Unveiling Triangular Correlation of Angular Deviation in Muon Scattering Tomography by Means of GEANT4 Simulations
Abstract
The angular deviation commonly represented by the scattering angle generally serves to provide the characteristic discrimination in the muon scattering tomography. The regular procedure to determine the scattering angle comprises the collection of exactly four hit locations in four detector layers among which two top detector layers are utilized to construct the first vector, whereas the second vector is built by using two bottom detector layers. Although this procedure acts to classify the target volumes in the tomographic systems based on the muon scattering, the scattering angle obtained through the usual methodology founded on four detector layers is dubious for not yielding any information about the position of target volume. Nonetheless, the same set of four detector layers also imparts the possibility of splitting the scattering angle into two separate angles by creating a triangular correlation in such a way that the scattering angle is referred to an exterior angle, whereas the separate angles are considered the interior opposite angles that are not neighboring this exterior angle. In this study, we first show that a combination of three detector layers out of four fulfills the calculation of the interior opposite angles. Then, by employing the GEANT4 simulations over our tomographic configuration composed of three plastic scintillators in either section, we demonstrate that the interior opposite angles differ towards the vertical spatial variation, while the exterior angle approximately remains constant, thereby implying a beneficial feature to be used for the image reconstruction purposes.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Journal of Advanced Instrumentation in Science (JAIS) is an open access journal published by Andromeda Publishing and Education Services. The articles in JAIS are distributed according to the terms of the creative commons license CC-BY 4.0. Under the terms of this license, copyright is retained by the author while use, distribution and reproduction in any medium are permitted provided proper credit is given to original authors and sources.
Terms of Submission
By submitting an article for publication in JAIS, the submitting author asserts that:
1. The article presents original contributions by the author(s) which have not been published previously in a peer-reviewed medium and are not subject to copyright protection.
2. The co-authors of the article, if any, as well as any institution whose approval is required, agree to the publication of the article in JAIS.