0003, \quad \frac{m_\mu}{m_\tau} = 0.14, \qquad (21) \\ \theta_{12} = 30.4^\circ, \quad \theta_{23} = 44.26^\circ, \quad \theta_{13} = 8.1^\circ.$$

(ii) Model 2

Here, we consider three right-handed neutrinos N_i^c , i = 1, 2, 3 that transform as in Table 1. In this case, we consider the modular weights as shown in Table 1 to satisfy the following conditions:

$$k_L + k_{H_d} + k_E = 2,$$

 $k_L + k_{H_u} + k_N = 2.$
(22)

The neutrino invariant superpotential under modular A_5 group is

$$w_{\nu} = h_1 \left(N^c H_u L \right)_3 Y_3 + h_2 \left(N^c H_u L \right)_5 Y_5 + M_R N^c N^c.$$
(23)

Therefore, the neutrino mass matrices are

$$m_D = v_u \begin{pmatrix} 2h_2\tilde{e}_1 & h_1e_3 - \sqrt{3}h_2\tilde{e}_5 & -h_1e_2 - \sqrt{3}h_2\tilde{e}_2 \\ -h_1e_3 - \sqrt{3}h_2\tilde{e}_5 & \sqrt{6}h_2\tilde{e}_4 & h_1e_1 - h_2\tilde{e}_1 \\ h_1e_2 - \sqrt{3}h_2\tilde{e}_2 & -h_1e_1 - h_2\tilde{e}_1 & \sqrt{6}h_2\tilde{e}_3 \end{pmatrix},$$

$$M_R = f \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$
(24)

The couplings h_1 and h_2 are complex in general, so we can write $h_2/h_1 = h'e^{i\sigma}$, where δ is the relative phase of g_1 and g_2 .

The neutrino mass matrix in the basis (ν_L , N^c) is given by

$$M = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}.$$
 (25)

The light neutrino can be obtained by diagonalizing the above matrix as

$$m_{\nu} = -m_D M_R^{-1} m_D^T.$$
 (26)

For inverted mass order, with a certain permutation of the eigenvalues of charged lepton mass matrix, at $\tau_e = \tau_1 = e^{2\pi i/3}$, $\tau_v = 0.51 + 0.854i$, $g \sim 1.0005$, $h' \sim 2$, $\delta = \pi$, $\sigma = 0$,

$$\Delta m_{12}^2 = 7.1 \times 10^{-5} \,\mathrm{eV}^2, \quad \Delta m_{23}^2 = 2.3 \times 10^{-3} \,\mathrm{eV}^2, \frac{m_3}{m_2} = 0.0003, \quad \frac{m_1}{m_2} = 0.14, \theta_{12} = 29.8^\circ, \quad \theta_{23} = 48.3^\circ, \quad \theta_{13} = 8.4^\circ.$$
(27)

(iii) Model 3

In this model, the modular weight of lepton doublet $k_L = 0$, while that of right-handed neutrinos $k_N = 1$. The neutrino invariant superpotential under the modular A_5 group is

$$w_{\nu} = f \left(N^{c} H_{u} L \right)_{1} + m_{R} \left(N^{c} N^{c} \right)_{5} Y_{5}.$$
(28)

So, we end with the following mass matrices:

$$m_{D} = f \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$

$$m_{R} = \begin{pmatrix} 2\tilde{e}_{1}(\tau) & -\sqrt{3}\tilde{e}_{5}(\tau) & -\sqrt{3}\tilde{e}_{2}(\tau) \\ -\sqrt{3}\tilde{e}_{5}(\tau) & \sqrt{6}\tilde{e}_{4}(\tau) & -\tilde{e}_{1}(\tau) \\ -\sqrt{3}\tilde{e}_{2}(\tau) & -\tilde{e}_{1}(\tau) & \sqrt{6}\tilde{e}_{3}(\tau) \end{pmatrix}.$$
(29)

For inverted mass order, at $\tau_e = \tau_1 = e^{2\pi i/3}$, $\tau_v = 0.51 + 0.504i$, $g \sim 1.0005$, $\delta = 0$,

$$\Delta m_{12}^2 = 7.6 \times 10^{-5} \,\mathrm{eV}^2, \quad \Delta m_{23}^2 = 2.465 \times 10^{-3} \,\mathrm{eV}^2, \\ \frac{m_1}{m_3} = 0.0003, \quad \frac{m_2}{m_3} = 0.14, \\ \theta_{12} = 31.5^\circ, \quad \theta_{23} = 48.3^\circ, \quad \theta_{13} = 8.4^\circ. \end{cases}$$
(30)

4. CONCLUSION

We consider the modular group A_5 to account for lepton masses and mixings. Different assignments of flavors under modular weights lead to different models.

