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Abstract
Babar collaboration has reported an intriguing opposite sign in the integrated decay rate asymmetry
Acp(τ → Ksπντ) than that of SM prediction from the known K0 - K̄0 mixing. Babar’s result deviate from
the SM prediction by about 2.7σ. If the result stands with higher precision in the future experiments, the
observed sign anomaly in the Acp(τ → Ksπντ) can most likely come only from a NP. In this work we
present a full angular spectrum analysis on the contribution to Acp(τ → Ksπντ) coming from the tensorial
term. Assuming the real part of the NP tensorial coupling is negligible compare to its imaginary part and
with Acp(τ → Ksπντ) and Br(τ → Ksπντ) as data points to fit the imaginary part of the NP coupling, we
have been able to fit the result within 1σ of the experimental values.
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1. INTRODUCTION

The study of CP violation in tau decays has always been of
much interest for beyond the Standard Model studies in the
past two decades. In SM, the only source of CP violation is
the one phase in the Kobayashi Maskawa (KM) matrix. While
the Kobayashi Maskawa ansatz for CP violation within the
Standard Model [1] in the quark sector has been clearly ver-
ified by the plethora of data from the B factories, this is un-
able to account for the observed baryon asymmetry of the Uni-
verse. Hence, one needs to look for other sources of CP vi-
olation, including searches in the leptonic sector. Apart from
the CP phases that may arise in the neutrino mixing matrix,
the decays of the tau lepton may allow us to explore nonstan-
dard CP-violating interactions. Various experimental groups
have been involved in exploring CP violation in tau decays
in the last decade or more. In 2002, the CLEO collaboration
[2], and more recently the Belle Collaboration [3], studied the
angular distribution of the decay products in τ → Ksπντ in
search of CP violation; however, neither study revealed any CP
asymmetry. The BABAR collaboration [4] for the first time re-
ported a sign anomaly in the integrated decay rate asymmetry
Acp(τ → Ksπντ) of

AExp
cp = (−0.36± 0.23± 0.11)%. (1)

However for τ± → K0
s π±ντ → [ππ]0Kπ±ντ , Babar [4] has pre-

dicted the SM integrated decay-rate asymmetry to be

ASM
cp = (0.33± 0.01)%. (2)

In reference [5], comparing the rate asymmetries for decays
to neutral kaons of the taus with that of D mesons, they

have pointed out that since τ+(τ−) decays initially to a
K0(K̄0) whereas D+(D−) decays initially to K̄0(K0), the time-
integrated decay-rate CP asymmetry (arising from oscillations
of the neutral kaons) of τ decays must have a sign opposite
to that of D decays. The observation of a CP asymmetry in τ

decays to Ks having the same sign as that in D decays, and
moreover of the same magnitude but opposite in sign to the SM
expectation, implies that this asymmetry cannot be accounted
for by the CP violation in K0K̄0 mixing. Naively, one may ex-
pect that the simplest way to account for the observed anomaly
would be to introduce a direct CP violation via a new CP vio-
lating charged scalar exchange. However, it turns out that the
charged scalar type of exchange may contribute in the angular
distributions, but its mixing with SM term in the integrated de-
cay rate goes to zero. Now the next candidate of NP would be
a new CP violating charged vector exchange, but CP violation
from vector type NP will be observable only if both vector cur-
rent and axial vector currents contribute to the same final states
[6, 7]. Since in two pseudo scalar meson final states only vec-
tor current can contribute due to parity conservation of strong
interaction, vector type of NP can contribute in general to CP
violation in three or more pseudo scalar meson final states but
not in two pseudo scalar meson final states such as Ksπ. Now
the only possibility left is tensor type of NP.

