Origin of Internal Symmetries of the Fundamental Interactions, the Family Problem, Fractional Quark Charges, and Unification in the Tangent Bundle Geometry
Origin of internal symmetries of the fundamental interactions, the family problem, fractional quark charges and unification in the tangent bundle geometry
Abstract
In this letter, we follow the hypothesis that the tangent bundle (TB) with the central extended little groups
of the SO(3, 1)⋊T(1, 3) group as gauge group is the underlying geometric structure for a unified theory of
the fundamental physical interactions. Based on the geometry of the TB, recently, I presented a generalized
theory of electroweak interaction in [1]. The vertical (internal) Laplacian of the tangent bundle possesses
the same form as the Hamiltonian of a 2D semiconductor quantum Hall system. The three families of
leptons and quarks, unlike in the SM, are distinguished by a new quantum number. Here, it will be shown
that the SU(3) color symmetry for strong interaction arises as an emergent symmetry similar to Chern-
Simon gauge symmetries in multicomponent quantum Hall systems and fractional charge quantization of
quarks can be understood by a binding of two vortices to a quark, turning it into a composite quark. The
analogy with the anomalous quantum Hall effect could hint at the possible existence of exotic quark states
with a hypercharge of e/5. Note that based on translational transformations in the TB geometry previously
a gauge theoretical understanding of gravity has been achieved. Therefore, the TB can be considered as the
underlying geometry that could constitute a possible way for the unification of the known fundamental
forces.
References
ArXiv:1802.03228v3
[2] H. Georgi and S. Glashow, Phys. Rev. Lett. 32, 438
(1974),
[3] H. Fritsch and P. Minkowski, Ann. Phys. (N.Y.) 93, 193
(1975)
[4] F. Wilszek and A. Zee, Phys. Rev. Lett.42, 421 (1979)
[5] C. D. Froggatt and H.B.Nielsen, Nucl. Phys. B147, 277
(1979)
[6] E. Lubkin, Ann.Phys. (N.Y.) 23, 233 (1963),
[7] A. Trautman, Rep. Math. Phys. 1, 29 (1970),
[8] W. Drechsler W and M. E. Meyer; "Fibre Bundle Techniques in Gauge Theories", Lecture Notes in Physics,
Springer 1977,
[9] M.F. Atiyah "The geometry of Yang-Mills Öelds", Scuola
Normale Superiore, Pisa, Italy (1979),
[10] M. Daniel and C. M. Viallet, Rev. Mod. Phys. 52, 175
(1980),
[11] J. Herrmann, arXiv:2207.14557v1 [hep-th]
[12] O.Heinonen (ed.), îComposite Fermionsî, World ScieniÖc, (1998),
[13] J. K. Jain, îComposite Fermionsî, Cambridge University
Press, (2009)
[14] Z. F. Ezawa, îQuantum Hall E§ectsî, World ScientiÖc,
2013
[15] K. Hayashi and T. Nakno, Prog Theor. Phys. 38, 491
(1967),
[16] Y. M. Cho, Phys. Rev. D14, 2521 (1976),
[17] K. Hayashi and T. Shirafuji, Phys. Rev. D19, 3524
(1979),
[18] J. W. Maluf, Annalen Phys. 525, 339 (2013),
[19] R. Aldrovandi, J. G. Pereira, "Teleparallel gravity; an
introduction" (Springer, Dordrecht, 2012),
[20] E. P. Wigner, Ann. Math. 40, 149 (1939),
[21] V. Bargman, Ann. Math. 59, 1 (1954,
[22] H. Hoogland, J. Phys. A Math. Gen. 11, 1557 (1978),
[23] J. F. Carina, M. A. del Olmo and M Santander, J. Phys.
A: Math.Gen. 17, 3091 (1984),
[24] S. Kobayashi an K. Nomizu, îFoundation of Di§erential
Geometryî, Interscience Publishers (1963),
[25] K. v. Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett.
45, 494 (1980),
[26] C.Tsui,H.L.Stormer and A.C.Gossard, Phys. Rev. Lett.
48, 1559 (1982),
[27] R. B.Laughlin, Phys. Rev. Lett.50,1395 (1983),
[28] B. Halperin, Helv. phys. acta 56, 75 (1983),
[29] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989),
[30] J. Frˆhlich, A. Zee, Nucl. Phys. B364, 517 (1991),
[31] A. Lopez and E. Fradkin, Phys. Rev. B51,4347 (1995),
[32] A. Balatsky and E. Fradkin, Phys. Rev. B 43, 10622
(1991),
[33] J. Frˆhlich, T. Kerler and P.A. Marchetti, Nucl. Phys.
374, 511 (1992),
[34] E. Witten, Commun. Math. Phys. 121, 351 (1989),
[35] I. V. Keldysh and Y. V. Kopaev, Fiz. Twerd. Tela 6, 2791
(1964),
[36] D. Jerome, T. M. Rice and W. Kohn, Phys. Rev., 158,
452 (1967),
[37] C. Comte and P. Nozieres, Journal de Physique, 1982, 43
/7) 0.1069,
[38] J. P. Eisenstein and A. N. MacDonald, Nature 432, 691
(2004),
[39] A. Ali, J.S. Lange and S. Stone arXiv:1706.00610v2

This work is licensed under a Creative Commons Attribution 4.0 International License.
Letters in High Energy Physics (LHEP) is an open access journal published by Andromeda Publishing and Education Services. The articles in LHEP are distributed according to the terms of the creative commons license CC-BY 4.0. Under the terms of this license, copyright is retained by the author while use, distribution and reproduction in any medium are permitted provided proper credit is given to original authors and sources.
Terms of Submission
By submitting an article for publication in LHEP, the submitting author asserts that:
1. The article presents original contributions by the author(s) which have not been published previously in a peer-reviewed medium and are not subject to copyright protection.
2. The co-authors of the article, if any, as well as any institution whose approval is required, agree to the publication of the article in LHEP.