Evolution operator for time-dependent non-Hermitian Hamiltonians

  • Bijan Kumar Bagchi Shiv Nadar University
Keywords: evolution operator, time-dependent Hamiltonian, non-Hermitian quantum mechanics, PT-symmetry

Abstract

The evolution operator \(U(t)\) for a time-independent parity-time-symmetric systems is well studied in the literature. However, for the non-Hermitian time-dependent systems, a closed form expression for the evolution operator is not available. In this paper, we make use of a procedure, originally developed by A.R.P. Rau [Phys.Rev.Lett, 81, 4785-4789 (1998)], in the context of deriving the solution of Liuville-Bloch equations in the product form of exponential operators when time-dependent external elds are present, for the evaluation of \(U(t)\) in the interaction picture wherein the corresponding Hamiltonian is time-dependent and in general non-Hermitian. This amounts to a transformation of the whole scheme in terms of addressing a nonlinear Riccati equation the existence of whose solutions depends on the fulllment of a certain accompanying integrabilty condition.

References

[1] C. M. Bender and S. Boettcher, Making sense of non-
Hermitian Hamiltonians, Rept.Prog.Phys.70, 917-1018
(2007), arXiv:hep-th/0703096
[2] A. Mostafazadeh, Pseudo-Hermitian representation of
quantum mechanics, Int.J.Geom.Met,Mod.Phys. 7, 1191-
1306(2010), arXiv:0810.5643
[3] C. M. Bender and S. Boettcher,Real spectra in
non-Hermitian Hamiltonians having PT-symmetry,
Phys.Rev.Lett. 80 5243-5246 (1998), arXiv:physics/9712001
[4] Z. H. Musslimani, K. G. Makris, R. El-Ganainy and D. N.
Christodoulides,Optical solitons in PT periodic potentials
Phys. Rev. Lett. 100, 030402 (2008).
[5] K. G. Makris, R. El-Ganainy, D. N. Christodoulides
and Z. H. Musslimani, PT-symmetric optical lattices,
Phys.Rev.A81,063807(10)2010
[6] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M.
Volatier-Ravat, V. Aimez, G. A. Siviloglon and D. N.
Christodoulides, Observation of PT-symmetry breaking
in complex optical potential, Phys. Rev. Lett. 103, 093902
(2009),
[7] D.D.Scott and Y.N. Joglekar, PT -symmetry breaking and
maximal chirality in a nonuniform PT symmetric ring, J.
Phys. A: Math. Theor. 45, 444030 (2012), arXiv:1207.1945
[8] A. de Sousa Dutra, M.B. Hott and V.G.C.S. dos Santos,
Time-dependent non-Hermitian Hamiltonians with real
energies, Europhys.Lett.71, 166 (2005)
[9] C. Yuce, Time-dependent PT-symmetric problems,
Phys.Lett.A336,290 (2005)
[10] C. Figueira de Morisson Faria and A. Fring, Time
evolution of non-Hermitian Hamiltonian systems, J.
Phys. A: Math. Theor. 39, 9269-9289 (2006), arXiv:quantph/
0604014
[11] A. Mostafazadeh, Time-dependent pseudo-Hermitian
Hamiltonians defining a unitary quantum system and
uniqueness of themetric operator, Phys.Lett.B650, 208-212
(2007), arXiv:quant-ph/0706.1872
[12] J. Gong and Q-H Wang, Time Dependent PT-Symmetric
Quantum Mechanics, arXiv:1210.5344
[13] S. Dey and A. Fring, Noncommutative quantum mechanics
in a time-dependent background, Phys. Rev. D 90,
084005 (2014)
[14] B.Khantoul, A. Bounames and M. Maamache, On
the invariant method for the time-dependent non-
Hermitian Hamiltonians, Eur.Phys.J.Plus.132,258 (2017),
arXiv:1610.09273
[15] A. Fring and T. Frith, Mending the broken PT-regime via
an explicit time-dependent Dyson map, Physics Letters A
381, 2318 (2017), arXiv:1704.07267
[16] B.F. Ramos, I.A. Pedrosa and A.L. de Lima, Lewis and
Riesenfeld approach to time-dependent non-Hermitian
Hamiltonians having PT-symmetry, Eur.Phys.J.Plus 133,
449 (2018)
[17] A. Fring and T. Frith, Exact analytical solutions for timedependent
Hermitian Hamiltonian systems from static
unobservable non-Hermitian Hamiltonians, Phys.Rev. A
95, 010102 (2017), arXiv:1610.07537
[18] T.E. Lee and Y.N. Joglekar, PT-symmetric Rabi model: Perturbation
theory, arxiv: 1508.07001
[19] Y. N. Joglekar, R. Marathe, P. Durganandini and R.
K. Pathak, PT spectroscopy of the Rabi problem,
arxiv:1407.4535
[20] F.G. Scholtz, H.B. Geyer and F.J.W. Hahnem Quasi-
Hermitian operators in quantum mechanics and the variational
principle, Ann. Phys., NY 213, 74 (1992)
[21] R. Kretschmer and L. Szymanowski, Quasi-Hermiticity in
infinite-dimensional Hilbert spaces, Phys. Lett. A 325, 112
(2004), arXiv:quant-ph/0305123
[22] B. Bagchi, C. Quesne, R. Roychoudhury, Pseudo-
Hermiticity and some consequences of a generalized
quantum condition, J.Phys. A: Math, Gen. 38, L647-L652
(2005), arXiv:quant-ph/0508073
[23] J.J. Sakurai, Modern quantum mechanics, Addison-
Wesley Publishing Company, Inc., (1994)
[24] J. Wei and F. Norman, Lie algebraic solution of linear differential
equations, J.Math.Phys. 4, 575 (1963)
[25] M.B. Kenmore and L.C. Fai, Wei-Norma-Kolmogorov approach
for the Landau-Zener problems, J.Phys. A: Math.
Theor. 47, 465202 (2014), arXiv:quant-ph/0508073
[26] B.M. Rodriguez-Lara, R. El Ganainy and J. Guerrero, Symmetry
in optics and photonic: a group theory approach,
Sci.Bull. 63, 244 (2017)
[27] M. Enriquez and S. Cruz y Cruz, Exactly solvable onequbit
driving fields generated vis nonlinear equations,
Symmetry 10, 567 (2018)
[28] A.R.P. Rau, Unitary integration of quantum Liouville-
Bloch equations, Phys.Rev.Lett, 81, 4785-4789 (1998)
[29] A.R.P. Rau, Manipulating two-spin coherences and qubit
pairs, Phys.Rev., A61, 032301 (2000)
[30] C.M. Bender, D.C. Brody, H.F. Jones and B.K. Meister,
Faster than quantum mechanics, Phys.Rev.Lett.98, 040403
(2007), arXiv:quant-ph/0609032
[31] C.M. Bender, Faster than Hermitian time evolution,
SIGMA 3, 126 (2007), arXiv:0712.3910
[32] P.E.G. Assis, Non-Hermitian Hamiltonians in Field Theory,
Doctoral thesis, City University London (2009)
[33] M. K. Mak and T. Harko, New further integrability cases
for the Riccati equation, Applied Maths and Comp. 219,
7465-7471 (2013), arXiv:1301.5720
[34] H.C. Rosu, S.C. Mancas and P. Chen, One-parameter families
of supersymmetric isospectral potentials from Riccati
solutions in function composition form, Ann. Phys. 343,
87-102 (2014), arXiv:1310.6642
Published
2018-11-13
Section
Regular Issue