2. EFFECTIVE HAMILTONIAN AND DE-
CAY RATES.

With the assumption that all neutrinos are left handed, we pro-
pose the most general effective Hamiltonian containing all pos-
sible four fermion interaction operators that can contribute to
τ → Ksπντ as given by:
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with the operators given by

Oτ
V1

= (s̄LγµuL)(ν̄LγµτL) (2)

Oτ
V2

= ( ¯sRγµuR)(ν̄LγµτL) (3)

Oτ
S1

= ( ¯sRuL)(ν̄LτR) (4)

Oτ
S2

= (s̄LuR)(ν̄LτR) (5)

Oτ
T = (s̄LσµνuR)(ν̄LσµντR) (6)

Since we are concerned with CP violation in τ → Ksπντ , we
can set the Cτ

V1
and Cτ

V2
equal to zero for simplicity as these

coefficients will not contribute in CP violation in two meson fi-
nal states as argued earlier. And as we mentioned earlier and
argued in a previous paper of ours [8] that in the integrated de-
cay rate asymmetry the contribution from the charged scalars
goes to zero, so the only terms left is the SM term and the tensor
term.

2.1. Decay rate of τ → Ksπντ in SM.

In the SM the τ → Ksπντ decay rate can be expressed as:

dΓSM(τ → Kπν) =
1

2mτ

G2
F

2
V2

usL��H��dPS(3) (7)

where
L�� = [ν̄τγµ(1− γ5)τ] [ν̄τγν(1− γ5)τ]

† (8)

and
H�� = J �(J �)† (9)

where
J � = 〈K(q1)π(q2)|Vµ(0)|0〉. (10)

The hadronic current can be parametrized in terms of the vector
and scalar form factors as:

J � = FKπ
V (Q2)

(
gµν − QµQν

Q2

)
(q1 − q2)ν +

(m2
K −m2

π)

s
FKπ
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(11)
where Qµ = (q1 + q2)

µ and in the hadronic rest frame the decay
rate can be expressed as:
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where

P(s) = |~q1| =
1

2
√

s

√
[s− (mk + mπ)2] [s− (mk −mπ)2] (13)

is the momentum of the K in the Kπ rest frame and s is the
Kπ invariant mass squared i.e s = Q2. The vector form factor
can be parameterized by K∗(892),K∗(1410) and K∗(1680) me-
son amplitudes given as [9]:

FV =
1

1 + β + χ

[
BWK∗(892)(s) + βBWK∗(1410)(s)

+ χBWK∗(1680)(s) (14)

where β and χ are the complex coefficients for the fractions of
K∗(1410) and K∗(1680) resonances respectively and BWR(s) is
a relativistic Breit-Wigner function for R = K∗(892),K∗(1410)
and K∗(1680) given as:

BWR(s) =
M2

R
s−M2

R + i
√

sΓR(s)
(15)

and

ΓR(s) = Γ0R
M2

R
s

(
P(s)

P(M2
R)

)(2l+1)

(16)

Here ΓR(s) is the s dependent total width of the resonance and
Γ0R(s) is the resonance width at its peak and l = 1 for the vector
states and l = 0 for the s-wave part. Similarly the scalar form
factor FS has K∗0 (800) and K∗0 (1430) contributions and is given
as:

FS = κ
s

M2
K∗0 (800)

BWK∗0 (800)(s) + γ
s

M2
K∗0 (1430)

BWK∗0 (1430)(s)

(17)
where κ and γ are the real constants that describe the frac-
tional contributions from K∗0 (800) and K∗0 (1430) respectively.
As reported by Belle [9], K∗

(892) alone is not enough to de-
scribe the Ksπ mass spectrum. It is best explained for K∗(892)+
K∗(1410) + K∗(800) and K∗(892) + K∗(1430) + K∗(800). We
will use K∗(892) + K∗(1410) + K∗(800) in this analysis which
best fits the Belle mass spectrum.