CONFLICTS OF INTEREST

The author declares that there are no conflicts of interest regarding the publication of this paper.

References

 R. de Adelhart Toorop, F. Feruglio, and C. Hagedorn, "Finite Modular Groups and Lepton Mixing," Nucl. Phys. B 858, 437 (2012) doi:10.1016/j.nuclphysb.2012.01.017 [arXiv:1112.1340 [hep-ph]].

- [2] F. Feruglio, "Are neutrino masses modular forms?," doi:10.1142/9789813238053_0012 arXiv:1706.08749 [hepph].
- [3] T. Kobayashi, K. Tanaka, and T. H. Tatsuishi, "Neutrino mixing from finite modular groups," Phys. Rev. D 98 no.1, 016004 (2018) doi:10.1103/PhysRevD.98.016004 [arXiv:1803.10391 [hep-ph]].
- [4] H. Okada and Y. Orikasa, "A modular S₃ symmetric radiative seesaw model," arXiv:1907.04716 [hep-ph].
- [5] X. Du and F. Wang, "SUSY Breaking Constraints on Modular flavor S₃ Invariant SU(5) GUT Model," [arXiv:2012.01397 [hep-ph]].
- [6] Z. Z. Xing and D. Zhang, "Seesaw mirroring between light and heavy Majorana neutrinos with the help of the S₃ reflection symmetry," JHEP 03, 184 (2019) doi:10.1007/JHEP03(2019)184 [arXiv:1901.07912 [hepph]].
- [7] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, "Modular A₄ invariance and neutrino mixing," JHEP **1811**, 196(2018), doi:10.1007/JHEP11196 (2018) [arXiv:1808.03012 [hepph]].
- [8] H. Okada and M. Tanimoto, "CP violation of quarks in A₄ modular invariance," Phys. Lett. B **791** 54(2019), doi:10.1016/j.physletb.2019.02.028 [arXiv:1812.09677 [hep-ph]].
- [9] G. J. Ding, S. F. King, and X. G. Liu, "Modular A₄ symmetry models of neutrinos and charged leptons," JHEP 09, 074(2019), doi:10.1007/JHEP09(2019)074 [arXiv:1907.11714 [hep-ph]].
- [10] G. J. Ding, S. F. King, X. G. Liu, and J. N. Lu, "Modular S₄ and A₄ symmetries and their fixed points: new predictive examples of lepton mixing," JHEP **12**, 030(2019), doi:10.1007/JHEP12(2019)030 [arXiv:1910.03460 [hepph]].
- [11] T. Nomura and H. Okada, "A two loop induced neutrino mass model with modular A₄ symmetry," arXiv:1906.03927 [hep-ph].
- [12] T. Nomura, H. Okada, and S. Patra, "An Inverse Seesaw model with A₄-modular symmetry," arXiv:1912.00379 [hep-ph].
- T. Asaka, Y. Heo, T. H. Tatsuishi, and T. Yoshida, "Modular A₄ invariance and leptogenesis," JHEP 01, 144 (2020) doi:10.1007/JHEP01(2020)144 [arXiv:1909.06520 [hep-ph]].
- [14] M. Abbas, "Fermion masses and mixing in modular A4 Symmetry," Phys. Rev. D 103, no.5, 056016 (2021) doi:10.1103/PhysRevD.103.056016 [arXiv:2002.01929 [hep-ph]].
- [15] H. Okada, Y. Shimizu, M. Tanimoto, and T. Yoshida, "Modulus τ linking leptonic CP violation to baryon asymmetry in A₄ modular invariant flavor model," JHEP 07, 184 (2021) doi:10.1007/JHEP07(2021)184 [arXiv:2105.14292 [hep-ph]].
- [16] Y. Gunji, K. Ishiwata, and T. Yoshida, "Subcritical regime of hybrid inflation with modular A₄ symmetry," JHEP **11**, 002 (2022) doi:10.1007/JHEP11(2022)002 [arXiv:2208.10086 [hep-ph]].
- [17] X. K. Du and F. Wang, "Flavor Structures Of Quarks and Leptons From Flipped SU(5) GUT with A₄ Modular Flavor Symmetry," [arXiv:2209.08796 [hep-ph]].

