Letters in High Energy Physics 2019-08-06T08:43:36+00:00 LHEP Assistant Editor Open Journal Systems <p>Letters in High Energy Physics (LHEP) is a quarterly, peer-reviewed, hybird open access journal which specializes in theory, phenomenological, and experimental aspects of particle physics. Additional topics covered by LHEP include astrophysics, gravity, and cosmology.&nbsp; LHEP publishes articles in the letter format.</p> <p>The goal is to provide the high energy physics community with a medium through which researchers are able to publish informative summaries of important findings in the field.</p> <p style="text-align: justify;"><span style="font-family: 'Minion W08 Regular_1167271',Times; font-size: 17px; font-variant-ligatures: normal; background-color: #ffffff;">&nbsp;</span></p> A new perspective on the Ermakov-Pinney and scalar wave equations 2019-08-06T08:43:36+00:00 Giampiero Esposito Marica Minucci, Dr. <p>The first part of the paper proves that a subset of the general set of Ermakov-Pinney equations<br>can be obtained by differentiation of a first-order non-linear differential equation. The second part<br>of the paper proves that, similarly, the equation for the amplitude function for the parametrix of<br>the scalar wave equation can be obtained by covariant differentiation of a first-order non-linear<br>equation. The construction of such a first-order non-linear equation relies upon a pair of auxiliary<br>1-forms (psi,rho). The 1-form psi satisfies the divergenceless condition div(psi) = 0, whereas the 1-form rho <br>fulfills the non-linear equation div(rho)+rho**2 = 0. The auxiliary 1-forms (psi,rho) are evaluated explicitly<br>in Kasner space-time, and hence also amplitude and phase function in the parametrix are obtained.<br>Thus, the novel method developed in this paper can be used with profit in physical applications.</p> 2019-08-06T08:41:59+00:00 ##submission.copyrightStatement##