On Self-Consistency in Quantum Field Theory

  • Klaus Scharnhorst Vrije Universiteit Amsterdam
Keywords: quantum field theory, effective action, self-consistency, bootstrap


A bootstrap approach to the effective action in quantum field theory is discussed which entails the invariance
under quantum fluctuations of the effective action describing physical reality (via the S-matrix).


[1] J. F. Donoghue, E. Golowich, B. R. Holstein: Dynamics of the Standard Model. 1. ed.: Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Vol. 2. Cambridge University Press, Cambridge, 1992 (DOI: 10.1017/CBO9780511524370); 2. ed.: Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Vol. 35. Cambridge University Press, Cambridge, 2014 (DOI: 10.1017/9781009291033).
[2] P. J. Mohr, B. N. Taylor: Tests of fundamental physics. Chap. 28, Part B: Atoms, in: G. W. F. Drake (Ed.): Springer Handbook of Atomic, Molecular, and Optical Physics. Springer Handbooks of Atomic, Molecular, and Optical Physics. Springer-Verlag, New York, NY, 2006, pp. 429-447 (DOI: 10.1007/978-0-387-26308-3_28).
[3] T. Kinoshita (Ed.): Quantum Electrodynamics. Advanced Series on Directions in High Energy Physics, Vol. 7. World Scientific, Singapore, 1990 (DOI: 10.1142/0495).
[4] Tian Yu Cao (Ed.): Conceptual Foundations of Quantum Field Theory. Cambridge University Press, Cambridge, 1999, 2004, 2009 (DOI: 10.1017/CBO9780511470813).
[5] D. Poland, L. Rastelli: Snowmass Topical Summary: Formal QFT. To appear in the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021). [arXiv:2210.03128 (https://arxiv.org/abs/2210.03128)].
[6] R. P. Feynman: The development of the space-time view of quantum electrodynamics. Science 153:3737(1966)699-708 (DOI: 10.1126/science.153.3737.699); Physics Today 19:8(1966)31-44 (DOI: 10.1063/1.3048404). The text is freely available online at the Nobel Foundation URL: http://nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html. Also printed in: 1. Nobelstiftelsen (Nobel Foundation): Les Prix Nobel en 1965. Almqvist & Wiksell International, Stockholm, 1966, pp. 172-191. 2. Nobelstiftelsen (Nobel Foundation): Nobel Lectures, Including Presentation Speeches and Laureates’ Biographies: Physics, 1963-1970. Elsevier, Amsterdam, 1972, pp. 155-178. Reprinted: World Scientific Publishing, Singapore, 1998 (DOI: 10.1142/3729). 3. L. M. Brown (Ed.): Selected Papers of Richard Feynman, with Commentary. World Scientific Series in 20th Century Physics, Vol. 27. World Scientific Publishing, Singapore, 2000, pp. 9-32 (DOI: 10.1142/9789812385468_0002).
[7] R. P. Feynman: QED – The Strange Theory of Light and Matter. Alix G. Mautner Memorial Lectures. Princeton University Press, Princeton, NJ, 1985, 1988; Penguin Books, London, 1985, 1990, 2008; expanded 2. ed., Princeton Science Library, 2006, 2013, 2014.
[8] P. A. M. Dirac: Directions in Physics. John Wiley & Sons, New York, 1978.
[9] P. A. M. Dirac: The origin of quantum field theory. In: L. M. Brown, L. Hoddeson (Eds.): The Birth of Particle Physics. Cambridge University Press, Cambridge, 1983, pp. 39-55.
[10] K. von Meyenn (Ed.): Wolfgang Pauli. Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg u.a.. Band III: 1940-1949. Scientific Correspondence with Bohr, Einstein, Heisenberg a.o.. Volume III: 1940-1949. Sources in the History of Mathematics and Physical Sciences, Vol. 11. Springer-Verlag, Berlin, 1993, 2014 (DOI: 10.1007/978-3-540-78802-7).
[11] Л. Д. Фаддеев [L. D. Faddeev], А. А. Славнов [A. A. Slavnov]: Введение в квантовую теорию калибровочных полей [Vvedenie v kvantovuyu teoriyu kalibrovochnykh poleĭ]. Наука [Nauka], Moscow, 1. ed.: 1978, 2. rev. & ext. ed.: 1988; УРСС [URSS], Moscow, 2022. [in Russian] English translation: Gauge Fields: Introduction to Quantum Theory. Frontiers in Physics, 1. ed.: Vol. 50, 2nd rev. & ext. ed., Vol. 83. 1. ed.: Benjamin/Cummings Publ., Reading, MA, 1980, 2nd rev. & ext. ed.: Addison-Wesley, Redwood City, CA, 1990; Westview Press, Boulder, CO, 1991; CRC Press, Boca Raton, FL, 2018, 2019 (DOI: 10.1201/9780429493829).