2.2. Tensorial term.
We now include the contribution from the tensorial operator as
it has been already pointed out earlier that scalar and the vecto-
rial operators would not contribute to the integrated decay rate
asymmetry and CPV. The key requirement in the relevant con-
text of explaining the observed CPV in integrated τ → Ksπντ

decay rate by the tensorial operator is that its coefficient Cl
T

from Eqs (8) should be complex so that interference of the SM
with this tensor amplitude gives the required CP phase. We
have from Eqs (3) the effective Hamiltonian given as

HT
e f f =

4GF√
2

VusCτ
T(s̄LσµνuR)(ν̄LσµντR) (18)

where σµν = i
2 (γ

µγν − γνγµ) and the hadronic current can be
expressed as

〈K(q1)π(q2)|s̄σµνu|0〉 = i
2FT

mK + mπ
(qµ

1 qν
2 − qµ

2 qν
1). (19)
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where FT is the tensorial form factor and only tensor term can
contribute due to parity conservation of strong interaction and
pseudo-tensor term will not contribute. In a previous collabo-
ration involving the author[8], we have argued that tensor type
of NP may be able to explain the observed sign anomaly, how-
ever in that work we have assumed that the tensor form factors
are constants, but it turns out that is not the case in general and
so in this work we have been able to express the tensor form
factors in terms of scalar and vector form factors using Dirac
equations of motion.
We have from the equations of the motion:

∂ν(ūsσµνvū) = (ms +mu)ūsγµvū +(i∂µūs)vū− ūs(i∂µvū) (20)

which gives

iQν〈K(q1)π(q2)|ūsσµνvū|0〉 =

−
[
− (ms + mu)〈K(q1)π(q2)|ūsγµvū|0〉

+〈K(q1)π(q2)|ūsvū|0〉M(q1 − q2)
µ

]
(21)

Where we define 〈K(q1)π(q2)|s̄u|0〉 = F0 with M an adjustable
parameter and now contracting Eqs (13) from section 2.1 with

Qµ we get F0 = +
(m2

K−m2
π)

(ms−mu)
FS where Qν = (q1 + q2)ν. Our

justification in going from Eqs (20) to Eqs(21) is that since
strong force is mass independent, the corrections to replacing
the quark four momentum with respective meson four momen-
tum would be same to both s and u quarks and so it would be a
common factor (M) and all other factors absorbed into the form
factors. Now using Eqs (13,21) and the F0 given above, after
few algebraic manipulations we can express the tensor form
factor FT in terms of scalar form factor FS and vector form fac-
tor FV by comparing the coefficients of Qµ and (q1 − q2)

µ from
LHS and RHS of Eqs(23), details can be found in the appendix,
which gives

Fa
T =

(ms + mu)(mK + mπ)

s
[−FV + FS] (22)

and

Fb
T = − (ms + mu)(mK + mπ)

s
[FV −

(m2
K −m2

π)

(m2
s −m2

u)
MFS] (23)

We fix M such that Fb
T = Fa

T , from the forms of Fa
T and Fb

T , if we

require M = (m2
s−m2

u)
(m2

K−m2
π)

, then clearly Fb
T = Fa

T . This value of M
seems to be a reasonable measure of Quark-Hadron duality vi-
olation in these kind of reactions, where in the Quark-Hadron
duality limit, M→ 1.1 See Figure 1 for the plot of |Fa

T | as a func-
tion of hadronic invariant mass squared.

1The reason why we neglected a correction factor, similar to M, when replac-

ing total quark momentum (q1 + q2) with total hadron momentum (Q) in the LHS

of Eqs (21) is because it goes through K∗ resonances, a QCD bound state, where

most of the energy momentum of the resonance is expected to be carried by the

quarks (as only soft gloun exchange between u and s quarks are expected to dom-

inate due to larger αs(Q2) at low Q2).