- [18] H. Okada and M. Tanimoto, "Modular invariant flavor model of A₄ and hierarchical structures at nearby fixed points," Phys. Rev. D **103**, no.1, 015005 (2021) doi:10.1103/PhysRevD.103.015005 [arXiv:2009.14242 [hep-ph]].
- [19] F. Feruglio, V. Gherardi, A. Romanino, and A. Titov, "Modular invariant dynamics and fermion mass hierarchies around $\tau = i$," JHEP **05**, 242 (2021) doi:10.1007/JHEP05(2021)242 [arXiv:2101.08718 [hepph]].
- [20] P. P. Novichkov, J. T. Penedo, and S. T. Petcov, "Fermion mass hierarchies, large lepton mixing and residual modular symmetries," JHEP 04, 206 (2021) doi:10.1007/JHEP04(2021)206 [arXiv:2102.07488 [hepph]].
- [21] S. Kikuchi, T. Kobayashi, M. Tanimoto, and H. Uchida, "Texture zeros of quark mass matrices at fixed point $\tau = \omega$ in modular flavor symmetry," Eur. Phys. J. C **83**, no.7, 591 (2023) doi:10.1140/epjc/s10052-023-11718-1 [arXiv:2207.04609 [hep-ph]].
- [22] K. Hoshiya, S. Kikuchi, T. Kobayashi, and H. Uchida, "Quark and lepton flavor structure in magnetized orbifold models at residual modular symmetric points," [arXiv:2209.07249 [hep-ph]].
- [23] J. T. Penedo and S. T. Petcov, "Lepton Masses and Mixing from Modular S₄ Symmetry," Nucl. Phys. B 939 292 (2019) doi:10.1016/j.nuclphysb.2018.12.016 [arXiv:1806.11040 [hep-ph]].
- [24] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, "New A₄ lepton flavor model from S₄ modular symmetry," arXiv:1907.09141 [hep-ph].
- [25] B. Y. Qu, X. G. Liu, P. T. Chen, and G. J. Ding, "Flavor mixing and CP violation from the interplay of an S4 modular group and a generalized CP symmetry," Phys. Rev. D 104, no.7, 076001 (2021) doi:10.1103/PhysRevD.104.076001 [arXiv:2106.11659 [hep-ph]].
- [26] S. F. King and Y. L. Zhou, "Twin modular S₄ with SU(5) GUT," JHEP 04, 291 (2021) doi:10.1007/JHEP04(2021)291 [arXiv:2103.02633 [hep-ph]].
- [27] X. G. Liu, C. Y. Yao, and G. J. Ding, "Modular invariant quark and lepton models in double covering of S_4 modular group," Phys. Rev. D **103**, no.5, 056013 (2021) doi:10.1103/PhysRevD.103.056013 [arXiv:2006.10722 [hep-ph]].
- [28] H. Okada and Y. Orikasa, "Neutrino mass model with a modular S₄ symmetry," [arXiv:1908.08409 [hep-ph]].
- [29] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, " A_4 lepton flavor model and modulus stabilization from S_4 modular symmetry," Phys. Rev. D **100**, no.11, 115045 (2019) [erratum: Phys. Rev. D **101**, no.3, 039904 (2020)] doi:10.1103/PhysRevD.100.115045 [arXiv:1909.05139 [hep-ph]].
- [30] X. Wang and S. Zhou, "The minimal seesaw model with a modular S_4 symmetry," JHEP **05**, 017 (2020) doi:10.1007/JHEP05(2020)017 [arXiv:1910.09473 [hep-ph]].
- [31] P. P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov, "Modular A₅ symmetry for flavour model building," JHEP **1904** 174 (2019) doi:10.1007/JHEP04(2019)174 [arXiv:1812.02158 [hep-ph]].
- [32] J. C. Criado, F. Feruglio, and S. J. D. King, "Modular Invariant Models of Lepton Masses at Levels 4 and

5," JHEP **02**, 001 (2020) doi:10.1007/JHEP02(2020)001 [arXiv:1908.11867 [hep-ph]].

- [33] G. J. Ding, S. F. King, and X. G. Liu, "Neutrino mass and mixing with A₅ modular symmetry," Phys. Rev. D 100, no.11, 115005 (2019) doi:10.1103/PhysRevD.100.115005 [arXiv:1903.12588 [hep-ph]].
- [34] P. P. Novichkov, S. T. Petcov, and M. Tanimoto, "Trimaximal Neutrino Mixing from Modular A4 Invariance with Residual Symmetries," Phys. Lett. B 793, 247–258 (2019) doi:10.1016/j.physletb.2019.04.043 [arXiv:1812.11289 [hep-ph]].
- [35] "Modular S₄ models of lepton masses and mixing," JHEP **1904** 005(2019) doi:10.1007/JHEP04(2019)005 [arXiv:1811.04933 [hep-ph]].
- [36] I. de Medeiros Varzielas, S. F. King, and Y. L. Zhou, "Multiple modular symmetries as the origin of flavor," Phys. Rev. D 101, no.5, 055033 (2020) doi:10.1103/PhysRevD.101.055033 [arXiv:1906.02208 [hep-ph]].