[12] A. Jevicki, C. Lee: The S-matrix generating functional and effective action. Physical Review D 37:6(1988)1485-1491 (DOI: 10.1103/PhysRevD.37.1485) [Brown University report BROWN-HET-634].
[13] C. Itzykson, J.-B. Zuber: Quantum field theory. International Series in Pure and Applied Physics. McGraw-Hill, New York, 1980, 1985, 1986, 1987, 1988, 1990. Reprint: Dover Books on Physics. Dover Publications, Mineola, NY, 2005, 2006, 2012.
[14] Л. В. Прохоров [L. V. Prokhorov]: Уравнения для эффективных лагранжианов [Uravneniya dlya èffektivnykh lagranzhianov]. Ядерная Физика [Yadernaya Fizika] 16:4(1972)854-862. [in Russian] English translation: Equations for effective Lagrangians. Soviet Journal of Nuclear Physics 16:4(1973)473-477.
[15] K. Scharnhorst: Functional integral equation for the complete effective action in quantum field theory. International Journal of Theoretical Physics 36:2(1997)281-343 (DOI: 10.1007/BF02435737) [University of Leipzig report NTZ-16-1993, arXiv:hep-th/9312137 (https://arxiv.org/abs/hep-th/9312137)].
[16] J. S. Arponen: Independent-cluster methods as mappings of quantum theory into classical mechanics. Theoretica Chimica Acta 80:2-3(1991)149-179 (DOI: 10.1007/BF01119618) [University of Helsinki report HU-TFT-90-75].
[17] K. Scharnhorst: A Grassmann integral equation. Journal of Mathematical Physics 44:11(2003)5415-5449 (DOI: 10.1063/1.1612896, errata sheet at the URL: http://www.nat.vu.nl/~scharnh/mea30.pdf) [arXiv:math-ph/0206006 (https://arxiv.org/abs/math-ph/0206006)].
[18] B. Pioline: Cubic free field theory. In: L. Baulieu, E. Rabinovici, J. Harvey, B. Pioline, P. Windey (Eds.): Progress in String, Field and Particle Theory. Proceedings of the NATO Advanced Study Institute, Cargèse, Corsica, France, May 27-June 8, 2002. NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 104. Kluwer Academic Publishers, Dordrecht, 2003, pp. 453-456 (DOI: 10.1007/978-94-010-0211-0_37) [LPTHE Paris report LPTHE-P03-01, arXiv:hep-th/0302043 (https://arxiv.org/abs/hep-th/0302043)].
[19] V. A. Alebastrov, G. V. Efimov: A proof of the unitarity of S-matrix in a nonlocal quantum field theory. Communications in Mathematical Physics 31:1(1973)1-24 (DOI: 10.1007/BF01645588, the article is freely available online from the Project Euclid website: http://projecteuclid.org/euclid.cmp/1103858926) [Institute of Theoretical Physics, Kiev, report ИТФ-72-110Р [ITF-72-110R] [in Russian]].
[20] V. A. Alebastrov, G. V. Efimov: Causality in quantum field theory with nonlocal interaction. Communications in Mathematical Physics 38:1(1974)11-28 (DOI: 10.1007/BF01651546, the article is freely available online from the Project Euclid website: http://projecteuclid.org/euclid.cmp/1103859964) [Joint Institute of Nuclear Resarch, Dubna, report Р2-7572 [R2-7572] [in Russian]].
[21] T. Kühn, M. Helias: Expansion of the effective action around non-Gaussian theories. Journal of Physics A: Mathematical and Theoretical 51:37(2018)375004, 35 pp. (DOI: 10.1088/1751-8121/aad52e), erratum ibid. 51:45(2018)459502, 1
p. (DOI: 10.1088/1751-8121/aae1d7) [arXiv:1711.05599 (https://arxiv.org/abs/1711.05599)].
[22] J. Rosaler, R. Harlander: Naturalness, Wilsonian renormalization, and “fundamental parameters” in quantum field theory. Studies in History and Philosophy of Modern Physics 66(2019)118-134 (DOI: 10.1016/j.shpsb.2018.12.003) [RWTH Aachen report TTK-19-04, ELHC research group report ELHC_2018-005, arXiv:1809.09489 (https://arxiv.org/abs/1809.09489)].
Regular Issue