2.3. Including the contribution from the tensor term to the
τ → Ksπντ decay rate.

When tensorial term is included, the total decay rate is given by

dΓ = (
dΓSM

ds
+

dΓMIX
ds

+
dΓT
ds

)ds (24)

where the dΓSM
ds is given in the Eqs.(14) and the full angular de-

pendence of the other two terms can be expressed as:
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(26)

Where the P is same as in Eqs (15)and the angles α, β are same
as defined in Figure 1 of reference [10] and ψ is defined as the
angle between direction of flight of the lab frame and the direc-
tion of flight of τ as seen from the hadronic rest frame. We now
integrate over the cos β from -1 to +1 and α from 0 to 2π, and
require that Re(Cτ

T) << Im(Cτ
T) to avoid too large NP con-

tribution to Br(τ → Ksπντ) which has been measured with
much more accurately then Acp(τ → Ksπντ), so then we can
approximately take Re(Cτ

T) ≈ 0 and we are left with only one
parameter Im(Cτ

T) to fit. We can now use the Acp(τ → Ksπντ)

and Br(τ → Ksπντ) as data points to fit the Im(Cτ
T) parameter.

In a previous collaboration involving the author [8], we have
shown in the Eqs (44) of that reference that the CPV coming
from the K− K̄ mixing and the direct CPV in Acp(τ → Ksπντ)

can be separated as

Acp(τ → Ksπντ) =
AK

cp + Aτ
cp

1 + AK
cp Aτ

cp
(27)

and also we have

Br(τ → Ksπντ) =
(Γτ+

+ Γτ− )

2
ττ (28)

where AK
cp is the CPV coming from the K − K̄ mixing and Aτ

cp

is the direct CP violation coming from NP particle mediated
CPV at lepton and/or quark vertices and ττ is the τ lifetime.
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Since both AK
cp and Aτ

cp are expected to be small, we can savely
ignore terms involving the product of the two. And also since
Re(Cτ

T) ≈ 0 and the sign of the complex part is opposite in Γτ+

relative to the Γτ− , the branching fraction receives no contribu-
tion from the SM and Tensorial mixing part.

3. RESULTS

With taking the approximation of Ak
pc Aτ

cp ≈ 0 we can express
Eqs (29,30) as:

Acp(τ → Ksπντ) = AK
cp + Aτ

cp (1)

and

Br(τ → Ksπντ) =
(Γτ+

+ Γτ− )

2
ττ = (ΓSM + ΓT)ττ (2)

where Ak
cp is the known SM CPV from the K− K̄0 mixing, ΓSM

is the SM decay rate corresponding to fitted form factors from
Belle[9], ΓT is the tensorial decay rate we gets from integration
of Eqs (28) and ττ is the life time of τ lepton. From Eqs (31,32)
and using Fa

T from Eqs (24) the best fitted value of the complex
parameter Im(Cτ

T) to the two data points gives at χ2 ≈ 4.5 :

Im(Cτ
T) = −0.071, (3)

which gives

Br(τ → K0πντ)
(Th) = 2Br(τ → Ksπντ)

(Th) = (0.756± 0.085)%
(4)

and
Aτ(Th)

cp = (−0.703± 0.54)% (5)

whereas the experimental values of these observables are given
as

A(Exp−SM)
cp = Aτ(Exp)

cp − (Ak
cp)

SM = (−0.69± 0.26)%, (6)

and

Br(τ → K0πντ)
(Exp) = 2Br(τ → Ksπντ)

(Exp) = (0.84± 0.04)%.
(7)

Comparing Eqs (35,36) and Eqs (34,37) we see that the theoreti-
cal predicted values fit with the experimental values within 1σ.
In Figure 1 we have shown the plots of |Fa

T | as a function of
S(Kπ) where S(Kπ) is the hadronic invariant mass squared.

4. FUTURE PROSPECTS

In what follows, we will assume the direction of the τ has been
measured and so we can set ψ → 0 in Eqs (25) and Eqs (26).
Then, since all the terms which depend on α goes to zero, we
can integrate out in α also. Now then the angular dependence
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FIGURE 1: This figure shows the plots of |Fa
T | as a function of

S(Kπ) where S(Kπ) is the hadronic invariant mass squared.

of the mixing term is given as:

dΓMIX

ds d cos β
2

dα
2π

= −
G2

FV2
usm2

τ

π3(mk + mπ)2s
1
2

(1− s
m2

τ
)2P2

{−P× Re(F†
V FTCT) + Re(F†

S FTCT)

×[
m2

k −m2
π

2
√

s
]× (cos β)}. (1)

It is clear from Eqs (25) and Eqs (1) that the mixing of the vec-
tor form factor(FV) with the tensor form factor(FT) has no de-
pendence on any of the angles, all angular dependence cancels,
and so CP violation coming from the interference of the vector
part of SM current and the New Tensor current will show up
in angular integrated decay rate as we found in the previous
section. And also from Eqs (25) and Eqs (1) we notice that the
CP violation coming from the interference of the scalar part of
the SM current and the New Tensor current will not contribute
to angular integrated CP violation and decay rate, but it can
contribute in the angular distribution spectrum. The simplest
way to extract the angular dependence, especially in the case
of linear dependence ones like in Eqs (1), is by weighted inte-
grals. We will use cos β as weight multiplying the differential
rate and then integrate out in d cos β/2 given as:

d
ds

[
〈 ΓMIX×cos β

d cos β/2 〉 − 〈
Γ̄MIX×cos β

d cos β/2 〉
]
=

−G2
F |Vus |2m2

τ(mk−mπ)
6π3 Im[CT ](1− s

m2
τ
)2 P2

s Im[F†
s FT ], (2)
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then by normalizing Eqs (2) by 1
2 (

dΓ
ds + dΓ̄

ds ) we have

〈A cos β〉CP(S) =
d
ds [〈

ΓMIX×cos β
d cos β/2 〉 − 〈

Γ̄MIX×cos β
d cos β/2 〉]

1
2 (

dΓ
ds + dΓ̄

ds )
. (3)

In Figure 2 we have shown the plot of 〈ACP cos β〉 as a function
of S(Ksπ) using Im(CT) from Eqs (3)
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FIGURE 2: This figure shows the plots of 〈A cos β〉CP(S) as a
function of S(Kπ) where S(Kπ) is the hadronic invariant mass
squared and Im(CT) is taken from Eqs (3).

Now by integrating in the S(Kπ) in the range ((mk + mπ)2,
m2

τ) we have:

∫ m2
τ

(mk+mπ)2
(〈A cos β〉CP(S))dS = −0.127. (4)

If the observed anomaly in the ACP is due to a new tensor inter-
action, then from the above equation we can expect quite large
CP violation to be observed in the angular weighted CP asym-
metry in the τ → Ksπντ decay mode in future experimental
searches. As we can see from Figure 2, CP violation from new
tensor interaction will show up most dramatically in the low
hadronic invariant mass square(S(KSπ)) region.

5. CONCLUSIONS

Babar collaboration has reported an intriguing opposite sign
in the integrated decay rate asymmetry Acp(τ → Ksπντ) than
that of SM prediction from the known K0 - K̄0 mixing. Babar’s
result deviates from the SM prediction by about 2.7σ. In this
work we have presented an improved analysis of our previous
work on the contributions coming from tensorial current to this
observable. Assuming the real part of the NP coupling is neg-
ligible compare to its imaginary part, the best fitted value of
the parameter Im(Cτ

T) to the two data points Acp(τ → Ksπντ)

and Br(τ → K0πντ) is given by Im(Cτ
T) = −0.071 which gives

ATh
cp = (−0.703 ± 0.51) × 10−2 compare to the experimental

minus SM value of A(Exp−SM)
cp = (AExp

cp − ASM
cp ) = (−0.69±

0.26) × 10−2. And similarly we have Br(τ → K0πντ)(Th) =

(0.756± 0.084)× 10−2 comapre to the Br(τ → K0πντ)(Exp) =

(0.84± 0.04)× 10−2. As we can see the theoretical predictions
fit with the experimental results within 1σ for both observables.
If the observed anomaly in the ACP is due to a new tensor in-
teraction, then, according to Eqs (4), we can expect quite large
CP violation to be observed in the angular weighted CP asym-
metry in the τ → Ksπντ decay mode in future experimental
searches.
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APPENDICES
F. EXPRESSING FT IN TERMS OF FV AND

FS USING EQUATIONS OF MOTION.
We have from the equations of the motion:

∂ν(ūsσµνvū) = (ms + mu)ūsγµvū + (i∂µūs)vū − ūs(i∂µvū) (1)

which gives

iQν〈K(q1)π(q2)|ūsσµνvū|0〉 =

− [−(ms + mu)〈K(q1)π(q2)|ūsγµvū|0〉

+〈K(q1)π(q2)|ūsvū|0〉M(q1 − q2)
µ] (2)

Our justification in going from Eqs (1) to Eqs (2) is that since
strong force is mass independent, the corrections in replacing
the quark four momentum with respective meson four momen-
tum would be same to both s and u quarks and so it would be a
common factor (M) and all other factors absorbed into the form
factors. So then we have

−Qν
2FT

mK+mπ
(qµ

1 qν
2 − qµ

2 qν
1) =

− [−(ms + mu)〈K(q1)π(q2)|s̄γµu|0〉+ MF0(q1 − q2)
µ] (3)

with 〈K(q1)π(q2)|ūsvū|0〉 = F0 where M is an adjustable pa-
rameter and Qν = (q1 + q2)ν.2 Using 〈K(q1)π(q2)|ūsγµvū|0〉 =
FKπ

V (Q2)
(

gµν − QµQν
Q2

)
(q1 − q2)ν +

(m2
K−m2

π)
s FKπ

S Qν3 and con-

2For 〈K(q1)π(q2)|ūuvs̄ |0〉 we have F0 = − (m2
K−m2

π )

(ms−mu )
FS but that minus sign is

compensated by a negative sign in second term in RHS of Eqs (20)(charge conju-

gated one).
3This is intuitively understood as 〈K(q1)π(q2)||K∗(892); K∗(1430)0〉〈K∗(892);

K∗(1430)0|a†
s b†

ū ūsγµvū |0〉, where the negative sign from the antiparticle wave

function under parity transformation is canceled by the negative sign under par-

ity transformation for the antiparticle creation operator, hence the current as a

whole, which behaves like a vector under parity.
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tracting it with Qν gives F0 = +
(m2

K−m2
π)

(ms−mu)
FS, and using the iden-

tity Q · q2qµ
1 − Q · q1qµ

2 =
(Q·q1+Q·q2)(q1−q2)µ−(Q·q1−Q·q2)Qµ

2 we
have

FT
mK+mπ

[(Q · q1 + Q · q2)(q1 − q2)
µ − (Q · q1 −Q · q2)Qµ] =

[−(ms + mu)FV +
(m2

K−m2
π)

(ms−mu)
MFS](q1 − q2)

µ

−
[
− (ms + mu)(m2

K −m2
π)/Q2FV

+(ms + mu)(m2
K −m2

π)/Q2FS

]
Qµ (4)

where Q · q1 =
Q2+m2

K−m2
π

2 and Q · q2 =
Q2+m2

π−m2
K

2 ; then com-
paring the coeffecients of (q1 + q2)

µ and (q1 − q2)
µ from the

LHS and RHS of Eqs(41) we have,

Fa
T =

(ms + mu)(mK + mπ)

s
[−FV + FS] (5)

and

Fb
T = − (ms + mu)(mK + mπ)

s
[FV −

(m2
K −m2

π)

(m2
s −m2

u)
MFS] (6)

Now to fix M we contract Eqs (4) by Qµ, then the LHS gives

zero and the RHS gives M = (m2
s−m2

u)
(m2

K−m2
π)

, which when put in Fb
T ,

shows that Fa
T = Fb

T . Contracting Eqs (4) with (q2 − q1)µ will

give,using M = (m2
s−m2

u)
(m2

K−m2
π)

, FT same as Fa
T in Eqs (42).
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